To see the other types of publications on this topic, follow the link: Motor neurons.

Journal articles on the topic 'Motor neurons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Motor neurons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tamarkin, D. A., and R. B. Levine. "Synaptic interactions between a muscle-associated proprioceptor and body wall muscle motor neurons in larval and Adult manduca sexta." Journal of Neurophysiology 76, no. 3 (September 1, 1996): 1597–610. http://dx.doi.org/10.1152/jn.1996.76.3.1597.

Full text
Abstract:
1. Synaptic remodeling of a proprioceptive circuit during metamorphosis of the insect, Manduca sexta, is described. The stretch receptor organ is a muscle-associated proprioceptor that is innervated by a single sensory neuron. It inserts dorsolaterally in the abdomen in parallel with the intersegmental muscles of each abdominal segment. The synaptic input from the stretch receptor sensory neuron to select abdominal internal (intersegmental) and external muscle motor neurons was characterized in both the larva and adult. 2. In the larva, the sensory neuron provides excitatory synaptic input to motor neurons that innervate muscles ipsilateral to the stretch receptor organ in the body wall; the strongest excitatory synaptic input is to motor neurons that innervate targets in close proximity to the stretch receptor organ. The sensory neuron also provides excitatory synaptic input to motor neurons that innervate contralateral, dorsal targets. However, it inhibits, apparently through a polysynaptic pathway, motor neurons innervating contralateral, lateral, and ventral targets. 3. The synaptic input to intersegmental muscle motor neurons from the stretch receptor sensory neuron changes during metamorphosis. In contrast to the larva, all motor neurons recorded in the adult (both ipsilateral and contralateral) were excited by the sensory neuron. As in the larva, the adult sensory neuron provides the strongest excitatory synaptic input to motor neurons innervating targets in close proximity to the stretch receptor organ. 4. The proprioceptive input to the body wall muscle motor neurons was evaluated to determine whether the pathway is monosynaptic, as has been described in other systems. Spike-triggered signal averaging and synaptic latency measurements suggested that the strongest excitatory synaptic input to motor neurons involves a monosynaptic pathway.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Wenshu, J. Franklin Bailey, Visaka Limwongse, and Mark DeSantis. "Scanning Electron Microscopy of neuronal cell bodies isolated from the adult mammalian central nervous system." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 3 (August 12, 1990): 426–27. http://dx.doi.org/10.1017/s0424820100159679.

Full text
Abstract:
Action potentials generated in a motor neuron reflect the summation of synaptic inputs it receives from other neurons. Those synapses occur at points of contiguity between the presynaptic boutons and the surface of the motor neuron. Evidence that the density of axosomalic boutons on motor neurons varies directly with the size of the motor neuronal soma is indirect. Counts of the number of boutons per unit area at the surface of the motor neuron’s cell body using scanning electron microscopy (SEM) would allow an independent, direct assessment of that inference. We describe here procedures for consistently isolating the somas of CNS neurons, specifically those associated with the adult rat’s trigeminal nerve, so that axosomatic boutons can be seen by SEM (Figures 1 and 2).Adult male and female rats were anesthetized and then perfused with saline followed by 4% paraformaldehyde. The brain stem was removed and sectioned at 200 um thickness on a vibratome. Sections containing the trigeminal motor and mesencephalic nuclei were pinned to Sylgard-lined dishes containing phosphate buffer (0.1 M, pH 7.2).
APA, Harvard, Vancouver, ISO, and other styles
3

Church, P. J., and P. E. Lloyd. "Activity of multiple identified motor neurons recorded intracellularly during evoked feedinglike motor programs in Aplysia." Journal of Neurophysiology 72, no. 4 (October 1, 1994): 1794–809. http://dx.doi.org/10.1152/jn.1994.72.4.1794.

Full text
Abstract:
1. The firing patterns of 22 motor neurons were determined by simultaneously recording intracellularly from up to 7 neurons during evoked feedinglike buccal motor programs (BMPs). Intracellular stimulation of cerebral-buccal interneuron 2 (CBI-2) or tactile stimulation of the odontophore were used to elicit BMPs in a reduced preparation. 2. Evoked BMPs were identified as either ingestive-like (iBMP) or egestive-like (eBMP) on the basis of their similarity to those previously recorded in select neurons in freely behaving animals. Neurons were divided into the p-group, r-group, or c-group, on the basis of the phase relationships of rhythmic membrane depolarizations and hyperpolarizations during evoked BMPs. Depolarization of the p-, r-, and c-group neurons was associated with radular protraction, retraction, and closure, respectively. With one exception, the motor neurons segregated into the same groups during iBMPs and eBMPs. The exception, B7, was categorized as a c-group neuron during iBMPs, but as an r-group neuron during eBMPs. 3. Every motor neuron exhibited cyclic membrane depolarizations and hyperpolarizations, and over one-half of the neurons fired bursts of action potentials, during both iBMPs and eBMPs. The neurons fired in patterns that would be likely to release both their conventional and peptide transmitters. 4. A marked hyperpolarizing step in the p-group neurons coincident with a depolarization in the r-group neurons was observed during both iBMPs and eBMPs, suggesting a degree of shared premotor circuitry for the two BMPs. 5. A shift in the timing of activity in c-group neurons relative to that in p- and r-group neurons during iBMPs and eBMPs was observed and correlates well with the shift in phase of radular closure relative to protraction and retraction, which is useful in distinguishing ingestion from egestion in the behaving animal. 6. The firing patterns recorded in neurons that innervate overlapping populations of muscle fibers suggested that there would be complex interactions of multiple transmitters. This is particularly intriguing in the case of I3a muscle fibers, which are innervated by two excitatory and one inhibitory neuron. The firing patterns recorded in these neurons suggest that the inhibitory motor neuron may serve to not only block inappropriate contractions, but also to specifically shape evoked contractions during feeding.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Zhiping, and Lee J. Martin. "Isolation of Mature Spinal Motor Neurons and Single-cell Analysis Using the Comet Assay of Early Low-level DNA Damage Induced In Vitro and In Vivo." Journal of Histochemistry & Cytochemistry 49, no. 8 (August 2001): 957–72. http://dx.doi.org/10.1177/002215540104900804.

Full text
Abstract:
We developed an isolation technique for motor neurons from adult rat spinal cord. Spinal cord enlargements were discretely microdissected into ventral horn tissue columns that were trypsin-digested and subjected to differential low-speed centrifugation to fractionate ventral horn cell types. A fraction enriched in α-motor neurons was isolated. Motor neuron enrichment was verified by immunofluorescence for choline acetyltransferase and prelabeling axon projections to skeletal muscle. Adult motor neurons were isolated from naïve rats and were exposed to oxidative agents or were isolated from rats with sciatic nerve lesions (avulsions). We tested the hypothesis, using single-cell gel electrophoresis (comet assay), that hydrogen peroxide, nitric oxide, and peroxynitrite exposure in vitro and axotomy in vivo induce DNA damage in adult motor neurons early during their degeneration. This study contributes three important developments in the study of motor neurons. It demonstrates that mature spinal motor neurons can be isolated and used for in vitro models of motor neuron degeneration. It shows that adult motor neurons can be isolated from in vivo models of motor neuron degeneration and evaluated on a single-cell basis. This study also demonstrates that the comet assay is a feasible method for measuring DNA damage in individual motor neurons. Using these methods, we conclude that motor neurons undergoing oxidative stress from reactive oxygen species and axotomy accumulate DNA damage early in their degeneration. (J Histochem Cytochem 49:957–972, 2001)
APA, Harvard, Vancouver, ISO, and other styles
5

Genc, Baris, Oge Gozutok, Nuran Kocak, and P. Hande Ozdinler. "The Timing and Extent of Motor Neuron Vulnerability in ALS Correlates with Accumulation of Misfolded SOD1 Protein in the Cortex and in the Spinal Cord." Cells 9, no. 2 (February 22, 2020): 502. http://dx.doi.org/10.3390/cells9020502.

Full text
Abstract:
Understanding the cellular and molecular basis of selective vulnerability has been challenging, especially for motor neuron diseases. Developing drugs that improve the health of neurons that display selective vulnerability relies on in vivo cell-based models and quantitative readout measures that translate to patient outcome. We initially developed and characterized UCHL1-eGFP mice, in which motor neurons are labeled with eGFP that is stable and long-lasting. By crossing UCHL1-eGFP to amyotrophic lateral sclerosis (ALS) disease models, we generated ALS mouse models with fluorescently labeled motor neurons. Their examination over time began to reveal the cellular basis of selective vulnerability even within the related motor neuron pools. Accumulation of misfolded SOD1 protein both in the corticospinal and spinal motor neurons over time correlated with the timing and extent of degeneration. This further proved simultaneous degeneration of both upper and lower motor neurons, and the requirement to consider both upper and lower motor neuron populations in drug discovery efforts. Demonstration of the direct correlation between misfolded SOD1 accumulation and motor neuron degeneration in both cortex and spinal cord is important for building cell-based assays in vivo. Our report sets the stage for shifting focus from mice to diseased neurons for drug discovery efforts, especially for motor neuron diseases.
APA, Harvard, Vancouver, ISO, and other styles
6

Page, Keri L., Jure Zakotnik, Volker Dürr, and Thomas Matheson. "Motor Control of Aimed Limb Movements in an Insect." Journal of Neurophysiology 99, no. 2 (February 2008): 484–99. http://dx.doi.org/10.1152/jn.00922.2007.

