To see the other types of publications on this topic, follow the link: Mott-Hubbard transition.

Journal articles on the topic 'Mott-Hubbard transition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mott-Hubbard transition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bang, Y., C. Castellani, M. Grilli, G. Kotliar, R. Raimondi, and Z. Wang. "SINGLE PARTICLE AND OPTICAL GAPS IN CHARGE-TRANSFER INSULATORS." International Journal of Modern Physics B 06, no. 05n06 (March 1992): 531–45. http://dx.doi.org/10.1142/s0217979292000311.

Full text
Abstract:
We analyze the collective excitations near a Mott-Hubbard and a metal charge transfer insulator transition, using the slave boson technique. We show that the Mott transition can be viewed as an excitonic softening, which takes place when the bound state between the lower and upper Hubbard bands reaches zero energy. The exciton energy is related to the jump of the chemical potential at zero doping. In a charge transfer insulator this mode describes a p-d charge fluctuation, i.e. it is a charge transfer exciton. In the single band Hubbard model the excitonic resonance describes virtual transitions between the lower and the upper Hubbard band. Finally we contrast the behaviour of the collective modes near the Mott transition with and near the Charge Transfer Instability. In the former the exciton energy and the charge compressibility go to zero. In the latter the exciton energy remains finite and the charge susceptibility diverges, causing phase separation.
APA, Harvard, Vancouver, ISO, and other styles
2

Montorsi, A., and M. Rasetti. "Mott-hubbard metal-insulator transition." Il Nuovo Cimento D 16, no. 10-11 (October 1994): 1649–57. http://dx.doi.org/10.1007/bf02462155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Le, Duc-Anh. "Mott transition in the dynamic Hubbard model within slave boson mean-field approach." Modern Physics Letters B 28, no. 10 (April 20, 2014): 1450078. http://dx.doi.org/10.1142/s021798491450078x.

Full text
Abstract:
At zero temperature, the Kotliar–Ruckenstein slave boson mean-field approach is applied to the dynamic Hubbard model. In this paper, the influences of the dynamics of the auxiliary boson field on the Mott transition are investigated. At finite boson frequency, the Mott-type features of the Hubbard model is found to be enhanced by increasing the pseudospin coupling parameter g. For sufficiently large pseudospin coupling g, the Mott transition occurs even for modest values of the bare Hubbard interaction U. The lack of electron–hole symmetry is highlighted through the quasiparticle weight. Our results are in good agreement with the ones obtained by two-site dynamical mean-field theory and determinant quantum Monte Carlo simulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Rozenberg, M. J., X. Y. Zhang, and G. Kotliar. "Mott-Hubbard transition in infinite dimensions." Physical Review Letters 69, no. 8 (August 24, 1992): 1236–39. http://dx.doi.org/10.1103/physrevlett.69.1236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SHASTRY, B. SRIRAM. "MOTT TRANSITION IN THE HUBBARD MODEL." Modern Physics Letters B 06, no. 23 (October 10, 1992): 1427–38. http://dx.doi.org/10.1142/s0217984992001137.

Full text
Abstract:
In this article, I discuss W. Kohn’s criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting.miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the “extra phases” arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism), and the corresponding “happy fluxes” for the fermions identified. A curious result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A“spin-statistics” like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out.
APA, Harvard, Vancouver, ISO, and other styles
6

Noack, R. M., and F. Gebhard. "Mott-Hubbard Transition in Infinite Dimensions." Physical Review Letters 82, no. 9 (March 1, 1999): 1915–18. http://dx.doi.org/10.1103/physrevlett.82.1915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lundin, Urban, Igor Sandalov, and Börje Johansson. "Mott–Hubbard transition in the N-orbital Hubbard model." Physica B: Condensed Matter 281-282 (June 2000): 836–37. http://dx.doi.org/10.1016/s0921-4526(99)00980-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

LE, DUC-ANH, and ANH-TUAN HOANG. "PHASE TRANSITION IN THE HALF-FILLED IONIC HUBBARD MODEL: MEAN-FIELD SLAVE BOSON STUDY." Modern Physics Letters B 26, no. 03 (January 30, 2012): 1150016. http://dx.doi.org/10.1142/s0217984911500163.

