Academic literature on the topic 'Morse theory; Donaldson's theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Morse theory; Donaldson's theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Morse theory; Donaldson's theorem"
Harvey, F. R., and H. B. Lawson. "Morse theory and Stokes’ theorem." Surveys in Differential Geometry 7, no. 1 (2002): 259–311. http://dx.doi.org/10.4310/sdg.2002.v7.n1.a9.
Full textGreene, Joshua Evan. "A note on applications of the d-invariant and Donaldson's theorem." Journal of Knot Theory and Its Ramifications 26, no. 02 (February 2017): 1740006. http://dx.doi.org/10.1142/s0218216517400065.
Full textMartynchuk, N., H. W. Broer, and K. Efstathiou. "Hamiltonian Monodromy and Morse Theory." Communications in Mathematical Physics 375, no. 2 (October 1, 2019): 1373–92. http://dx.doi.org/10.1007/s00220-019-03578-2.
Full textKukieła, Michał. "The main theorem of discrete Morse theory for Morse matchings with finitely many rays." Topology and its Applications 160, no. 9 (June 2013): 1074–82. http://dx.doi.org/10.1016/j.topol.2013.04.025.
Full textSakkalis, Takis. "On a theorem of H. Hopf." International Journal of Mathematics and Mathematical Sciences 13, no. 4 (1990): 813–16. http://dx.doi.org/10.1155/s0161171290001132.
Full textFischer, Arthur E. "Riemannian submersions and the regular interval theorem of Morse theory." Annals of Global Analysis and Geometry 14, no. 3 (August 1996): 263–300. http://dx.doi.org/10.1007/bf00054474.
Full textDUAN, YI-SHI, and PENG-MING ZHANG. "INNER STRUCTURE OF GAUSS–BONNET–CHERN THEOREM AND THE MORSE THEORY." Modern Physics Letters A 16, no. 39 (December 21, 2001): 2483–93. http://dx.doi.org/10.1142/s0217732301006004.
Full textRazvan, M. R. "On Conley's fundamental theorem of dynamical systems." International Journal of Mathematics and Mathematical Sciences 2004, no. 26 (2004): 1397–401. http://dx.doi.org/10.1155/s0161171204202125.
Full textWilkin, Graeme. "Equivariant Morse Theory for the Norm-Square of a Moment Map on a Variety." International Mathematics Research Notices 2019, no. 15 (November 18, 2017): 4730–63. http://dx.doi.org/10.1093/imrn/rnx286.
Full textJohnson, Lacey, and Kevin Knudson. "Min-Max Theory for Cell Complexes." Algebra Colloquium 27, no. 03 (August 27, 2020): 447–54. http://dx.doi.org/10.1142/s100538672000036x.
Full textDissertations / Theses on the topic "Morse theory; Donaldson's theorem"
Frøyshov, Kim A. "On Floer homology and four-manifolds with boundary." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282194.
Full textBonatto, Luciana Basualdo. "Bott\'s periodicity theorem from the algebraic topology viewpoint." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-17112017-130250/.
Full textEm 1970, Raoul Bott publicou o artigo The Periodicity Theorem for the Classical Groups and Some of Its Applications no qual usava esse famoso resultado como um guia para apresentar importantes áreas e ferramentas da Topologia Algébrica. O presente trabalho usa o mesmo caminho traçado por Bott em seu artigo como roteiro para explorar tópicos importantes da Topologia Algébrica. Começamos esta incursão desenvolvendo ferramentas importantes da Teoria de Homotopia como sequências espectrais e espaços de Eilenberg-MacLane, explorando como estes podem ser combinados para auxiliar em cálculos de grupos de homotopia. Passamos então a estudar resultados importantes de Teoria de Morse, uma ferramenta que estava no centro da demonstração de Bott do Teorema da Periodicidade. Desenvolvemos ainda, duas extensões: Teoria de Morse-Bott e aplicações destes resultados ao espaço de laços de uma variedade. Terminamos com uma introdução a teorias de cohomologia generalizadas e K-Teoria.
Lapébie, Julie. "Sur la topologie des ensembles semi-algébriques : caractéristique d'Euler; degré topologique et indice radial." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4719/document.
Full textAfter the works of Zbigniew Szafraniec and Nicolas Dutertre, we are interested in computing Euler characteristics of some particular semialgebraic sets. In particular, the ones of the form : $ {(-1)^{varepsilon_1} G_1geq 0 }cap...cap{(-1)^{varepsilon_l} G_lgeq 0}cap W$, where $varepsilon=(varepsilon_1,...,varepsilon_l)in{0,1}^l$, $G=(G_1,...,G_l):R^nrightarrowR^l$ polynomial and $W:=F^{-1}(0)subsetR^n$ where $F:R^nrightarrowR^k$ and $k+lleq n$. Once the smooth case is treated, we intersect these sets with ${ fgeq 0}$ or ${ fleq 0}$, where $f$ is polynomial such that $f^{-1}(0)$ contains a finite number of singularities. Then we state a theorem that makes a link between these caracteristics and some degrees of mappings involving the functions $f$, $F$ and $G$. Finally, we study the case where $W$ has a compact singular set.In another part, I work with the radial index, an index defined for singular manifolds. I have a result making a link between the radial index of a vector field V and its opposite -V at a singularity. Finally, I relate that radial index to an intersection index
Lee, Jung-Hsuan, and 李容瑄. "Morse Theory to Reeb''s Theorem and its Generalization." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/38936612442251708008.
Full text淡江大學
數學學系碩士班
101
In this thesis, we want to use Morse Theorem to prove Reeb''s Theorem. Before showing the proof of these theorems, we need to review some basic properties of a differentiable manifold M with a differentiable structure. In general, if we define some functions from M (or its subspace) to real value, the difference between manifold and coordinate space should be considered. Every point we choose must send to a coordinate subspace first. So defining a coordinate system is helpful to deal with any functions on manifold M. The main result we review is to prove Reeb''s Theorem using Morse Lemma and Morse Theorem. Here we use a surgery lemma to prove disjoint union of two spaces, matched along their common boundary. We also show how to construct a homotopy equivalence between manifold M and a n-sphere, for all dimension n is larger or equal to 1.
St-Pierre, Alexandre. "Homologie de morse et théorème de la signature." Thèse, 2009. http://hdl.handle.net/1866/7892.
Full textWaterstraat, Nils. "The Index Bundle for Gap-Continuous Families, Morse-Type Index Theorems and Bifurcation." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B3F1-1.
Full textBooks on the topic "Morse theory; Donaldson's theorem"
Bismut, Jean-Michel. An extension of a theorem by Cheeger and Müller. Montrouge: Société mathématique de France, 1992.
Find full textGarner, Robert. The Contemporary Debate in Animal Ethics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199375967.003.0019.
Full textBook chapters on the topic "Morse theory; Donaldson's theorem"
Goresky, Mark, and Robert MacPherson. "Proof of the Main Theorem." In Stratified Morse Theory, 100–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-71714-7_10.
Full textGoresky, Mark, and Robert MacPherson. "Dramatis Personae and the Main Theorem." In Stratified Morse Theory, 60–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-71714-7_5.
Full textGoresky, Mark, and Robert MacPherson. "The Topology of Complex Analytic Varieties and the Lefschetz Hyperplane Theorem." In Stratified Morse Theory, 23–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-71714-7_2.
Full textKarhumäki, Juhani, Aleksi Saarela, and Luca Q. Zamboni. "Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence." In Developments in Language Theory, 203–14. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09698-8_18.
Full textBehrens, Stefan, Allison N. Miller, Matthias Nagel, and Peter Teichner. "The Schoenflies Theorem after Mazur, Morse, and Brown." In The Disc Embedding Theorem, 44–62. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198841319.003.0003.
Full textNiekerk, Mathilda van, and Donald Getz. "Perspectives on Stakeholder Theory." In Event Stakeholders. Goodfellow Publishers, 2019. http://dx.doi.org/10.23912/9781911396635-4089.
Full textAlmanza, German, Victor M. Carrillo, and Cely C. Ronquillo. "Optimization of Utility Functions in an Admissible Space of Higher Dimension." In Handbook of Research on Military, Aeronautical, and Maritime Logistics and Operations, 102–13. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9779-9.ch006.
Full text