Full text
Abstract:
Limb movements that are aimed toward tactile stimuli of the body provide a powerful paradigm with which to study the transformation of motor activity into context-dependent action. We relate the activity of excitatory motor neurons of the locust femoro-tibial joint to the consequent kinematics of hind leg movements made during aimed scratching. There is posture-dependence of motor neuron activity, which is stronger in large amplitude (putative fast) than in small (putative slow and intermediate) motor neurons. We relate this posture dependency to biomechanical aspects of the musculo-skeletal system and explain the occurrence of passive tibial movements that occur in the absence of agonistic motor activity. There is little recorded co-activation of antagonistic tibial extensor and flexor motor neurons, and there is differential recruitment of proximal and distal flexor motor neurons. Large-amplitude motor neurons are often recruited soon after a switch in joint movement direction. Motor bursts containing large-amplitude spikes exhibit high spike rates of small-amplitude motor neurons. The fast extensor tibiae neuron, when recruited, exhibits a pattern of activity quite different to that seen during kicking, jumping, or righting: there is no co-activation of flexor motor neurons and no full tibial flexion. Changes in femoro-tibial joint angle and angular velocity are most strongly dependent on variations in the number of motor neuron spikes and the duration of motor bursts rather than on firing frequency. Our data demonstrate how aimed scratching movements result from interactions between biomechanical features of the musculo-skeletal system and patterns of motor neuron recruitment.
APA, Harvard, Vancouver, ISO, and other styles
7

Khan, Mudassar N., Pitchaiah Cherukuri, Francesco Negro, Ashish Rajput, Piotr Fabrowski, Vikas Bansal, Camille Lancelin, et al. "ERR2 and ERR3 promote the development of gamma motor neuron functional properties required for proprioceptive movement control." PLOS Biology 20, no. 12 (December 21, 2022): e3001923. http://dx.doi.org/10.1371/journal.pbio.3001923.

Full text
Abstract:
The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRβ, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.
APA, Harvard, Vancouver, ISO, and other styles
8

Quinlan, E. M., K. Gregory, and A. D. Murphy. "An identified glutamatergic interneuron patterns feeding motor activity via both excitation and inhibition." Journal of Neurophysiology 73, no. 3 (March 1, 1995): 945–56. http://dx.doi.org/10.1152/jn.1995.73.3.945.

Full text
Abstract:
1. Previously we demonstrated that glutamate is an important neurotransmitter in the CNS of Helisoma. Exogenous glutamate applied to the buccal ganglia mimicked both the excitatory and inhibitory effects of subunit 2 (S2) of the tripartite central pattern generator (CPG) on S2 postsynaptic motor neurons. Here we identify buccal interneuron B2 as an S2 interneuron by utilizing a combination of electrophysiology, pharmacology, and intracellular staining. In addition, neurons that were electrophysiologically and morphologically characterized as neuron B2 demonstrated antiglutamate immunoreactivity, suggesting that neuron B2 is a source of endogenous glutamate in the buccal ganglia. 2. Depolarization of neuron B2 evoked excitatory postsynaptic potentials in motor neurons excited by S2. The excitatory effects of B2 depolarization and S2 activation were reversibly antagonized by the ionotropic glutamate receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione, similar to the antagonism shown previously for application of exogenous glutamate. Depolarization of neuron B2 also evoked inhibitory postsynaptic potentials in motor neurons inhibited by S2. When such motor neurons were maintained in isolated cell culture, application of exogenous glutamate produced a direct hyperpolarization of the membrane potential. 3. The activity of neuron B2 is necessary for the production of the standard pattern of buccal motor neuron activity, which underlies functional feeding movements. The subunits of the tripartite buccal CPG must be active in the temporal sequence S1-S2-S3 to produce the standard feeding pattern. Rhythmic inhibition from neuron B2 terminated activity in S1 postsynaptic motor neurons and entrained the frequency of activity in S3 postsynaptic motor neurons. Hyperpolarization of neuron B2 disrupted the production of the standard motor pattern by eliminating S2 postsynaptic potentials in identified buccal motor neurons, thereby prolonging S1 activity and disrupting S3 bursting. 4. These data support the hypothesis that S2 neuron B2 is glutamatergic and demonstrate that glutamatergic transmission, and especially inhibition, is fundamental to the production of behaviorally critical motor neuron activity patterns in Helisoma.
APA, Harvard, Vancouver, ISO, and other styles
9

Seki, Soju, Yoshihiro Kitaoka, Sou Kawata, Akira Nishiura, Toshihiro Uchihashi, Shin-ichiro Hiraoka, Yusuke Yokota, Emiko Tanaka Isomura, Mikihiko Kogo, and Susumu Tanaka. "Characteristics of Sensory Neuron Dysfunction in Amyotrophic Lateral Sclerosis (ALS): Potential for ALS Therapy." Biomedicines 11, no. 11 (November 3, 2023): 2967. http://dx.doi.org/10.3390/biomedicines11112967.

Full text
Abstract:
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.
APA, Harvard, Vancouver, ISO, and other styles
10

Bax, Monique, Jessie McKenna, Dzung Do-Ha, Claire H. Stevens, Sarah Higginbottom, Rachelle Balez, Mauricio e. Castro Cabral-da-Silva, et al. "The Ubiquitin Proteasome System Is a Key Regulator of Pluripotent Stem Cell Survival and Motor Neuron Differentiation." Cells 8, no. 6 (June 13, 2019): 581. http://dx.doi.org/10.3390/cells8060581.

Full text
Abstract:
The ubiquitin proteasome system (UPS) plays an important role in regulating numerous cellular processes, and a dysfunctional UPS is thought to contribute to motor neuron disease. Consequently, we sought to map the changing ubiquitome in human iPSCs during their pluripotent stage and following differentiation to motor neurons. Ubiquitinomics analysis identified that spliceosomal and ribosomal proteins were more ubiquitylated in pluripotent stem cells, whilst proteins involved in fatty acid metabolism and the cytoskeleton were specifically ubiquitylated in the motor neurons. The UPS regulator, ubiquitin-like modifier activating enzyme 1 (UBA1), was increased 36-fold in the ubiquitome of motor neurons compared to pluripotent stem cells. Thus, we further investigated the functional consequences of inhibiting the UPS and UBA1 on motor neurons. The proteasome inhibitor MG132, or the UBA1-specific inhibitor PYR41, significantly decreased the viability of motor neurons. Consistent with a role of the UPS in maintaining the cytoskeleton and regulating motor neuron differentiation, UBA1 inhibition also reduced neurite length. Pluripotent stem cells were extremely sensitive to MG132, showing toxicity at nanomolar concentrations. The motor neurons were more resilient to MG132 than pluripotent stem cells but demonstrated higher sensitivity than fibroblasts. Together, this data highlights the important regulatory role of the UPS in pluripotent stem cell survival and motor neuron differentiation.
APA, Harvard, Vancouver, ISO, and other styles
11

Lin, Yu-Lung, Yi-Wei Lin, Jennifer Nhieu, Xiaoyin Zhang, and Li-Na Wei. "Sonic Hedgehog-Gli1 Signaling and Cellular Retinoic Acid Binding Protein 1 Gene Regulation in Motor Neuron Differentiation and Diseases." International Journal of Molecular Sciences 21, no. 11 (June 9, 2020): 4125. http://dx.doi.org/10.3390/ijms21114125.

Full text
Abstract:
Cellular retinoic acid-binding protein 1 (CRABP1) is highly expressed in motor neurons. Degenerated motor neuron-like MN1 cells are engineered by introducing SODG93A or AR-65Q to model degenerated amyotrophic lateral sclerosis (ALS) or spinal bulbar muscular atrophy neurons. Retinoic acid (RA)/sonic hedgehog (Shh)-induced embryonic stem cells differentiation into motor neurons are employed to study up-regulation of Crabp1 by Shh. In SODG93A or AR-65Q MN1 neurons, CRABP1 level is reduced, revealing a correlation of motor neuron degeneration with Crabp1 down-regulation. Up-regulation of Crabp1 by Shh is mediated by glioma-associated oncogene homolog 1 (Gli1) that binds the Gli target sequence in Crabp1′s neuron-specific regulatory region upstream of minimal promoter. Gli1 binding triggers chromatin juxtaposition with minimal promoter, activating transcription. Motor neuron differentiation and Crabp1 up-regulation are both inhibited by blunting Shh with Gli inhibitor GANT61. Expression data mining of ALS and spinal muscular atrophy (SMA) motor neurons shows reduced CRABP1, coincided with reduction in Shh-Gli1 signaling components. This study reports motor neuron degeneration correlated with down-regulation in Crabp1 and Shh-Gli signaling. Shh-Gli up-regulation of Crabp1 involves specific chromatin remodeling. The physiological and pathological implication of this regulatory pathway in motor neuron degeneration is supported by gene expression data of ALS and SMA patients.
APA, Harvard, Vancouver, ISO, and other styles
12

Cleary, L. J., and J. H. Byrne. "Identification and characterization of a multifunction neuron contributing to defensive arousal in Aplysia." Journal of Neurophysiology 70, no. 5 (November 1, 1993): 1767–76. http://dx.doi.org/10.1152/jn.1993.70.5.1767.

Full text
Abstract:
1. The tail withdrawal reflex is mediated by a monosynaptic circuit composed of tail sensory and motor neurons, but there appear to be additional neuronal elements that also contribute to the reflex. A newly identified interneuron, called LP117, was located in the pleural ganglion. This neuron formed a parallel excitatory pathway between sensory and motor neurons. The distinguishing feature of LP117 was its ability to elicit a long-lasting (5-100 s) excitatory postsynaptic potential (EPSP) in the motor neuron. 2. Intracellular labeling of LP117 revealed axons projecting to the cerebral and abdominal as well as the pedal ganglia. Simultaneous intracellular recordings confirmed the widely divergent output of LP117 to tentacle motor neurons in the cerebral ganglion, as well as to gill, siphon, and ink motor neurons in the abdominal ganglion. 3. Also receiving input were abdominal neurons L29, which excites LFs motor neurons and facilitates LE sensory neurons, and L25, which is part of the pattern-generating network underlying respiratory pumping. Thus LP117 appears to be a neural element important for the conduction of information about tail stimulation to ganglia that are not innervated by tail sensory neurons themselves. Moreover, the divergent outputs suggest that LP117 is an element of a neural circuit underlying defensive arousal. 4. LP117 produced slow EPSPs in several motor neurons. The long time course of the EPSP could prolong the burst in the motor neuron produced by LP117 itself as well as increase the effectiveness of coincident synaptic input. This suggests that an important function of this interneuron is to extend the duration of the response to tail stimulation in the motor neuron. This could account for the relatively long time course of the motor neuron response to tail stimulation compared with that of the sensory neuron. 5. Sensitization is a form of nonassociative learning that produces changes in the amplitude and duration of reflex responses. It seems unlikely that all of these changes can be attributed to enhanced amplitude of the sensory-motor synapse, however. Therefore LP117 may itself be a site of plasticity for reflexes elicited by tail stimulation.
APA, Harvard, Vancouver, ISO, and other styles
13

Newland, Philip L., and Yasuhiro Kondoh. "Dynamics of Neurons Controlling Movements of a Locust Hind Leg II. Flexor Tibiae Motor Neurons." Journal of Neurophysiology 77, no. 4 (April 1, 1997): 1731–46. http://dx.doi.org/10.1152/jn.1997.77.4.1731.