Full text
Abstract:
We study electronic phase transitions in the half-filled ionic Hubbard model with an on-site Coulomb repulsion U and an ionic energy Δ by using the Kotliar–Ruckenstein slave-boson theory. Assuming a paramagnetic solution, we show that for any non-zero values of Δ, with increasing U the system undergoes a transition from band-insulator to Mott-insulator. Our results have implied the absence of a metallic phase between the band and the Mott insulator phases.
APA, Harvard, Vancouver, ISO, and other styles
9

Bao, An. "Mott transition in ruby lattice Hubbard model." Chinese Physics B 28, no. 5 (May 2019): 057101. http://dx.doi.org/10.1088/1674-1056/28/5/057101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takenobu, T., T. Muro, Y. Iwasa, and T. Mitani. "Mott-Hubbard transition in alkali ammonia fullerides." Synthetic Metals 121, no. 1-3 (March 2001): 1173–74. http://dx.doi.org/10.1016/s0379-6779(00)01234-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rozenberg, M. J., G. Kotliar, and X. Y. Zhang. "Mott-Hubbard transition in infinite dimensions. II." Physical Review B 49, no. 15 (April 15, 1994): 10181–93. http://dx.doi.org/10.1103/physrevb.49.10181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

van Dongen, P. G. J., and C. Leinung. "Mott-Hubbard transition in a magnetic field." Annalen der Physik 509, no. 1 (1997): 45–67. http://dx.doi.org/10.1002/andp.19975090104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Grzybowski, Przemysław R., and Ravindra W. Chhajlany. "Hubbard-I approach to the Mott transition." physica status solidi (b) 249, no. 11 (August 6, 2012): 2231–38. http://dx.doi.org/10.1002/pssb.201248194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hansmann, P., A. Toschi, G. Sangiovanni, T. Saha-Dasgupta, S. Lupi, M. Marsi, and K. Held. "Mott-Hubbard transition in V2 O3 revisited." physica status solidi (b) 250, no. 7 (March 20, 2013): 1251–64. http://dx.doi.org/10.1002/pssb.201248476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

UGAJIN, R., S. HIRATA, and Y. MORI. "FERROMAGNETIC AND MOTT TRANSITIONS MODULATED BY VARYING FRACTAL DIMENSIONS IN FRACTAL–SHAPED NANOSTRUCTURES." International Journal of Modern Physics B 15, no. 14 (June 10, 2001): 2025–44. http://dx.doi.org/10.1142/s0217979201006550.

Full text
Abstract:
The ferromagnetic transition in a fractal-shaped structure is analyzed using standard Monte Carlo simulations of discrete spin models. Mott transition of half-filled electrons in a fractal-shaped structure is investigated using Green's functions for a single-band Hubbard model. Our fractal-shaped structure is generated using the dielectric-breakdown model in a three-dimensional lattice, enabling the fractal dimensions to be reduced from three to two. The critical temperature of the ferromagnetic transition and the critical strength of the electron–electron interaction in the Mott transition are dependent on the fractal dimensions, thus the critical values of these phase transitions can be modulated by varying fractal dimensions.
APA, Harvard, Vancouver, ISO, and other styles
16

Kajueter, Henrik, and Gabriel Kotliar. "Band Degeneracy and the Mott Transition: Dynamical Mean Field Study." International Journal of Modern Physics B 11, no. 06 (March 10, 1997): 729–51. http://dx.doi.org/10.1142/s0217979297000411.

Full text
Abstract:
We investigate the Mott transition in infinite dimensions in the orbitally degenerate Hubbard model. We find that the qualitative features of the Mott transition found in the one-band model are also present in the orbitally degenerate case. Surprisingly, the quantitative aspects of the density driven Mott transition around density one are not very sensitive to orbital degeneracy, justifying the quantitative success of the one-band model which was previously applied to orbitally degenerate systems. We contrast this with quantities that have a sizeable dependence on the orbital degeneracy and comment on the role of the intra-atomic exchange J.
APA, Harvard, Vancouver, ISO, and other styles
17

Krishnamurthy, H., C. Jayaprakash, Sanjoy Sarker, and Wolfgang Wenzel. "Mott-Hubbard metal-insulator transition in nonbipartite lattices." Physical Review Letters 64, no. 8 (February 1990): 950–53. http://dx.doi.org/10.1103/physrevlett.64.950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

TONG, NING-HUA, and SHUN-QING SHEN. "LOW TEMPERATURE PROPERTIES OF THE MOTT–HUBBARD TRANSITION." Modern Physics Letters B 15, no. 27 (November 20, 2001): 1249–58. http://dx.doi.org/10.1142/s0217984901003123.

Full text
Abstract:
The unanalytical feature of the Mott–Hubbard metal-insulator transition in infinite dimensions is studied by using a modified self-consistency scheme in the framework of dynamical mean-field theory. For a specific low temperature T=0.0025W (W: half bandwidth), the "Z"-shaped or "S"-shaped curves for double occupancy D, energy per lattice site E, and the quasi-particle weight Z are obtained as functions of U. Direct observation shows that the Fermi-liquid phase changes to the insulating phase through a non-Fermi-liquid phase at the unstable level. Based on our results, a scenario of zero temperature MIT is proposed. The phase diagram for MIT on the T–D plane is also presented.
APA, Harvard, Vancouver, ISO, and other styles
19

Pérez-Navarro, A., J. Costa-Quintana, and F. López-Aguilar. "Mott transition in the two-dimensional Hubbard model." Physica B: Condensed Matter 259-261 (January 1999): 715–16. http://dx.doi.org/10.1016/s0921-4526(98)00780-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sunko, D. K., and S. Barišić. "A thermodynamic description of the Mott-Hubbard transition." Europhysics Letters (EPL) 36, no. 8 (December 10, 1996): 607–12. http://dx.doi.org/10.1209/epl/i1996-00576-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sunko, D. K., and S. Barišić. "A thermodynamic description of the Mott-Hubbard transition." Europhysics Letters (EPL) 37, no. 4 (February 1, 1997): 313. http://dx.doi.org/10.1209/epl/i1997-00149-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

P�rez-Navarro, A., J. Costa-Quintana, and F. L�pez-Aguilar. "Mott Transition in the Two-Dimensional Hubbard Model." physica status solidi (b) 217, no. 2 (February 2000): 869–86. http://dx.doi.org/10.1002/(sici)1521-3951(200002)217:2<869::aid-pssb869>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Braun, Johannes M., Harald Schneider, Manfred Helm, Rafał Mirek, Lynn A. Boatner, Robert E. Marvel, Richard F. Haglund, and Alexej Pashkin. "Optical pump – THz probe response of VO2 under high pressure." EPJ Web of Conferences 205 (2019): 04003. http://dx.doi.org/10.1051/epjconf/201920504003.

Full text
Abstract:
We present the ultrafast THz response of VO2 under high pressures. A clear anomaly is observed around 8 GPa indicating a pressure-induced phase transition. Our observations can be interpreted in terms of a bandwidth-controlled Mott-Hubbard transition.
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Q. P., and Robert Joynt. "Mott-Hubbard metal-insulator transition in Hubbard models at high total spin." Physical Review B 47, no. 7 (February 15, 1993): 3979–82. http://dx.doi.org/10.1103/physrevb.47.3979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kawasugi, Yoshitaka, Kazuhiro Seki, Satoshi Tajima, Jiang Pu, Taishi Takenobu, Seiji Yunoki, Hiroshi M. Yamamoto, and Reizo Kato. "Two-dimensional ground-state mapping of a Mott-Hubbard system in a flexible field-effect device." Science Advances 5, no. 5 (May 2019): eaav7282. http://dx.doi.org/10.1126/sciadv.aav7282.

Full text
Abstract:
A Mott insulator sometimes induces unconventional superconductivity in its neighbors when doped and/or pressurized. Because the phase diagram should be strongly related to the microscopic mechanism of the superconductivity, it is important to obtain the global phase diagram surrounding the Mott insulating state. However, the parameter available for controlling the ground state of most Mott insulating materials is one-dimensional owing to technical limitations. Here, we present a two-dimensional ground-state mapping for a Mott insulator using an organic field-effect device by simultaneously tuning the bandwidth and bandfilling. The observed phase diagram showed many unexpected features such as an abrupt first-order superconducting transition under electron doping, a recurrent insulating phase in the heavily electron-doped region, and a nearly constant superconducting transition temperature in a wide parameter range. These results are expected to contribute toward elucidating one of the standard solutions for the Mott-Hubbard model.
APA, Harvard, Vancouver, ISO, and other styles
26

LIANG, JUN-JUN, J. Q. LIANG, and W. M. LIU. "ENERGY SPECTRUM AND SUPERFLUID-MOTT INSULATOR PHASE TRANSITION OF ULTRACOLD BOSONS IN OPTICAL LATTICE." International Journal of Modern Physics B 17, no. 25 (October 10, 2003): 4593–600. http://dx.doi.org/10.1142/s0217979203022805.

Full text
Abstract:
Green function metheod is introduced to investigate ultracold dilute gas of bosonic atoms in an optical lattice which can be described by a Bose–Hubbard model. The superfluid–Mott insulator phase transition condition is determined by the related energy-band structure with an obvious interpretation of the transition mechanism.
APA, Harvard, Vancouver, ISO, and other styles
27

Yoshioka, Takuya, Akihisa Koga, and Norio Kawakami. "Mott Transition in the Hubbard Model on Checkerboard Lattice." Journal of the Physical Society of Japan 77, no. 10 (October 15, 2008): 104702. http://dx.doi.org/10.1143/jpsj.77.104702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, X. Y., M. J. Rozenberg, and G. Kotliar. "Mott transition in thed=∞ Hubbard model at zero temperature." Physical Review Letters 70, no. 11 (March 15, 1993): 1666–69. http://dx.doi.org/10.1103/physrevlett.70.1666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jeckelmann, Eric. "Mott-Peierls transition in the extended Peierls-Hubbard model." Physical Review B 57, no. 19 (May 15, 1998): 11838–41. http://dx.doi.org/10.1103/physrevb.57.11838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fujimori, A., T. Yoshida, K. Okazaki, T. Tsujioka, K. Kobayashi, T. Mizokawa, M. Onoda, T. Katsufuji, Y. Taguchi, and Y. Tokura. "Electronic structure of Mott–Hubbard-type transition-metal oxides." Journal of Electron Spectroscopy and Related Phenomena 117-118 (June 2001): 277–86. http://dx.doi.org/10.1016/s0368-2048(01)00253-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Martelo, L. M., M. Dzierzawa, L. Siffert, and D. Baeriswyl. "Mott-Hubbard transition and antiferromagnetism on the honeycomb lattice." Zeitschrift für Physik B Condensed Matter 103, no. 2 (June 1996): 335–38. http://dx.doi.org/10.1007/s002570050384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gros, C., W. Wenzel, R. Valentí, G. Hülsenbeck, and J. Stolze. "The Mott-Hubbard Transition on the D = ∞ Bethe Lattice." Europhysics Letters (EPL) 27, no. 4 (August 1, 1994): 299–304. http://dx.doi.org/10.1209/0295-5075/27/4/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Saunders, J., A. Casey, H. Patel, J. Nyéki, and B. Cowan. "Mott–Hubbard transition in a 2D 3He fluid monolayer." Physica B: Condensed Matter 280, no. 1-4 (May 2000): 100–101. http://dx.doi.org/10.1016/s0921-4526(99)01483-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zwerger, Wilhelm. "Mott Hubbard transition of cold atoms in optical lattices." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 2 (April 1, 2003): S9—S16. http://dx.doi.org/10.1088/1464-4266/5/2/352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Freericks, J. K., J. R. Cohn, P. G. J. van Dongen, and H. R. Krishnamurthy. "Infinite single-particle bandwidth of a Mott–Hubbard insulator." International Journal of Modern Physics B 30, no. 13 (May 19, 2016): 1642001. http://dx.doi.org/10.1142/s0217979216420017.

Full text
Abstract:
The conventional viewpoint of the strongly correlated electron metal-insulator transition is that a single band splits into two upper and lower Hubbard bands at the transition. Much work has investigated whether this transition is continuous or discontinuous. Here we focus on another aspect and ask the question of whether there are additional upper and lower Hubbard bands, which stretch all the way out to infinity — leading to an infinite single-particle bandwidth (or spectral range) for the Mott insulator. While we are not able to provide a rigorous proof of this result, we use exact diagonalization studies on small clusters to motivate the existence of these additional bands, and we discuss some different methods that might be utilized to provide such a proof. Even though the extra upper and lower Hubbard bands have very low total spectral weight, those states are expected to have extremely long lifetimes, leading to a nontrivial contribution to the transport density of states for [Formula: see text] transport and modifying the high temperature limit for the electrical resistivity.
APA, Harvard, Vancouver, ISO, and other styles
36

UGAJIN, R., C. ISHIMOTO, S. HIRATA, and Y. MORI. "MOTT TRANSITION IN A HELIX-BASED COMPLEX." International Journal of Modern Physics B 14, no. 18 (July 20, 2000): 1825–42. http://dx.doi.org/10.1142/s0217979200002193.

Full text
Abstract:
We introduce a helix-based complex, which we will call a multiply-twisted helix, in which a one-dimensional array of components, e.g. atoms or nanoclusters, is twisted, producing a helix, which if itself twisted, produces a doubly-twisted helix, which we can think of as the simplest multiply-twisted helix. In the hierarchy of helical structures, the mean number of nearest neighbors can be controlled by adjusting the number of components in a round of helices. The Hubbard model is used to analyze the Mott transition in a multiply-twisted helix, where electrons can move not only along a one-dimensional array but also between sub-rounds in adjacent larger rounds. The critical strength of electron–electron interaction in a Mott transition can also be controlled by adjusting the number of components in a round, as suggested by our mean-field analysis of half-filled electrons.
APA, Harvard, Vancouver, ISO, and other styles
37

Bendacha, M., and A. Boudjemâa. "Normal and anomalous densities in Bose–Einstein condensates with optical lattices." Canadian Journal of Physics 92, no. 5 (May 2014): 375–79. http://dx.doi.org/10.1139/cjp-2013-0396.

Full text
Abstract:
We study the quantum phase transition from the superfluid to the Mott insulator state in two- and three-dimensional Bose–Einstein condensate with optical lattices using Bose–Hubbard Hamiltonian within the generalized Hatree–Fock–Bogoliubov approximation. The behavior of the depletion and the anomalous fraction has been investigated in the Mott insulator phase. We found that at T = 0, these quantities become significant in two and three dimensions. It is shown also that the dimensionality of the lattice enhances the anomalous density.
APA, Harvard, Vancouver, ISO, and other styles
38

Montorsi, Arianna, and Mario Rasetti. "MOTT TRANSITION IN AN EXACTLY SOLVABLE K.S.S.H. MODEL." International Journal of Modern Physics B 05, no. 06n07 (April 1991): 985–98. http://dx.doi.org/10.1142/s0217979291000511.

Full text
Abstract:
The solution of the K.S.S.H.-like model shown to be exactly solvable in any number of dimensions, for a particular choice of the coupling constant describing the hopping process amplitude, both for finite size and in the thermodynamic limit, is discussed in detail. The analysis of the zero-temperature phase space in d = 2 shows that the model exhibits a transition in the number of doubly occupied sites order parameter, which at half-filling coincides with the Mott transition found for the Hubbard model in the Gutzwiller approximation.
APA, Harvard, Vancouver, ISO, and other styles
39

Skorenkyy, Yu, L. Didukh, O. Kramar, and Yu Dovhopyaty. "Mott Transition, Ferromagnetism and Conductivity in the Generalized Hubbard Model." Acta Physica Polonica A 111, no. 4 (April 2007): 635–44. http://dx.doi.org/10.12693/aphyspola.111.635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hong, Jongbae, and Tae-Suk Kim. "Transition characteristics of a Mott-Hubbard system in large dimensions." Physical Review B 62, no. 19 (November 15, 2000): 12581–84. http://dx.doi.org/10.1103/physrevb.62.12581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ohashi, Takuma, Tsutomu Momoi, Hirokazu Tsunetsugu, and Norio Kawakami. "Finite-Temperature Mott Transition in Two-Dimensional Frustrated Hubbard Models." Progress of Theoretical Physics Supplement 176 (2008): 97–116. http://dx.doi.org/10.1143/ptps.176.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ahn, J. S., J. Bak, H. S. Choi, T. W. Noh, J. E. Han, Yunkyu Bang, J. H. Cho, and Q. X. Jia. "Spectral Evolution in(Ca,Sr)RuO3near the Mott-Hubbard Transition." Physical Review Letters 82, no. 26 (June 28, 1999): 5321–24. http://dx.doi.org/10.1103/physrevlett.82.5321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Husmann, A., J. Brooke, T. F. Rosenbaum, X. Yao, and J. M. Honig. "Nonlinear Electric Field Effects at a Continuous Mott-Hubbard Transition." Physical Review Letters 84, no. 11 (March 13, 2000): 2465–68. http://dx.doi.org/10.1103/physrevlett.84.2465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Held, K., J. W. Allen, V. I. Anisimov, V. Eyert, G. Keller, H. D. Kim, S. K. Mo, and D. Vollhardt. "Two aspects of the Mott–Hubbard transition in Cr-doped." Physica B: Condensed Matter 359-361 (April 2005): 642–44. http://dx.doi.org/10.1016/j.physb.2005.01.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Strong, S. P., and J. C. Talstra. "Order parameter for the Mott-Hubbard transition in one dimension." Physical Review B 59, no. 11 (March 15, 1999): 7362–66. http://dx.doi.org/10.1103/physrevb.59.7362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Onoda, S., and M. Imada. "Finite-temperature Mott transition in the two-dimensional Hubbard model." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E275—E276. http://dx.doi.org/10.1016/j.jmmm.2004.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kobayashi, Kenji, and Hisatoshi Yokoyama. "Improved wave functions for Hubbard model: Superconductivity and Mott transition." Physica C: Superconductivity and its Applications 463-465 (October 2007): 141–45. http://dx.doi.org/10.1016/j.physc.2007.01.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Moeller, Goetz, Qimiao Si, Gabriel Kotliar, Marcelo Rozenberg, and Daniel S. Fisher. "Critical Behavior near the Mott Transition in the Hubbard Model." Physical Review Letters 74, no. 11 (March 13, 1995): 2082–85. http://dx.doi.org/10.1103/physrevlett.74.2082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Carter, S. A., T. F. Rosenbaum, P. Metcalf, J. M. Honig, and J. Spalek. "Mass enhancement and magnetic order at the Mott-Hubbard transition." Physical Review B 48, no. 22 (December 1, 1993): 16841–44. http://dx.doi.org/10.1103/physrevb.48.16841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gunnarsson, Olle, Erik Koch, and Richard M. Martin. "Mott transition in degenerate Hubbard models: Application to doped fullerenes." Physical Review B 54, no. 16 (October 15, 1996): R11026—R11029. http://dx.doi.org/10.1103/physrevb.54.r11026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography