Academic literature on the topic 'Mott-Hubbard transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mott-Hubbard transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mott-Hubbard transition"
Bang, Y., C. Castellani, M. Grilli, G. Kotliar, R. Raimondi, and Z. Wang. "SINGLE PARTICLE AND OPTICAL GAPS IN CHARGE-TRANSFER INSULATORS." International Journal of Modern Physics B 06, no. 05n06 (March 1992): 531–45. http://dx.doi.org/10.1142/s0217979292000311.
Full textMontorsi, A., and M. Rasetti. "Mott-hubbard metal-insulator transition." Il Nuovo Cimento D 16, no. 10-11 (October 1994): 1649–57. http://dx.doi.org/10.1007/bf02462155.
Full textLe, Duc-Anh. "Mott transition in the dynamic Hubbard model within slave boson mean-field approach." Modern Physics Letters B 28, no. 10 (April 20, 2014): 1450078. http://dx.doi.org/10.1142/s021798491450078x.
Full textRozenberg, M. J., X. Y. Zhang, and G. Kotliar. "Mott-Hubbard transition in infinite dimensions." Physical Review Letters 69, no. 8 (August 24, 1992): 1236–39. http://dx.doi.org/10.1103/physrevlett.69.1236.
Full textSHASTRY, B. SRIRAM. "MOTT TRANSITION IN THE HUBBARD MODEL." Modern Physics Letters B 06, no. 23 (October 10, 1992): 1427–38. http://dx.doi.org/10.1142/s0217984992001137.
Full textNoack, R. M., and F. Gebhard. "Mott-Hubbard Transition in Infinite Dimensions." Physical Review Letters 82, no. 9 (March 1, 1999): 1915–18. http://dx.doi.org/10.1103/physrevlett.82.1915.
Full textLundin, Urban, Igor Sandalov, and Börje Johansson. "Mott–Hubbard transition in the N-orbital Hubbard model." Physica B: Condensed Matter 281-282 (June 2000): 836–37. http://dx.doi.org/10.1016/s0921-4526(99)00980-1.
Full textLE, DUC-ANH, and ANH-TUAN HOANG. "PHASE TRANSITION IN THE HALF-FILLED IONIC HUBBARD MODEL: MEAN-FIELD SLAVE BOSON STUDY." Modern Physics Letters B 26, no. 03 (January 30, 2012): 1150016. http://dx.doi.org/10.1142/s0217984911500163.
Full textBao, An. "Mott transition in ruby lattice Hubbard model." Chinese Physics B 28, no. 5 (May 2019): 057101. http://dx.doi.org/10.1088/1674-1056/28/5/057101.
Full textTakenobu, T., T. Muro, Y. Iwasa, and T. Mitani. "Mott-Hubbard transition in alkali ammonia fullerides." Synthetic Metals 121, no. 1-3 (March 2001): 1173–74. http://dx.doi.org/10.1016/s0379-6779(00)01234-0.
Full textDissertations / Theses on the topic "Mott-Hubbard transition"
Sordi, Giovanni. "Mott-Hubbard transition in strongly correlated electron systems." Paris 11, 2008. http://www.theses.fr/2008PA112160.
Full textI study the Mott metal-insulator transition within the dynamical mean-field theory in two schematic Hamiltonians widely used to describe the strongly correlated electron systems : the Hubbard model and the periodic Anderson model. The scenario for the transition in the Hubbard model is reviewed and the analysis of the photoemission spectra near the transition is presented in detail. The doping driven Mott transition in the periodic Anderson model is discussed with respect to the one realized in the Hubbard model. The main finding is a qualitatively different scenario for electron or hole driven transitions. In the former case the transition is expectedly similar to the first order transition of the Hubbard model. However, in the latter case, a second order transition is found. Thus I demonstrate that the transition scenario of the Hubbard model is not generic for the periodic Anderson model
Capone, Massimo. "The Mott Transition: Role of Frustration and Orbital Degeneracy." Doctoral thesis, SISSA, 2000. http://hdl.handle.net/20.500.11767/4230.
Full textPai, R. V., A. Punnoose, and R. A. Römer. "The Mott-Anderson transition in the disordered one-dimensional Hubbard model." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801405.
Full textBlümer, Nils [Verfasser]. "Mott-Hubbard Metal-Insulator Transition and Optical Conductivity in High Dimensions / Nils Blümer." Aachen : Shaker, 2003. http://d-nb.info/1172609020/34.
Full textBourassa, Louis. "Transition de Mott et supraconductivité dans les matériaux organiques." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10610.
Full textLiu, Qinyong [Verfasser]. "Emergent Disorder : Nano-Domain Formation Near the First-Order Mott-Hubbard Transition / Qinyong Liu." Bonn : Universitäts- und Landesbibliothek Bonn, 2012. http://d-nb.info/1044081848/34.
Full textWinograd, Emilio. "Orbital-selectivity in strongly correlated fermionic systems. From materials to cold-atoms." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112031.
Full textThis thesis focuses on multiorbital aspects of strongly correlated fermionic systems. In particular, it focuses on the existence of orbital differentiation in which coexistence of itinerant and localized character can be associated to different orbitals. This subject is discussed in the context of cold atoms and materials, providing a bridge between both communities.In the first part of the thesis, we give an insight into the problem of strong correlations in materials, and we introduce the concept of 'orbital-selective Mott transition'. We also provide the main tools to understand how materials can be simulated with cold atoms experiments, and we present important related results in the context of the metal-Mott insulator transition. The technical aspects, based on dynamical mean-field theory are also discussed, and the solution of two key models of strongly correlated fermionic systems, i.e., the Hubbard model (HM) and the Falicov-Kimball model (FKM), are reviewed.Then we study in detail the physics of two interacting fermionic species with different masses in an optical lattice. We establish the different phases (with and without long-range order) in terms of the interactions strength (U), mass ratio and temperature (T), and also discuss the thermodynamic variables, which are relevant in cold atoms experiments. We show that in the metallic phase (U below a critical value) and for some degree of mass imbalance, a crossover appears between a Fermi-liquid metallic state at low T, and an 'orbital-selective' state at higher T, where the heavy fermions effectively localize while the light species remain itinerant. Hence, we propose this minimal model for addressing orbital-selective physics with cold atoms experiments.Based on the properties of the studied model, we propose the 'entropic chromatography' as a new method for cooling fermionic atoms in optical lattices. We discuss its efficiency and limitations, and provide some ideas in order to overcome them.In the last part of the thesis we generalize the previous model to a model relevant for multiband correlated materials that can display orbital differentiation. We show that the orbital-selective Mott state can be stable under lattice distortions modeled by local hybridization between the orbitals. However, the Mott state is characterized by a pseudogap, where charge fluctuations abruptly reduce, but the state remains compressible. In connection with the previous model, we discuss the temperature-induced orbital-selective crossover in this problem, we compare our results with photoemission experiments, and predict what would happen in materials that display local hybridization between the bands
Costa, Karine Piacentini Coelho da. "Estudo do modelo de Bose-Hubbard usando o algoritmo Worm." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-27022012-085711/.
Full textThis work study the two-dimensional ultracold bosonic atoms loaded in a square optical lattice, without harmonic confinement. The dynamics of this system is described by the Bose-Hubbard model, which predicts a quantum phase transition from a superfluid to a Mott-insulator at low temperatures that can be induced by varying the depth of the optical potential. We present here the phase diagram of this transition built from a mean field approach and from a numerical calculation using a Quantum Monte Carlo algorithm, namely the Worm algorithm. We found the critical transition point for the first Mott lobe in both cases, in agreement with the standard literature.
Suárez, Villagrán Martha Yolima 1984. "Estudos do modelo de Hubbard desordenado em duas dimensões." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276990.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-23T18:51:04Z (GMT). No. of bitstreams: 1 SuarezVillagran_MarthaYolima_D.pdf: 7321255 bytes, checksum: d76479a0e0c1143207cb4ee380a8034d (MD5) Previous issue date: 2013
Resumo: Estudamos nesta tese alguns aspectos da transição metal-isolante de Mott no caso desordenado. O modelo no qual baseamos nosso estudo é o modelo de Hubbard desordenado, que é o modelo mais simples a apresentar a transição metal-isolante de Mott. Analisamos esse modelo através da Teoria Dinâmica de Campo Médio Estatística (StatDMFT). Essa teoria é uma extensão natural da Teoria Dinâmica de Campo Médio (DMFT), que foi usada com relativo sucesso nos últimos anos para analisar a transição de Mott no caso limpo. Como no caso dessa última, a StatDMFT incorpora os efeitos de correlação eletrônica apenas nos seus aspetos locais. A desordem é tratada de maneira a incorporar todos os efeitos de localização de Anderson. Com essa técnica, analisamos a transição de Mott desordenada no caso bi-dimensional, usando o Monte Carlo quântico para resolver os problemas de impureza única de Anderson requeridos pela StatDMFT. Encontramos as linhas espinodais nas quais o metal e o isolante deixam de ser meta-estáveis. Também estudamos os padrões espaciais das flutuações de quantidades locais, como a auto-energia e a função de Green local, e mostramos como há o aparecimento de regiões metálicas dentro do isolante e viceversa. Analisamos efeitos de tamanho finito e mostramos que, em consonância com os teoremas de Imry e Ma, a transição de primeira ordem desaparece no limite termodinâmico. Analisamos as propriedades de transporte desse sistema através de um mapeamento a um sistema de resistores aleatórios clássicos e calculamos a corrente média e sua distribuição através da transição metal-isolante. Finalmente, estudamos o comportamento da parede de domínio que se forma entre o isolante e o metal no caso limpo. Isso foi feito através de um modelo de uma cadeia unidimensional conectada a reservatórios, um metálico e um isolante, cada um em uma de suas extremidades. Nesse caso, utilizamos o método da Teoria de Perturbação Iterada para a solução dos modelos de impureza única. Encontramos o comportamento da parede como função da temperatura e das interações
Abstract: In this thesis, we studied some aspects of the Mott metal-insulator transition in the disordered case. The model on which we based our analysis is the disordered Hubbard model, which is the simplest model capable of capturing the Mott metal-insulator transition. We investigated this model through the Statistical Dynamical Mean-Field Theory (statDMFT). This theory is a natural extension of the Dynamical Mean-Field Theory (DMFT), which has been used with relative success in the last several years with the purpose of describing the Mott transition in the clean case. As is the case for the latter theory, the statDMFT incorporates the electronic correlation effects only incorporate Anderson localization effects.. With this technique, we analyzed the disordered two-dimensional Mott transition, using Quantum Monte Carlo to solve the associated single-impurity problems. We found the spinodal lines at which metal and insulator cease to be meta-stable. We also studied the spatial fluctuations of local quantities, such as the self-energy and the local Green¿s function, and showed the appearance of metallic regions within the insulator and vice-versa. We carried out an analysis of finite-size effects and showed that, in agreement with the theorems of Imry and Ma, the first-order transition is smeared in the thermodynamic limit. We analyzed transport properties by means of a mapping to a random classical resistor network and calculated both the average current and its distribution across the metalinsulator transition. Finally, we studied the behavior of the domain wall which forms between the metal and the insulator in the clean case. This was done by means of a model of a one-dimensional chain connected to two reservoirs, one metallic and the other insulating, each attached to one of the chain¿s ends. In this case, we used the Iterated Perturbation Theory technique in order to solve the associated singleimpurity problems. We then established the behavior of the domain wall width as a function of temperature and interactions
Doutorado
Física
Doutora em Ciências
Schäfer, Steffen. "Approximation des Phases Aléatoires Self-Consistante dans le Modèle de Hubbard." Phd thesis, Université Joseph Fourier (Grenoble), 1998. http://tel.archives-ouvertes.fr/tel-00002990.
Full textPour une fonction de Green générale à $n$ corps cette méthode se dérive à partir de l'Equation de Dyson où seules sont retenues les contributions instantanées de l'opérateur de masse. La fonction de Green est alors donnée par un système d'équations intégrales non-linéaires que l'on cherchera à résoudre de façon self-consistante. Elle satisfait, parmi d'autres théorèmes, la règle de somme pondérée par l'énergie. Pour les fonctions de Green à une et à deux particules, la SCRPA obéit à un principe variationnel. Dans le Modèle de Hubbard les fonctions de corrélation de charge et de spin sont calculées en SCRPA. En négligeant les densités connectées à deux corps, nous obtenons une théorie self-consistante plus simple, la RPA renormalisée. Les deux méthodes sont étudiées et comparées à la RPA standard.
Nous établissons et résolvons numériquement les équations de la RPA renormalisée pour les fonctions de corrélations de densité de charge dans le Modèle de Hubbard à une dimension. Les susceptibilités de charge et de spin longitudinal, la distribution des impulsions et plusieurs propriétés du fondamental sont évaluées et comparées aux résultats exacts. Dans la limite du couplage fort de la bande à moitié remplie, la RPA renormalisée possède une solution analytique qui est, à un facteur près, en accord avec le développement pour fortes interactions de l'ansatz de Bethe. Comme prévu, des particularités liées à la dimension spatiale $1$, par exemple un comportement de liquide de Luttinger, n'ont pas pu être retrouvées. Or, la description fournie par notre méthode pourrait être assez réaliste en dimensions plus élevées.
Une partie de ces travaux a été publié dans
"Dyson Equation Approach to Many-Body Greens Functions and
Self-Consistent RPA, First Application to the Hubbard Model"
Steffen Schäfer, Peter Schuck, Phys. Rev. B 59, 1712-1733 (1999).
Books on the topic "Mott-Hubbard transition"
mer, Nils Blu. Mott-Hubbard metal-insulator transition and optical conductivity in high dimensions. Aachen: Shaker, 2003.
Find full text1953-, Fujimori A., Tokura Y. 1954-, and Taniguchi International Symposium on the Theory of Condensed Matter (17th : 1994 : Kashikojima, Japan), eds. Spectroscopy of mott insulators and correlated metals: Proceedings of the 17th Taniguchi Symposium, Kashikojima, Japan, October 24-28, 1994. Berlin: Springer, 1995.
Find full textGebhard, Florian. The mott metal-insulator transition: Models and methods. New York: Springer, 1997.
Find full textFujimori, Atsushi, and Yoshinori Tokura. Spectroscopy of Mott Insulators and Correlated Metals: Proceedings of the 17th Taniguchi Symposium, Kashikojima, Japan, October 24 - 28, 1994 (Springer Series in Solid-State Sciences). Springer, 1995.
Find full textBook chapters on the topic "Mott-Hubbard transition"
Brune, Ph, and A. P. Kampf. "Band to Mott Insulator Transition in the Ionic Hubbard Model." In High Performance Computing in Science and Engineering ’01, 167–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56034-7_15.
Full textNoack, R. M., C. Aebischer, D. Baeriswyl, and F. Gebhard. "Studies of the Mott-Hubbard Transition in one and Infinite Dimensions." In Open Problems in Strongly Correlated Electron Systems, 347–59. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0771-9_36.
Full textKim, Changman, Tomoya Ohool, Takeshi Tamura, Yasushi Oikawa, Jae-Soo Shin, and Hajime Ozaki. "The Relation Between Peierls and Mott-Hubbard Transition in VO2, by Tunneling Spectroscopy." In Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, 147–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470456224.ch15.
Full textGoodenough, J. B., and J. S. Zhou. "Vibronic Phenomena At Localized-Itinerant and Mott-Hubbard Transitions." In Supermaterials, 37–47. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0912-6_4.
Full textSpałek, J., and W. Wójcik. "Almost Localized Fermions and Mott-Hubbard Transitions at Non-Zero Temperature." In Spectroscopy of Mott Insulators and Correlated Metals, 41–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_5.
Full text"Mott Transition and Hubbard Model." In Lecture Notes on Electron Correlation and Magnetism, 147–97. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812386274_0004.
Full textSRIRAM SHASTRY, B. "MOTT TRANSITION IN THE HUBBARD MODEL." In Selected Topics in Superconductivity, 153–63. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814354660_0007.
Full text"The Mott Transition and the Hubbard Model." In Quantum Electron Liquids and High-T c Superconductivity, 151–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-540-47678-8_7.
Full text"Band Structures of Mott–Hubbard Materials and the Transition Metal Ionic Compounds, and Polaron." In Elements of Structures and Defects of Crystalline Materials, 201–5. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-814268-4.00019-9.
Full textByczuk, Krzysztof, Walter Hofstetter, and Dieter Vollhardty. "ANDERSON LOCALIZATION VS. MOTT–HUBBARD METAL–INSULATOR TRANSITION IN DISORDERED, INTERACTING LATTICE FERMION SYSTEMS." In 50 Years of Anderson Localization, 473–501. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814299084_0020.
Full textConference papers on the topic "Mott-Hubbard transition"
Takenobu, T. "Mott-Hubbard transition and antiferromagnetism in ammoniated alkali fullerides." In The 14th international winterschool on electronic properties of novel materials - molecular nanostructures. AIP, 2000. http://dx.doi.org/10.1063/1.1342462.
Full textOtsuka, Yuichi, Seiji Yunoki, and Sandro Sorella. "Mott Transition in the 2D Hubbard Model with π-Flux." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.013021.
Full textOstmeyer, Johann, Evan Berkowitz, Stefan Krieg, Timo Lahde, Thomas Luu, and Carsten Urbach. "The Semimetal-Antiferromagnetic Mott Insulator Quantum Phase Transition of the Hubbard Model on the Honeycomb Lattice." In The 38th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.396.0303.
Full textWada, Y., T. Furuta, and M. Yamashita. "Optical, magnetic, and electrical studies of the metal-insulator transition in the mott-hubbard MMX-chain system." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835971.
Full textWatanabe, Tsutomu, Hisatoshi Yokoyama, and Kenji Kobayashi. "Impurity Effect on Magnetism and Mott Transitions in Hubbard Model on Anisotropic Triangular Lattice." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011004.
Full text