Full text
Abstract:
Newland, Philip L. and Yasuhiro Kondoh. Dynamics of neurons controlling movements of a locust hind leg. II. Flexor tibiae motor neurons. J. Neurophysiol. 77: 1731–1746, 1997. Imposed movements of a proprioceptor that monitors the relative position of the tibia about the femur, the femorotibial chordotonal organ (FeCO), evoke resistance reflexes in the motor neurons that control the movements of the tibia of the locust. The response dynamics of one pool of motor neurons, the flexor tibiae motor neurons, which are located in three groups (anterior, lateral, and posterior), have been analyzed by the Wiener kernel method. First- and second-order kernels that represent the linear and nonlinear responses, respectively, were computed by a cross-correlation between the intracellularly recorded synaptic responses in the motor neurons and the white noise stimulus applied to the FeCO, and were used to define the input-output characteristics of the motor neurons. The posterior fast, intermediate, and slow and the anterior fast and intermediate flexor tibiae motor neurons had biphasic first-order kernels with initial negative phases, indicating that they are velocity sensitive. The falling phases of the kernels had distinct shoulders, indicating that the responses of the motor neurons also had delayed low-pass components, i.e., position sensitivity. The anterior slow flexor motor neuron had a monophasic, low-passed, first-order kernel, indicating that it is position sensitive. The linear component of the motor neuron responses, predicted by convolving the first-order kernels with the stimulus signal, strongly resembled the actual response, whereas the second-order nonlinear component was small, particularly at >10 Hz. The power spectra of the fast motor neurons showed that they had the highest cutoff frequencies (at >8 Hz), whereas the slow flexor motor neurons had a gradual roll-off at 1 Hz. The intermediate flexor motor neuron had an intermediate cutoff frequency of ∼2–3 Hz. The linear responses of the flexor motor neurons could be decomposed into low- and high-frequency components. The high-frequency components (>10 Hz) were velocity dependent and linear, whereas the low-frequency components (<10 Hz) were position dependent and nonlinear. The nonlinearity was a signal compression (or half-wave rectification). The results show that although the flexor motor neurons receive many common inputs during FeCO stimulation, each individual has specific dynamic response properties. The responses of the motor neurons are fractionated so that a given individual within the pool will respond best to position, whereas others will respond better to velocity. Likewise, some motor neurons respond best at low frequencies, whereas others respond best at higher frequencies of stimulation.
APA, Harvard, Vancouver, ISO, and other styles
14

Cork, Linda C. "Hereditary Canine Spinal Muscular Atrophy: An Animal Model of Motor Neuron Disease." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 18, S3 (August 1991): 432–34. http://dx.doi.org/10.1017/s0317167100032613.

Full text
Abstract:
ABSTRACT:Motor neuron diseases selectively produce degeneration and death of motor neurons; the pathogenesis of these disorders and the specificity for this population of neurons are unknown. Hereditary Canine Spinal Muscular Atrophy produces a lower motor neuron disease which is clinically and pathologically similar to human motor neuron disease: motor neurons dysfunction and degenerate. The canine model provides an opportunity to investigate early stages of disease when there are viable motor neurons still present and might be responsive to a variety of therapeutic interventions. The canine disease, like the human disease, is inherited as an autosomal dominant. The extensive canine pedigree of more than 200 characterized individuals permits genetic analysis using syntenic linkage techniques which may identify a marker for the canine trait and provide insights into homologous regions for study in human kindreds.
APA, Harvard, Vancouver, ISO, and other styles
15

Chopra, Aarti, Ravi Kumar, and Girendra Kumar Gautam. "A review: Management of motor neuron diseases." IP Indian Journal of Neurosciences 7, no. 4 (January 15, 2022): 292–94. http://dx.doi.org/10.18231/j.ijn.2021.053.

Full text
Abstract:
Motor neuron diseases are a group of chronic sporadic and hereditary neurological disorders characterized by progressive degeneration of motor neurons. These might affect the upper motor neurons, lower motor neurons, or both. The prognosis of the motor neuron disease depends upon the age at onset and the area of the central nervous system affected. Amyotrophic lateral sclerosis (ALS) has been documented to be fatal within three years of onset. This activity focuses on amyotrophic lateral sclerosis as the prototype of MND, which affects both the upper and the lower motor neurons and discusses the role of inter-professional team in the differential diagnosis, evaluation, treatment, and prognostication. It also discusses various other phenotypes of MND with an emphasis on their distinguishing features in requisite detail.
APA, Harvard, Vancouver, ISO, and other styles
16

Clark, Courtney M., Rosemary M. Clark, Joshua A. Hoyle, Jyoti A. Chuckowree, Catriona A. McLean, and Tracey C. Dickson. "Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS." Brain Sciences 11, no. 8 (July 23, 2021): 969. http://dx.doi.org/10.3390/brainsci11080969.

Full text
Abstract:
Destabilization of faciliatory and inhibitory circuits is an important feature of corticomotor pathology in amyotrophic lateral sclerosis (ALS). While GABAergic inputs to upper motor neurons are reduced in models of the disease, less understood is the involvement of peptidergic inputs to upper motor neurons in ALS. The neuropeptide Y (NPY) system has been shown to confer neuroprotection against numerous pathogenic mechanisms implicated in ALS. However, little is known about how the NPY system functions in the motor system. Herein, we investigate post-synaptic NPY signaling on upper motor neurons in the rodent and human motor cortex, and on cortical neuron populations in vitro. Using immunohistochemistry, we show the increased density of NPY-Y1 receptors on the soma of SMI32-positive upper motor neurons in post-mortem ALS cases and SOD1G93A excitatory cortical neurons in vitro. Analysis of receptor density on Thy1-YFP-H-positive upper motor neurons in wild-type and SOD1G93A mouse tissue revealed that the distribution of NPY-Y1 receptors was changed on the apical processes at early-symptomatic and late-symptomatic disease stages. Together, our data demonstrate the differential density of NPY-Y1 receptors on upper motor neurons in a familial model of ALS and in ALS cases, indicating a novel pathway that may be targeted to modulate upper motor neuron activity.
APA, Harvard, Vancouver, ISO, and other styles
17

Scott, Kayt, Rebecca O'Rourke, Austin Gillen, and Bruce Appel. "Prdm8 regulates pMN progenitor specification for motor neuron and oligodendrocyte fates by modulating the Shh signaling response." Development 147, no. 16 (July 17, 2020): dev191023. http://dx.doi.org/10.1242/dev.191023.

Full text
Abstract:
ABSTRACTSpinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8, which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated ‘The people behind the papers’ interview.
APA, Harvard, Vancouver, ISO, and other styles
18

Skorupski, P. "Synaptic connections between nonspiking afferent neurons and motor neurons underlying phase-dependent reflexes in crayfish." Journal of Neurophysiology 67, no. 3 (March 1, 1992): 664–79. http://dx.doi.org/10.1152/jn.1992.67.3.664.

Full text
Abstract:
1. This paper analyzes the synaptic connections made by nonspiking afferent neurons of the thoracocoxal muscle receptor organ (TCMRO) with basal limb motor neurons in the crayfish. The T fiber, a dynamically sensitive afferent, monosynaptically excites promotor motor neurons. Evidence suggests that both tonic graded chemical transmission and electrical synaptic transmission may be involved, depending on the motor neuron under consideration. 2. In preparations in the active state (spontaneously producing reciprocal motor patterns), the T fiber also inhibits promotor motor neurons in a phase-dependent manner. This inhibitory pathway is probably indirect, because it involves additional synaptic delay. 3. The statically sensitive S fiber also excites promotor motor neurons, but phase-dependent inhibition of promotor motor neurons by the S fiber was not seen. 4. The T fiber excites a subclass of remotor motor neurons (group 1) by a combination of direct chemical input and electrical input. This connection underlies the positive feedback reflex that excites these remotor motor neurons, in a phase-dependent manner, on stretch of the TCMRO during the active state. In inactive preparations, this connection remains subthreshold. 5. Central synaptic outputs of group 1 remotor motor neurons can also inhibit promotor motor neurons. This pathway may contribute to the phase-dependent reflex inhibition of promotor motor neurons that occurs in the active state.
APA, Harvard, Vancouver, ISO, and other styles
19

Xu, Jianyi, Xiaofeng Yin, Yisong Qi, Bo Chen, Yusha Li, Peng Wan, Yingtao Yao, Dan Zhu, Baoguo Jiang, and Tingting Yu. "Three-Dimensional Mapping of Retrograde Multi-Labeled Motor Neuron Columns in the Spinal Cord." Photonics 8, no. 5 (April 28, 2021): 145. http://dx.doi.org/10.3390/photonics8050145.

Full text
Abstract:
The quantification and distribution characteristics of spinal motor neurons play important roles in the study of spinal cord and peripheral nerve injury and repair. In most research, the sole retrograde labeling of each nerve or muscle could not simultaneously obtain the distributions of different motor neuron subpopulations. Therefore, it did not allow mapping of spatial relationships of different motor neuron columns for disclosing the functional relationship of different nerve branches. Here, we combined the multiple retrograde labeling, optical clearing, and imaging for three-dimensional (3D) visualization of motor neurons of multiple brachial plexus branches. After screening fluorescent tracers by the labeling feasibility of motor neurons and fluorescence compatibility with optical clearing, we performed mapping and quantification of the motor neurons of ulnar, median, and radial nerves in the spinal cord, then disclosed the relative spatial distribution among different neuronal subpopulations. This work will provide valuable mapping data for the understanding of the functional relationships among brachial plexus branches, hopefully facilitating the study of regeneration of axons and remodeling of motor neurons in peripheral nerve repair.
APA, Harvard, Vancouver, ISO, and other styles
20

García, Paul S., Terrence M. Wright, Ian R. Cunningham, and Ronald L. Calabrese. "Using a Model to Assess the Role of the Spatiotemporal Pattern of Inhibitory Input and Intrasegmental Electrical Coupling in the Intersegmental and Side-to-Side Coordination of Motor Neurons by the Leech Heartbeat Central Pattern Generator." Journal of Neurophysiology 100, no. 3 (September 2008): 1354–71. http://dx.doi.org/10.1152/jn.90579.2008.

Full text
Abstract:
Previously we presented a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech and the resultant coordination of CPG interneurons and motor neurons. To begin elucidating the mechanisms of coordination, we explore intersegmental and side-to-side coordination in an ensemble model of all heart motor neurons and their known synaptic inputs and electrical coupling. Model motor neuron intrinsic properties were kept simple, enabling us to determine the extent to which input and electrical coupling acting together can account for observed coordination in the living system in the absence of a substantive contribution from the motor neurons themselves. The living system produces an asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous), whereas on the other they fire in a rear-to-front progression (peristaltic). The model reproduces the general trends of intersegmental and side-to-side phase relations among motor neurons, but the match with the living system is not quantitatively accurate. Thus realistic (experimentally determined) inputs do not produce similarly realistic output in our model, suggesting that motor neuron intrinsic properties may contribute to their coordination. By varying parameters that determine electrical coupling, conduction delays, intraburst synaptic plasticity, and motor neuron excitability, we show that the most important determinant of intersegmental and side-to-side phase relations in the model was the spatiotemporal pattern of synaptic inputs, although phasing was influenced significantly by electrical coupling.
APA, Harvard, Vancouver, ISO, and other styles
21

White, Rachel S., Robert M. Spencer, Michael P. Nusbaum, and Dawn M. Blitz. "State-dependent sensorimotor gating in a rhythmic motor system." Journal of Neurophysiology 118, no. 5 (November 1, 2017): 2806–18. http://dx.doi.org/10.1152/jn.00420.2017.

Full text
Abstract:
Sensory feedback influences motor circuits and/or their projection neuron inputs to adjust ongoing motor activity, but its efficacy varies. Currently, less is known about regulation of sensory feedback onto projection neurons that control downstream motor circuits than about sensory regulation of the motor circuit neurons themselves. In this study, we tested whether sensory feedback onto projection neurons is sensitive only to activation of a motor system, or also to the modulatory state underlying that activation, using the crab Cancer borealis stomatogastric nervous system. We examined how proprioceptor neurons (gastropyloric receptors, GPRs) influence the gastric mill (chewing) circuit neurons and the projection neurons (MCN1, CPN2) that drive the gastric mill rhythm. During gastric mill rhythms triggered by the mechanosensory ventral cardiac neurons (VCNs), GPR was shown previously to influence gastric mill circuit neurons, but its excitation of MCN1/CPN2 was absent. In this study, we tested whether GPR effects on MCN1/CPN2 are also absent during gastric mill rhythms triggered by the peptidergic postoesophageal commissure (POC) neurons. The VCN and POC pathways both trigger lasting MCN1/CPN2 activation, but their distinct influence on circuit feedback to these neurons produces different gastric mill motor patterns. We show that GPR excites MCN1 and CPN2 during the POC-gastric mill rhythm, altering their firing rates and activity patterns. This action changes both phases of the POC-gastric mill rhythm, whereas GPR only alters one phase of the VCN-gastric mill rhythm. Thus sensory feedback to projection neurons can be gated as a function of the modulatory state of an active motor system, not simply switched on/off with the onset of motor activity. NEW & NOTEWORTHY Sensory feedback influences motor systems (i.e., motor circuits and their projection neuron inputs). However, whether regulation of sensory feedback to these projection neurons is consistent across different versions of the same motor pattern driven by the same motor system was not known. We found that gating of sensory feedback to projection neurons is determined by the modulatory state of the motor system, and not simply by whether the system is active or inactive.
APA, Harvard, Vancouver, ISO, and other styles
22

Yu, W. H. "Nitric oxide synthase in motor neurons after axotomy." Journal of Histochemistry & Cytochemistry 42, no. 4 (April 1994): 451–57. http://dx.doi.org/10.1177/42.4.7510317.

Full text
Abstract:
Nitric oxide synthase (NOS), an enzyme involved in synthesis of nitric oxide (NO), has been localized in many diverse cell types. In the CNS and PNS, discrete neuron cell groups express NOS constitutively. Recent evidence indicates that NOS is inducible in neurons normally not expressing NOS. After transection of peripheral nerves, NOS expression was significantly up-regulated in the axotomized sensory ganglion cells, whereas in the corresponding motor neurons NOS was not induced unless axon regeneration was prevented and ensuing neuron death became massive. Studies on axotomy-induced NOS have been limited largely to spinal nerves, with only one reported in the vagus nerve. The aim of this study was to determine whether NOS induction in motor neurons of the brainstem after axotomy is regulated in a manner similar to that of the spinal cord. By NADPH-diaphorase histochemistry and NOS immunocytochemistry, the status of NOS in neurons of the hypoglossal nucleus, dorsal motor nucleus of the vagus, and motor nucleus of the facial nerve was examined 2 weeks after unilateral transection of the respective cranial nerves, and the results were compared with those of spinal motor neurons after transection of the sciatic nerve. NOS, undetectable in neurons of the three cranial motor nuclei of sham-operated animals, was observed in about 30-50% of neurons in the cranial motor nuclei ipsilateral to axotomy, but it was not detected in spinal motor neurons after axotomy. NOS localized in axotomized cranial motor neurons was unrelated to NOS of macrophages or endothelial cells. There was no appreciable cell loss from axotomy at this period except in the dorsal motor nucleus of the vagus, where some loss was observed. The results indicate that there is a fundamental difference in the regulation of NOS expression between motor neurons of the cranial and spinal nerves. The possible role of NOS/NO acting as cytoprotective or cytotoxic agent on injured motor neurons is discussed. Motor neurons of cranial and spinal nerves may serve as a useful model to further define the roles of NOS/NO in neurons, especially after traumatic injury.
APA, Harvard, Vancouver, ISO, and other styles
23

Karpe, Yashashree, Zhenyu Chen, and Xue-Jun Li. "Stem Cell Models and Gene Targeting for Human Motor Neuron Diseases." Pharmaceuticals 14, no. 6 (June 12, 2021): 565. http://dx.doi.org/10.3390/ph14060565.

Full text
Abstract:
Motor neurons are large projection neurons classified into upper and lower motor neurons responsible for controlling the movement of muscles. Degeneration of motor neurons results in progressive muscle weakness, which underlies several debilitating neurological disorders including amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegias (HSP), and spinal muscular atrophy (SMA). With the development of induced pluripotent stem cell (iPSC) technology, human iPSCs can be derived from patients and further differentiated into motor neurons. Motor neuron disease models can also be generated by genetically modifying human pluripotent stem cells. The efficiency of gene targeting in human cells had been very low, but is greatly improved with recent gene editing technologies such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and CRISPR-Cas9. The combination of human stem cell-based models and gene editing tools provides unique paradigms to dissect pathogenic mechanisms and to explore therapeutics for these devastating diseases. Owing to the critical role of several genes in the etiology of motor neuron diseases, targeted gene therapies have been developed, including antisense oligonucleotides, viral-based gene delivery, and in situ gene editing. This review summarizes recent advancements in these areas and discusses future challenges toward the development of transformative medicines for motor neuron diseases.
APA, Harvard, Vancouver, ISO, and other styles
24

Krause, Kristin M., Joanne Pearce, and C. K. Govind. "Regeneration of Phasic Motor Axons on a Crayfish Tonic Muscle: Neuron Specifies Synapses." Journal of Neurophysiology 80, no. 2 (August 1, 1998): 994–97. http://dx.doi.org/10.1152/jn.1998.80.2.994.

Full text
Abstract:
Krause, Kristin M., Joanne Pearce, and C. K. Govina. Regeneration of phasic motor axons on a crayfish tonic muscle: neuron specifies synapses. J. Neurophysiol. 80: 994–997, 1998. Motor neurons are matched to their target muscles, often forming separate phasic and tonic systems as in the abdomen of crayfish where they are used for rapid escape and slow postural movements, respectively. To assess the role of motor neuron and muscle fiber in forming synapses we attempted a mismatch experiment by allotransplanting a phasic nerve attached to its ganglion to a denervated tonic muscle. Regenerating motor axons sprouted 10–30 branches (typical of phasic motor neurons, as tonic ones sprout far fewer branches) to reinnervate muscle fibers and form synapses that produced large excitatory postsynaptic potentials (typical of phasic motor neurons, as tonic synapses give small potentials). Therefore motor neurons, not muscle fibers, appear to specify one of the major properties of regenerating neuromuscular synapses.
APA, Harvard, Vancouver, ISO, and other styles
25

Van Damme, P., L. Van den Bosch, E. Van Houtte, G. Callewaert, and W. Robberecht. "GluR2-Dependent Properties of AMPA Receptors Determine the Selective Vulnerability of Motor Neurons to Excitotoxicity." Journal of Neurophysiology 88, no. 3 (September 1, 2002): 1279–87. http://dx.doi.org/10.1152/jn.2002.88.3.1279.

Full text
Abstract:
AMPA receptor-mediated excitotoxicity has been implicated in the selective motor neuron loss in amyotrophic lateral sclerosis. In some culture models, motor neurons have been shown to be selectively vulnerable to AMPA receptor agonists due to Ca2+influx through Ca2+-permeable AMPA receptors. Because the absence of GluR2 in AMPA receptors renders them highly permeable to Ca2+ ions, it has been hypothesized that the selective vulnerability of motor neurons is due to their relative deficiency in GluR2. However, conflicting evidence exists about the in vitro and in vivo expression of GluR2 in motor neurons, both at the mRNA and at the protein level. In this study, we quantified electrophysiological properties of AMPA receptors, known to be dependent on the relative abundance of GluR2: sensitivity to external polyamines, rectification index, and relative Ca2+ permeability. Cultured rat spinal cord motor neurons were compared with dorsal horn neurons (which are resistant to excitotoxicity) and with motor neurons that survived an excitotoxic insult. Motor neurons had a higher sensitivity to external polyamines, a lower rectification index, and a higher relative Ca2+ permeability ratio than dorsal horn neurons. These findings confirm that motor neurons are relatively deficient in GluR2. The AMPA receptor properties correlated well with each other and with the selective vulnerability of motor neurons because motor neurons surviving an excitotoxic event had similar characteristics as dorsal horn neurons. These data indicate that the relative abundance of GluR2 in functional AMPA receptors may be a major determinant of the selective vulnerability of motor neurons to excitotoxicity in vitro.
APA, Harvard, Vancouver, ISO, and other styles
26

Chrachri, A., and F. Clarac. "Synaptic connections between motor neurons and interneurons in the fourth thoracic ganglion of the crayfish, Procambarus clarkii." Journal of Neurophysiology 62, no. 6 (December 1, 1989): 1237–50. http://dx.doi.org/10.1152/jn.1989.62.6.1237.

Full text
Abstract:
1. A new preparation of the thoracic nervous system of the crayfish, Procambarus clarkii, has been developed, in which it is possible to work with identified members of motor neuronal pools. 2. In such a preparation, it is possible to dissect all specific proximal motor nerves (protractor, retractor, anterior elevator, posterior elevator, and depressor). Motor neurons innervating the four proximal muscles of the fourth walking leg have been identified both physiologically and anatomically by staining the recorded motor neuron with Lucifer yellow through the microelectrode. 3. By the use of cobalt chloride, we have mapped the distribution of somata of all motor neurons within the fourth thoracic ganglion that innervate the different groups of muscles controlling the movement of the fourth walking leg. 4. Most motor neurons innervating the same muscle seem to be electrically coupled, except some depressor motor neurons. 5. Motor neurons innervating antagonist muscles are linked by inhibitory connections. These connections are reciprocal for protractor and retractor motor neurons but usually not reciprocal between elevator and depressor motor neurons. 6. Walking interneurons were identified as neurons without axons in any motor nerve, which modified the motor neuronal activity. Some of them have been injected with Lucifer yellow. 7. Some interneurons make synaptic connections only with antagonist motor neurons that control the movement of one joint. Probably their functional role is to reinforce or to limit the antagonism between each pair of antagonist motor neurons. 8. Other interneurons make synaptic connections with motor neurons innervating muscles controlling different leg joints. These interneurons may play a role in generating the motor patterns that underlie forward and backward walking.
APA, Harvard, Vancouver, ISO, and other styles
27

Takahata, M., and M. Hisada. "Local nonspiking interneurons involved in gating of the descending motor pathway in crayfish." Journal of Neurophysiology 56, no. 3 (September 1, 1986): 718–31. http://dx.doi.org/10.1152/jn.1986.56.3.718.

Full text
Abstract:
Uropod motor neurons in the terminal abdominal ganglion of crayfish are continuously excited during the abdominal posture movement so that subthreshold excitatory postsynaptic potentials from the descending statocyst pathway can elicit spike activity in the motor neurons only while the abdominal posture system is in operation. Local nonspiking interneurons in the terminal ganglion were also found to show sustained membrane potential change during the fictive abdominal posture movement. Artificial membrane potential change of these interneurons by intracellular current injection in the same direction as that actually observed during the abdominal movement caused similar excitation of uropod motor neurons. Artificial cancellation of the membrane potential change of these interneurons during the abdominal movement also caused cancellation of the excitation of uropod motor neurons. We concluded that the continuous excitation of uropod motor neurons during the fictive abdominal movement was mediated, at least partly, by the local nonspiking interneurons. Fourteen (36%) out of 39 examined nonspiking interneurons were judged to be involved in the excitation of uropod motor neurons during the fictive abdominal movement. Another 25 interneurons (64%) were found not to be involved in the excitation of motor neurons, although most of them had a strong effect on the uropod motor neuron activity when their membrane potential was changed artificially. The interneurons that were involved in the excitation of motor neurons during the abdominal movement included both of the two major structural types of nonspiking interneurons in the terminal ganglion, i.e., those in the anterolateral portion and those in the posterolateral portion. No strict correlation was found between the structure of nonspiking interneurons and their function in the control of uropod motor neuron activity.
APA, Harvard, Vancouver, ISO, and other styles
28

Sarnat, Harvey B., and Cynthia L. Trevenen. "Motor Neuron Degeneration in a 20-Week Male Fetus: Spinal Muscular Atrophy Type 0." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 34, no. 2 (May 2007): 215–20. http://dx.doi.org/10.1017/s0317167100006077.

Full text
Abstract:
Background:Neuropathological changes in degenerating motor neurons are well documented in the term neonate with spinal muscular atrophy, but not at midgestation.Methods:Postmortem neuropathological examination was performed in a 20-week male fetus with a hypoplastic left cardiac anomaly.Results:Selective degeneration of spinal and hypoglossal motor neurons was an incidental finding. Degenerating motor neurons were not immunoreactive with neuronal nuclear antigen (NeuN) or neuron-specific enolase (NSE), as were the normal motor neurons. Synaptophysin reactivity was reduced around the soma of degenerating normal motor neurons. Ubiquitin and tau were expressed in degenerating motor neurons. Gliosis, inflammation and microglial activation were lacking in the ventral horns of the spinal cord. Laryngeal striated muscle was unaltered for age. No cerebral malformations or hypoxic-ischaemic changes were found.Conclusion:This case represents an early motor neuronal degeneration and corresponds to the recently described “type 0” spinal muscular atrophy. Lack of contractures is attributed to the early fetal age, since most muscular growth occurs in the second half of gestation.
APA, Harvard, Vancouver, ISO, and other styles
29

Murray, Peter D., and Asaf Keller. "Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex." Journal of Neurophysiology 106, no. 3 (September 2011): 1355–62. http://dx.doi.org/10.1152/jn.01089.2010.

Full text
Abstract:
In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning compared with excitatory neurons. These differences are thought to underlie the powerful feedforward inhibition that occurs in response to sensory input. In the motor cortex, as in the somatosensory cortex, cutaneous and proprioceptive somatosensory inputs, generated before and during movement, strongly and dynamically modulate the activity of motor neurons involved in a movement and ultimately shape cortical command. Human studies suggest that somatosensory inputs modulate motor cortical activity in a center excitation, surround inhibition manner such that input from the activated muscle excites motor cortical neurons that project to it, whereas somatosensory input from nearby, nonactivated muscles inhibit these neurons. A key prediction of this hypothesis is that inhibitory and excitatory motor cortical neurons respond differently to somatosensory inputs. We tested this prediction with the use of multisite extracellular recordings in anesthetized rats. We found that fast-spiking (presumably inhibitory) neurons respond to tactile and proprioceptive inputs at shorter latencies and larger response magnitudes compared with regular-spiking (presumably excitatory) neurons. In contrast, we found no differences in the receptive field size of these neuronal populations. Strikingly, all fast-spiking neuron pairs analyzed with cross-correlation analysis displayed common excitation, which was significantly more prevalent than common excitation for regular-spiking neuron pairs. These findings suggest that somatosensory inputs preferentially evoke feedforward inhibition in the motor cortex. We suggest that this provides a mechanism for dynamic selection of motor cortical modules during voluntary movements.
APA, Harvard, Vancouver, ISO, and other styles
30

Quinlan, E. M., and A. D. Murphy. "Plasticity in the multifunctional buccal central pattern generator of Helisoma illuminated by the identification of phase 3 interneurons." Journal of Neurophysiology 75, no. 2 (February 1, 1996): 561–74. http://dx.doi.org/10.1152/jn.1996.75.2.561.

Full text
Abstract:
1. The mechanism for generating diverse patterns of buccal motor neuron activity was explored in the multifunctional central pattern generator (CPG) of Helisoma. The standard pattern of motor neuron activity, which results in typical feeding behavior, consists of three distinct phases of buccal motor neuron activity. We have previously identified CPG interneurons that control the motor neuron activity during phases 1 and 2 of the standard pattern. Here we identify a pair of interneurons responsible for buccal motor neuron activity during phase 3, and examine the variability in the interactions between this third subunit and other subunits of the CPG. 2. During the production of the standard pattern, phase 3 excitation in many buccal motor neurons follows a prominent phase 2 inhibitory postsynaptic potential. Therefore phase 3 excitation was previously attributed to postinhibitory rebound (PIR) in these motor neurons. Two classes of observations indicated that PIR was insufficient to account for phase 3 activity, necessitating phase 3 interneurons. 1) A subset of identified buccal neurons is inhibited during phase 3 by discrete synaptic input. 2) Other identified buccal neurons display discrete excitation during both phases 2 and 3. 3. A bilaterally symmetrical pair of CPG interneurons, named N3a, was identified and characterized as the source of phase 3 postsynaptic potentials in motor neurons. During phase 3 of the standard motor pattern, interneuron N3a generated bursts of action potentials. Stimulation of N3a, in quiescent preparations, evoked a depolarization in motor neurons that are excited during phase 3 and a hyperpolarization in motor neurons that are inhibited during phase 3. Hyperpolarization of N3a during patterned motor activity eliminated both phase 3 excitation and inhibition. Physiological and morphological characterization of interneuron N3a is provided to invite comparisons with possible homologues in other gastropod feeding CPGs. 4. These data support a model proposed for the organization of the tripartite buccal CPG. According to the model, each of the three phases of buccal motor neuron activity is controlled by discrete subsets of pattern-generating interneurons called subunit 1 (S1), subunit 2 (S2), and subunit 3 (S3). The standard pattern of buccal motor neuron activity underlying feeding is mediated by an S1-S2-S3 sequence of CPG subunit activity. However, a number of "nonstandard" patterns of buccal motor activity were observed. In particular, S2 and S3 activity can occur independently or be linked sequentially in rhythmic patterns other than the standard feeding pattern. Simultaneous recordings of S3 interneuron N3a with effector neurons indicated that N3a can account for phase-3-like postsynaptic potentials (PSPs) in nonstandard patterns. The variety of patterns of buccal motor neuron activity indicates that each CPG subunit can be active in the absence of, or in concert with, activity in any other subunit. 5. To explore how CPG activity may be regulated to generate a particular motor pattern from the CPG's full repertoire, we applied the neuromodulator serotonin. Serotonin initiated and sustained the production of an S2-S3 pattern of activity, in part by enhancing PIR in S3 interneuron N3a after the termination of phase 2 inhibition.
APA, Harvard, Vancouver, ISO, and other styles
31

Stein, Paul S. G., and Susan Daniels-McQueen. "Variations in Motor Patterns During Fictive Rostral Scratching in the Turtle: Knee-Related Deletions." Journal of Neurophysiology 91, no. 5 (May 2004): 2380–84. http://dx.doi.org/10.1152/jn.01184.2003.

Full text
Abstract:
Agonist motor neurons usually alternate between activity and quiescence during normal rhythmic behavior; antagonist motor neurons are usually active during agonist motor neuron quiescence. During an antagonist deletion, a naturally occurring motor-pattern variation, there is no antagonist activity and no quiescence between successive bursts of agonist activity. Motor neuron recordings of normal fictive rostral scratching in the turtle displayed rhythmic alternation between activity and quiescence for hip flexors, knee flexors, and knee extensors. Knee-flexor activity occurred during knee-extensor quiescence. During a hip-extensor deletion, a variation of rostral scratching, rhythmic hip-flexor bursts occurred without intervening hip-flexor quiescence. There were 3 distinct patterns of knee motor activity during the cycle before or after a hip-extensor deletion. In most cycles, there was knee flexor-extensor rhythmic alternation. In some cycles, termed knee-flexor deletions, there was no knee-flexor activity and rhythmic knee-extensor bursts occurred without intervening knee-extensor quiescence. In other cycles, termed knee-extensor deletions, there was no knee-extensor activity and rhythmic knee-flexor bursts occurred without intervening knee-flexor quiescence. The concept of a module refers to a population of motor neurons and interneurons with similar activity patterns; interneurons in a module coordinate agonist and antagonist motor neuron activities, either with excitation of agonist motor neurons and interneurons, or with inhibition of antagonist motor neurons and interneurons. Previous studies of hip-extensor deletions support the concept of a rhythmogenic hip-flexor module. The knee-related deletions described here support the concept of rhythmogenic knee-flexor and knee-extensor modules linked by reciprocal inhibition.
APA, Harvard, Vancouver, ISO, and other styles
32

Weimann, J. M., P. Meyrand, and E. Marder. "Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system." Journal of Neurophysiology 65, no. 1 (January 1, 1991): 111–22. http://dx.doi.org/10.1152/jn.1991.65.1.111.

Full text
Abstract:
1. The stomatogastric ganglion (STG) of decapod crustaceans has been characterized by its production of two motor patterns, the gastric mill rhythm and the pyloric rhythm. The period of the gastric rhythm is typically 5-10 s, whereas the period of the pyloric rhythm is approximately 1 s. 2. In the STG of the crab, Cancer borealis, we find routinely that many motor neurons are active in time with both the pyloric and gastric rhythms. We rigorously identified the motor neurons according to the muscles they innervate. Some neurons usually classified as members of the pyloric network can be active in time with the gastric rhythm. All of the gastric motor neurons except the dorsal gastric (DG) neuron can generate pyloric-timed firing patterns. 3. Two motor neurons innervate muscles found in several different regions of the stomach. The inferior cardiac (IC) neuron, usually considered part of the pyloric network, innervates cardiac sac, gastric mill, and pyloric muscles. The lateral posterior gastric (LPG) neurons innervate muscles of both the gastric mill and the pyloric chamber. 4. These data show that the gastric and pyloric networks in the crab are not separate groups of neurons that independently generate two different rhythmic behaviors. Rather, these neurons together provide a synaptically connected pool of neurons from which many different pattern-generating circuits can be assembled, under different physiological conditions.
APA, Harvard, Vancouver, ISO, and other styles
33

Bracewell, R. M., P. Mazzoni, S. Barash, and R. A. Andersen. "Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan." Journal of Neurophysiology 76, no. 3 (September 1, 1996): 1457–64. http://dx.doi.org/10.1152/jn.1996.76.3.1457.

Full text
Abstract:
1. In the companion paper we reported that the predominant signal of the population of neurons in the lateral intraparietal area (area LIP) of the monkey's posterior parietal cortex (PPC) encode the next intended saccadic eye movement during the delay period of a memory-saccade task. This result predicts that, should be monkey change his intention of what the next saccade will be, LIP activity should change accordingly to reflect the new plan. We tested this prediction by training monkeys to change their saccadic plan on command and recording the activity of LIP neurons across plan changes. 2. We trained rhesus monkeys (Macaca mulatta) to maintain fixation on a light spot as long as this spot remained on. During this period we briefly presented one, two, or three peripheral visual stimuli in sequence, each followed by a delay (memory period, M). After the final delay the fixation spot was extinguished, and the monkey had to quickly make a saccade to the location of the last target to have appeared. The monkey could not predict which stimuli, nor how many, would appear on each trial. He thus had to plan a saccade to each stimulus as it appeared and change his saccade plan whenever a stimulus appeared at a different location. 3. We recorded the M period activity of 81 area LIP neurons (from 3 hemispheres of 2 monkeys) in this task. We predicted that, if a neuron's activity reflected the monkey's planned saccade, its activity should be high while the monkey planned a saccade in the neuron's motor field (MF), and low while the planned saccade was in the opposite direction. The activity of most of the neurons in our sample changed in accordance with our hypothesis as the monkey's planned saccade changed. 4. In one condition the monkey was instructed by visual stimuli to change his plan from a saccade in the neuron's preferred direction to a saccade planned in the opposite direction. In this condition activity decreased significantly (P < 0.05) in 65 (80%) of 81 neurons tested. These neurons' activity changed to reflect the new saccade plan even though the cue for this change was not presented in their RF. 5. As a control we randomly interleaved, among trials requiring a plan change, trials in which the monkey had to formulate two consecutive plans to make a saccade in the neuron's preferred direction. The activity remained unchanged (P < 0.05) in 22 of 31 neurons tested (79%), indicating that the neurons continued to encode the same saccade plan. 6. In a variant of the task, the cue to the location of the required saccade was either a light spot or a noise burst from a loudspeaker. Of 22 neurons tested in this task, 16 (73%) showed activity changes consistent with plan changes cued by visual or auditory stimuli. 7. Alterations in the monkey's intentions, even in the absence of overt behavior, are manifested in altered LIP activity. These activity changes could be induced whether visual or auditory cues were used to indicate the required plan changes. Most LIP neurons thus do not encode only the locations of visual stimuli, but also the intention to direct gaze to specific locations, independently of whether a gaze shift actually occurs.
APA, Harvard, Vancouver, ISO, and other styles
34

Rosen, Steven C., Mark W. Miller, Elizabeth C. Cropper, and Irving Kupfermann. "Outputs of Radula Mechanoafferent Neurons inAplysia are Modulated by Motor Neurons, Interneurons, and Sensory Neurons." Journal of Neurophysiology 83, no. 3 (March 1, 2000): 1621–36. http://dx.doi.org/10.1152/jn.2000.83.3.1621.

Full text
Abstract:
The gain of sensory inputs into the nervous system can be modulated so that the nature and intensity of afferent input is variable. Sometimes the variability is a function of other sensory inputs or of the state of motor systems that generate behavior. A form of sensory modulation was investigated in the Aplysiafeeding system at the level of a radula mechanoafferent neuron (B21) that provides chemical synaptic input to a group of motor neurons (B8a/b, B15) that control closure and retraction movements of the radula, a food grasping structure. B21 has been shown to receive both excitatory and inhibitory synaptic inputs from a variety of neuron types. The current study investigated the morphological basis of these heterosynaptic inputs, whether the inputs could serve to modulate the chemical synaptic outputs of B21, and whether the neurons producing the heterosynaptic inputs were periodically active during feeding motor programs that might modulate B21 outputs in a phase-specific manner. Four cell types making monosynaptic connections to B21 were found capable of heterosynaptically modulating the chemical synaptic output of B21 to motor neurons B8a and B15. These included the following: 1) other sensory neurons, e.g., B22; 2) interneurons, e.g., B19; 3) motor neurons, e.g., B82; and 4) multifunction neurons that have sensory, motor, and interneuronal functions, e.g., B4/5. Each cell type was phasically active in one or more feeding motor programs driven by command-like interneurons, including an egestive motor program driven by CBI-1 and an ingestive motor program driven by CBI-2. Moreover, the phase of activity differed for each of the modulator cells. During the motor programs, shifts in B21 membrane potential were related to the activity patterns of some of the modulator cells. Inhibitory chemical synapses mediated the modulation produced by B4/5, whereas excitatory and/or electrical synapses were involved in the other instances. The data indicate that modulation is due to block of action potential invasion into synaptic release regions or to alterations of transmitter release as a function of the presynaptic membrane potential. The results indicate that just as the motor system of Aplysia can be modulated by intrinsic mechanisms that can enhance its efficiency, the properties of primary sensory cells can be modified by diverse inputs from mediating circuitry. Such modulation could serve to optimize sensory cells for the different roles they might play.
APA, Harvard, Vancouver, ISO, and other styles
35

Reichenstein, Irit, Chen Eitan, Sandra Diaz-Garcia, Guy Haim, Iddo Magen, Aviad Siany, Mariah L. Hoye, et al. "Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology." Science Translational Medicine 11, no. 523 (December 18, 2019): eaav5264. http://dx.doi.org/10.1126/scitranslmed.aav5264.

Full text
Abstract:
Motor neuron–specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
APA, Harvard, Vancouver, ISO, and other styles
36

Wyatt, Tanya J., Sharyn L. Rossi, Monica M. Siegenthaler, Jennifer Frame, Rockelle Robles, Gabriel Nistor, and Hans S. Keirstead. "Human Motor Neuron Progenitor Transplantation Leads to Endogenous Neuronal Sparing in 3 Models of Motor Neuron Loss." Stem Cells International 2011 (2011): 1–11. http://dx.doi.org/10.4061/2011/207230.

Full text
Abstract:
Motor neuron loss is characteristic of many neurodegenerative disorders and results in rapid loss of muscle control, paralysis, and eventual death in severe cases. In order to investigate the neurotrophic effects of a motor neuron lineage graft, we transplanted human embryonic stem cell-derived motor neuron progenitors (hMNPs) and examined their histopathological effect in three animal models of motor neuron loss. Specifically, we transplanted hMNPs into rodent models of SMA (Δ7SMN), ALS (SOD1 G93A), and spinal cord injury (SCI). The transplanted cells survived and differentiated in all models. In addition, we have also found that hMNPs secrete physiologically active growth factorsin vivo, including NGF and NT-3, which significantly enhanced the number of spared endogenous neurons in all three animal models. The ability to maintain dying motor neurons by delivering motor neuron-specific neurotrophic support represents a powerful treatment strategy for diseases characterized by motor neuron loss.
APA, Harvard, Vancouver, ISO, and other styles
37

Strayer, Amy L., Cassandra N. Dennys-Rivers, Karina C. Ricart, Narae Bae, Joseph S. Beckman, Maria Clara Franco, and Alvaro G. Estevez. "Ligand-independent activation of the P2X7 receptor by Hsp90 inhibition stimulates motor neuron apoptosis." Experimental Biology and Medicine 244, no. 11 (May 29, 2019): 901–14. http://dx.doi.org/10.1177/1535370219853798.

Full text
Abstract:
Activation of the extracellular ATP ionotropic receptor P2X7 stimulates motor neuron apoptosis, whereas its inhibition in cell and animal models of amyotrophic lateral sclerosis can be protective. These observations suggest that P2X7 receptor activation is relevant to motor neuron disease and that it could be targeted for therapeutic development. Heat shock protein 90 (Hsp90) is an integral regulatory component of the P2X7 receptor complex, antagonizing ligand-induced receptor activation. Here, we show that the repressive activity of Hsp90 on P2X7 receptor activation in primary motor neurons is highly sensitive to inhibition. Primary motor neurons in culture are 100-fold more sensitive to Hsp90 inhibition by geldanamycin than other neuronal populations. Pharmacological inhibition and down-regulation of the P2X7 receptor prevented motor neuron apoptosis triggered by Hsp90 inhibition, which occurred in the absence of extracellular ATP. These observations suggest that inhibition of a seemingly motor neuron specific pool of Hsp90 leads to ligand independent activation of P2X7 receptor and motor neuron death. Downstream of Hsp90 inhibition, P2X7 receptor activated the phosphatase and tensin homolog (TPEN), which in turn suppressed the pro-survival phosphatidyl inositol 3 kinase (PI3K)/Akt pathway, leading to Fas-dependent motor neuron apoptosis. Conditions altering the interaction between P2X7 receptor and Hsp90, such as recruitment of Hsp90 to other subcellular compartments under stress conditions, or nitration following oxidative stress can induce motor neuron death. These findings may have broad implications in neurodegenerative disorders, including amyotrophic lateral sclerosis, in which activation of P2X7 receptor may be involved in both autonomous and non-autonomous motor neurons death. Impact statement Here we show that a motor neuron specific pool of Hsp90 that is highly sensitive to geldanamycin inhibition represses ligand-independent activation of P2X7 receptor and is critical to motor neuron survival. Activation of P2X7 receptor by Hsp90 inhibition triggers motor neuron apoptosis through the activation of PTEN, which in turn inhibits the PI3 kinase/Akt survival pathway. Thus, inhibition of Hsp90 for therapeutic applications may have the unexpected negative consequence of decreasing the activity of trophic pathways in motor neurons. The inhibition of Hsp90 as a therapeutic approach may require the identification of the Hsp90 complexes involved in pathogenic processes and the development of inhibitors selective for these complexes.
APA, Harvard, Vancouver, ISO, and other styles
38

Genc, Baris, Oge Gozutok, and P. Hande Ozdinler. "Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons." International Journal of Molecular Sciences 20, no. 16 (August 7, 2019): 3848. http://dx.doi.org/10.3390/ijms20163848.

Full text
Abstract:
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
APA, Harvard, Vancouver, ISO, and other styles
39

Allison, Reilly L., Jacob W. Adelman, Jenica Abrudan, Raul A. Urrutia, Michael T. Zimmermann, Angela J. Mathison, and Allison D. Ebert. "Microglia Influence Neurofilament Deposition in ALS iPSC-Derived Motor Neurons." Genes 13, no. 2 (January 27, 2022): 241. http://dx.doi.org/10.3390/genes13020241.

Full text
Abstract:
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motor neuron loss is the primary phenotype, leading to muscle weakness and wasting, respiratory failure, and death. Although a portion of ALS cases are linked to one of over 50 unique genes, the vast majority of cases are sporadic in nature. However, the mechanisms underlying the motor neuron loss in either familial or sporadic ALS are not entirely clear. Here, we used induced pluripotent stem cells derived from a set of identical twin brothers discordant for ALS to assess the role of astrocytes and microglia on the expression and accumulation of neurofilament proteins in motor neurons. We found that motor neurons derived from the affected twin which exhibited increased transcript levels of all three neurofilament isoforms and increased expression of phosphorylated neurofilament puncta. We further found that treatment of the motor neurons with astrocyte-conditioned medium and microglial-conditioned medium significantly impacted neurofilament deposition. Together, these data suggest that glial-secreted factors can alter neurofilament pathology in ALS iPSC-derived motor neurons.
APA, Harvard, Vancouver, ISO, and other styles
40

Norris, Brian J., Adam L. Weaver, Angela Wenning, Paul S. García, and Ronald L. Calabrese. "A Central Pattern Generator Producing Alternative Outputs: Phase Relations of Leech Heart Motor Neurons With Respect to Premotor Synaptic Input." Journal of Neurophysiology 98, no. 5 (November 2007): 2983–91. http://dx.doi.org/10.1152/jn.00407.2007.

Full text
Abstract:
The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.
APA, Harvard, Vancouver, ISO, and other styles
41

Kubke, M. F., Y. Yazaki-Sugiyama, R. Mooney, and J. M. Wild. "Physiology of Neuronal Subtypes in the Respiratory–Vocal Integration Nucleus Retroamigualis of the Male Zebra Finch." Journal of Neurophysiology 94, no. 4 (October 2005): 2379–90. http://dx.doi.org/10.1152/jn.00257.2005.

Full text
Abstract:
Learned vocalizations, such as bird song, require intricate coordination of vocal and respiratory muscles. Although the neural basis for this coordination remains poorly understood, it likely includes direct synaptic interactions between respiratory premotor neurons and vocal motor neurons. In birds, as in mammals, the medullary nucleus retroambigualis (RAm) receives synaptic input from higher level respiratory and vocal control centers and projects to a variety of targets. In birds, these include vocal motor neurons in the tracheosyringeal part of the hypoglossal motor nucleus (XIIts), other respiratory premotor neurons, and expiratory motor neurons in the spinal cord. Although various cell types in RAm are distinct in their anatomical projections, their electrophysiological properties remain unknown. Furthermore, although prior studies have shown that RAm provides both excitatory and inhibitory input onto XIIts motor neurons, the identity of the cells in RAm providing either of these inputs remains to be established. To characterize the different RAm neuron types electrophysiologically, we used intracellular recordings in a zebra finch brain stem slice preparation. Based on numerous differences in intrinsic electrophysiological properties and a principal components analysis, we identified two distinct RAm neuron types (types I and II). Antidromic stimulation methods and intracellular staining revealed that type II neurons, but not type I neurons, provide bilateral synaptic input to XIIts. Paired intracellular recordings in RAm and XIIts further indicated that type II neurons with a hyperpolarization-dependent bursting phenotype are a potential source of inhibitory input to XIIts motor neurons. These results indicate that electrically distinct cell types exist in RAm, affording physiological heterogeneity that may play an important role in respiratory–vocal signaling.
APA, Harvard, Vancouver, ISO, and other styles
42

Nicholson, Craig. "Motor neurons galore." Nature Reviews Neuroscience 9, no. 9 (September 2008): 659. http://dx.doi.org/10.1038/nrn2487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pleasure, David. "Chaperoning Motor Neurons." Archives of Neurology 62, no. 8 (August 1, 2005): 1193. http://dx.doi.org/10.1001/archneur.62.8.1193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Carlini, Maria J., Marina K. Triplett, and Livio Pellizzoni. "Neuromuscular denervation and deafferentation but not motor neuron death are disease features in the Smn2B/- mouse model of SMA." PLOS ONE 17, no. 8 (August 1, 2022): e0267990. http://dx.doi.org/10.1371/journal.pone.0267990.

Full text
Abstract:
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of motor neurons and skeletal muscle atrophy which is caused by ubiquitous deficiency in the survival motor neuron (SMN) protein. Several cellular defects contribute to sensory-motor circuit pathology in SMA mice, but the underlying mechanisms have often been studied in one mouse model without validation in other available models. Here, we used Smn2B/- mice to investigate specific behavioral, morphological, and functional aspects of SMA pathology that we previously characterized in the SMNΔ7 model. Smn2B/- SMA mice on a pure FVB/N background display deficits in body weight gain and muscle strength with onset in the second postnatal week and median survival of 19 days. Morphological analysis revealed severe loss of proprioceptive synapses on the soma of motor neurons and prominent denervation of neuromuscular junctions (NMJs) in axial but not distal muscles. In contrast, no evidence of cell death emerged from analysis of several distinct pools of lumbar motor neurons known to be lost in the disease. Moreover, SMA motor neurons from Smn2B/- mice showed robust nuclear accumulation of p53 but lack of phosphorylation of serine 18 at its amino-terminal, which selectively marks degenerating motor neurons in the SMNΔ7 mouse model. These results indicate that NMJ denervation and deafferentation, but not motor neuron death, are conserved features of SMA pathology in Smn2B/- mice.
APA, Harvard, Vancouver, ISO, and other styles
45

Jovanovic, Predrag, Yidan Wang, Jean-Philippe Vit, Edward Novinbakht, Nancy Morones, Elliot Hogg, Michele Tagliati, and Celine E. Riera. "Sustained chemogenetic activation of locus coeruleus norepinephrine neurons promotes dopaminergic neuron survival in synucleinopathy." PLOS ONE 17, no. 3 (March 22, 2022): e0263074. http://dx.doi.org/10.1371/journal.pone.0263074.

Full text
Abstract:
Dopaminergic neuron degeneration in the midbrain plays a pivotal role in motor symptoms associated with Parkinson’s disease. However, non-motor symptoms of Parkinson’s disease and post-mortem histopathology confirm dysfunction in other brain areas, including the locus coeruleus and its associated neurotransmitter norepinephrine. Here, we investigate the role of central norepinephrine-producing neurons in Parkinson’s disease by chronically stimulating catecholaminergic neurons in the locus coeruleus using chemogenetic manipulation. We show that norepinephrine neurons send complex axonal projections to the dopaminergic neurons in the substantia nigra, confirming physical communication between these regions. Furthermore, we demonstrate that increased activity of norepinephrine neurons is protective against dopaminergic neuronal depletion in human α-syn A53T missense mutation over-expressing mice and prevents motor dysfunction in these mice. Remarkably, elevated norepinephrine neurons action fails to alleviate α-synuclein aggregation and microgliosis in the substantia nigra suggesting the presence of an alternate neuroprotective mechanism. The beneficial effects of high norepinephrine neuron activity might be attributed to the action of norepinephrine on dopaminergic neurons, as recombinant norepinephrine treatment increased primary dopaminergic neuron cultures survival and neurite sprouting. Collectively, our results suggest a neuroprotective mechanism where noradrenergic neurons activity preserves the integrity of dopaminergic neurons, which prevents synucleinopathy-dependent loss of these cells.
APA, Harvard, Vancouver, ISO, and other styles
46

Sasaki, K., and M. Burrows. "Innervation pattern of a pool of nine excitatory motor neurons in the flexor tibiae muscle of a locust hind leg." Journal of Experimental Biology 201, no. 12 (June 15, 1998): 1885–93. http://dx.doi.org/10.1242/jeb.201.12.1885.

Full text
Abstract:
The flexor tibiae muscle of a locust hind leg consists of 10-11 pairs of fibre bundles in the main body of the muscle and a distal pair of bundles that form the accessory flexor muscle, all of which insert onto a common tendon. It is much smaller than the antagonistic extensor tibiae muscle and yet it is innervated by nine excitatory motor neurons, compared with only two for the extensor. To determine the pattern of innervation within the muscle by individual motor neurons, branches of the nerve (N5B2) that supplies the different muscle bundles were backfilled to reveal somata in the metathoracic ganglion. This showed that different muscle bundles are innervated by different numbers of excitatory motor neurons. Physiological mapping of the innervation was then carried out by intracellular recordings from the somata of flexor motor neurons in the metathoracic ganglion using microelectrodes. Spikes were evoked in these neurons by the injection of current, and matching junctional potentials were sought in fibres throughout the muscle using a second intracellular electrode. Each motor neuron innervates only a restricted array of muscle fibres and, although some innervate a larger array than others, none innervates fibres throughout the muscle. Some motor neurons innervate only proximal fibres and others only more distal fibres, so that the most proximal and most distal bundles of muscle fibres are innervated by non-overlapping sets of motor neurons. More motor neurons innervate proximal bundles than distal ones, and there are some asymmetries in the number of motor neurons innervating corresponding bundles on either side of the tendon. Individual motor neurons cause slow, fast or intermediate movements of the tibia, but their patterns of innervation overlap in the different muscle bundles. Furthermore, individual muscle fibres may also be innervated by motor neurons with different properties.
APA, Harvard, Vancouver, ISO, and other styles
47

Lindsay, Ronald M. "Trophic protection of motor neurons: clinical potential in motor neuron diseases." Journal of Neurology 242, S1 (1994): S8—S11. http://dx.doi.org/10.1007/bf00939232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pattyn, A., M. Hirsch, C. Goridis, and J. F. Brunet. "Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b." Development 127, no. 7 (April 1, 2000): 1349–58. http://dx.doi.org/10.1242/dev.127.7.1349.

Full text
Abstract:
Motor neurons are a widely studied model of vertebrate neurogenesis. They can be subdivided in somatic, branchial and visceral motor neurons. Recent studies on the dorsoventral patterning of the rhombencephalon have implicated the homeobox genes Pax6 and Nkx2.2 in the early divergence of the transcriptional programme of hindbrain somatic and visceral motor neuronal differentiation. We provide genetic evidence that the paired-like homeodomain protein Phox2b is required for the formation of all branchial and visceral, but not somatic, motor neurons in the hindbrain. In mice lacking Phox2b, both the generic and subtype-specific programs of motoneuronal differentiation are disrupted at an early stage. Most motor neuron precursors die inside the neuroepithelium while those that emigrate to the mantle layer fail to switch on early postmitotic markers and to downregulate neuroepithelial markers. Thus, the loss of function of Phox2b in hindbrain motor neurons exemplifies a novel control point in the generation of CNS neurons.
APA, Harvard, Vancouver, ISO, and other styles
49

Brunn, Dennis E. "Cooperative Mechanisms Between Leg Joints of Carausius morosusI. Nonspiking Interneurons That Contribute to Interjoint Coordination." Journal of Neurophysiology 79, no. 6 (June 1, 1998): 2964–76. http://dx.doi.org/10.1152/jn.1998.79.6.2964.

Full text
Abstract:
Brunn, Dennis E. Cooperative mechanisms between leg joints of Carausius morosus. I. Nonspiking interneurons that contribute to interjoint coordination. J. Neurophysiol. 79: 2964–2976, 1998. Three nonspiking interneurons are described in this paper that influence the activity of the motor neurons of three muscles of the proximal leg joints of the stick insect. Interneurons were recorded and stained intracellularly by glass microelectrodes; motor neurons were recorded extracellularly with oil-hook electrodes. The motor neurons innervate the two subcoxal muscles, the protractor and retractor coxae, and the thoracic part of the depressor trochanteris muscle. The latter spans the subcoxal joint before inserting the trochanter, thus coupling the two proximal joints mechanically. The three interneurons are briefly described here. First, interneuron NS 1 was known to become more excited during the swing phase of the rear and the stance phase of the middle leg. When depolarized it excited several motor neurons of the retractor coxae. This investigation revealed that it inhibits the activity of protractor and thoracic depressor motor neurons when depolarized as well. In a pilocarpine-activated animal, the membrane potential showed oscillations in phase with the activity of protractor motor neurons, suggesting that NS 1 might contribute to the transition from swing to stance movement. Second, interneuron NS 2 inhibits motor neurons of protractor and thoracic depressor when depolarized. In both a quiescent and a pilocarpine-activated animal, hyperpolarizing stimuli excite motor neurons of both muscles via disinhibition. In one active animal the disinhibiting stimuli were sufficient to generate swing-like movements of the leg. In pilocarpine-activated preparations the membrane potential oscillated in correlation with the motor neuronal activity of the protractor coxae and thoracic depressor muscle. Hyperpolarizing stimuli induced or reinforced the protractor and thoracic depressor bursts and inhibited the activity of the motor neurons of the retractor coxae muscle, the antagonistic muscle of the protractor. Therefore interneuron NS 2 can be regarded as an important premotor interneuron for the switching from stance to swing and from swing to stance. Finally, interneuron NS 3 inhibits the spontaneously active motor neurons of both motor neuron pools in the quiescent animal. During pilocarpine-induced protractor bursts, depolarizing stimuli applied to the interneuron excited several protractor motor neurons with large action potentials and one motor neuron of the thoracic depressor. No oscillations of the membrane potentials were observed. Therefore this interneuron might contribute to the generation of rapid leg movements. The results demonstrated that the two proximal joints are coupled not only mechanically but also neurally and that the thoracic part of the depressor appears to function as a part of the swing-generating system.
APA, Harvard, Vancouver, ISO, and other styles
50

Barone, Cassandra, and Xin Qi. "Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target." Cells 12, no. 11 (June 2, 2023): 1536. http://dx.doi.org/10.3390/cells12111536.

Full text
Abstract:
(Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography