Journal articles on the topic 'Morita categories'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Morita categories.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Caviglia, Giovanni, and Javier J. Gutiérrez. "Morita homotopy theory for (∞,1)-categories and ∞-operads." Forum Mathematicum 31, no. 3 (May 1, 2019): 661–84. http://dx.doi.org/10.1515/forum-2018-0033.
Full textGómez Pardo, J. L., and P. A. Guil Asensio. "Morita duality for Grothendieck categories." Publicacions Matemàtiques 36 (July 1, 1992): 625–35. http://dx.doi.org/10.5565/publmat_362a92_22.
Full textRickard, Jeremy. "Morita Theory for Derived Categories." Journal of the London Mathematical Society s2-39, no. 3 (June 1989): 436–56. http://dx.doi.org/10.1112/jlms/s2-39.3.436.
Full textGreenlees, J. P. C., and Greg Stevenson. "Morita theory and singularity categories." Advances in Mathematics 365 (May 2020): 107055. http://dx.doi.org/10.1016/j.aim.2020.107055.
Full textCline, E., B. Parshall, and L. Scott. "Derived categories and Morita theory." Journal of Algebra 104, no. 2 (December 1986): 397–409. http://dx.doi.org/10.1016/0021-8693(86)90224-3.
Full textDellʼAmbrogio, Ivo, and Gonçalo Tabuada. "Morita homotopy theory ofC⁎-categories." Journal of Algebra 398 (January 2014): 162–99. http://dx.doi.org/10.1016/j.jalgebra.2013.09.022.
Full textAnh, P. N., and R. Wiegandt. "Morita Duality for Grothendieck Categories." Journal of Algebra 168, no. 1 (August 1994): 273–93. http://dx.doi.org/10.1006/jabr.1994.1229.
Full textHOLSTEIN, JULIAN V. S. "Morita cohomology." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 1 (December 5, 2014): 1–26. http://dx.doi.org/10.1017/s0305004114000516.
Full textMazorchuk, Volodymyr, and Vanessa Miemietz. "Morita theory for finitary 2-categories." Quantum Topology 7, no. 1 (2016): 1–28. http://dx.doi.org/10.4171/qt/72.
Full textWang, Pei. "Morita context functors on cellular categories." Communications in Algebra 47, no. 4 (January 31, 2019): 1773–84. http://dx.doi.org/10.1080/00927872.2018.1517360.
Full textMiyachi, Jun-ichi. "Derived categories and Morita duality theory." Journal of Pure and Applied Algebra 128, no. 2 (June 1998): 153–70. http://dx.doi.org/10.1016/s0022-4049(97)00046-7.
Full textNeshveyev, Sergey, and Makoto Yamashita. "A Few Remarks on the Tube Algebra of a Monoidal Category." Proceedings of the Edinburgh Mathematical Society 61, no. 3 (May 8, 2018): 735–58. http://dx.doi.org/10.1017/s0013091517000426.
Full textDey, Krishanu, Sugato Gupta, and Sujit Kumar Sardar. "Morita invariants of semirings related to a Morita context." Asian-European Journal of Mathematics 12, no. 02 (April 2019): 1950023. http://dx.doi.org/10.1142/s1793557119500232.
Full textHanihara, Norihiro. "Morita theorem for hereditary Calabi-Yau categories." Advances in Mathematics 395 (February 2022): 108092. http://dx.doi.org/10.1016/j.aim.2021.108092.
Full textBerbec, Ioan. "The Morita-Takeuchi Theory for Quotient Categories." Communications in Algebra 31, no. 2 (January 4, 2003): 843–58. http://dx.doi.org/10.1081/agb-120017346.
Full textBalaba, I. N. "Morita equivalences of categories of graded modules." Russian Mathematical Surveys 42, no. 3 (June 30, 1987): 209–10. http://dx.doi.org/10.1070/rm1987v042n03abeh001422.
Full textNaidu, Deepak. "Categorical Morita Equivalence for Group-Theoretical Categories." Communications in Algebra 35, no. 11 (October 23, 2007): 3544–65. http://dx.doi.org/10.1080/00927870701511996.
Full textBerger, Clemens, and Kruna Ratkovic. "Gabriel-Morita Theory for Excisive Model Categories." Applied Categorical Structures 27, no. 1 (August 25, 2018): 23–54. http://dx.doi.org/10.1007/s10485-018-9539-x.
Full textDécoppet, Thibault D. "The Morita Theory of Fusion 2-Categories." Higher Structures 7, no. 1 (May 21, 2023): 234–92. http://dx.doi.org/10.21136/hs.2023.07.
Full text费, 卿. "Generators of Module Categories over Morita Ring." Pure Mathematics 13, no. 07 (2023): 2136–41. http://dx.doi.org/10.12677/pm.2023.137221.
Full textLaan, Valdis, and Ülo Reimaa. "Morita equivalence of factorizable semigroups." International Journal of Algebra and Computation 29, no. 04 (June 2019): 723–41. http://dx.doi.org/10.1142/s0218196719500243.
Full textHu, Wei, and Changchang Xi. "Derived equivalences and stable equivalences of Morita type, I." Nagoya Mathematical Journal 200 (December 2010): 107–52. http://dx.doi.org/10.1215/00277630-2010-014.
Full textHu, Wei, and Changchang Xi. "Derived equivalences and stable equivalences of Morita type, I." Nagoya Mathematical Journal 200 (December 2010): 107–52. http://dx.doi.org/10.1017/s0027763000010199.
Full textMARSH, ROBERT J., and YANN PALU. "NEARLY MORITA EQUIVALENCES AND RIGID OBJECTS." Nagoya Mathematical Journal 225 (August 19, 2016): 64–99. http://dx.doi.org/10.1017/nmj.2016.27.
Full textGrossman, Pinhas, Masaki Izumi, and Noah Snyder. "The Asaeda–Haagerup fusion categories." Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 743 (October 1, 2018): 261–305. http://dx.doi.org/10.1515/crelle-2015-0078.
Full textIglesias, F. Castaño, and J. Gómez Torrecillas. "Wide Morita contexts and equivalences of comodule categories." Journal of Pure and Applied Algebra 131, no. 3 (October 1998): 213–25. http://dx.doi.org/10.1016/s0022-4049(97)00100-x.
Full textLópez-Permouth, Sergio R. "Lifting Morita equivalence to categories of fuzzy modules." Information Sciences 64, no. 3 (October 1992): 191–201. http://dx.doi.org/10.1016/0020-0255(92)90100-m.
Full textKong, Liang, and Ingo Runkel. "Morita classes of algebras in modular tensor categories." Advances in Mathematics 219, no. 5 (December 2008): 1548–76. http://dx.doi.org/10.1016/j.aim.2008.07.004.
Full textPardo, J. L. Gómez, and P. A. Guil Asensio. "Linear compactness and Morita duality for Grothendieck categories." Journal of Algebra 148, no. 1 (May 1992): 53–67. http://dx.doi.org/10.1016/0021-8693(92)90236-f.
Full textCoconeţ, Tiberiu, Andrei Marcus, and Constantin-Cosmin Todea. "Block Extensions, Local Categories and Basic Morita Equivalences." Quarterly Journal of Mathematics 71, no. 2 (April 28, 2020): 703–28. http://dx.doi.org/10.1093/qmathj/haaa008.
Full textGalindo, César, and Julia Yael Plavnik. "Tensor functors between Morita duals of fusion categories." Letters in Mathematical Physics 107, no. 3 (November 24, 2016): 553–90. http://dx.doi.org/10.1007/s11005-016-0914-y.
Full textOhtake, K. "Morita Duality for Grothendieck Categories and Its Application." Journal of Algebra 174, no. 3 (June 1995): 801–22. http://dx.doi.org/10.1006/jabr.1995.1154.
Full textBen-Zvi, David, Sam Gunningham, and Hendrik Orem. "Highest Weights for Categorical Representations." International Mathematics Research Notices 2020, no. 24 (December 5, 2018): 9988–10004. http://dx.doi.org/10.1093/imrn/rny258.
Full textBlecher, David P., Paul S. Muhly, and Vern I. Paulsen. "Categories of operator modules (Morita equivalence and projective modules)." Memoirs of the American Mathematical Society 143, no. 681 (2000): 0. http://dx.doi.org/10.1090/memo/0681.
Full textNăstăsescu, C., and B. Torrecillas. "Morita Duality for Grothendieck Categories with Applications to Coalgebras." Communications in Algebra 33, no. 11 (October 2005): 4083–96. http://dx.doi.org/10.1080/00927870500261397.
Full textGao, Nan, and Chrysostomos Psaroudakis. "Gorenstein Homological Aspects of Monomorphism Categories via Morita Rings." Algebras and Representation Theory 20, no. 2 (November 3, 2016): 487–529. http://dx.doi.org/10.1007/s10468-016-9652-1.
Full textLiu, Miantao, Ruixin Li, and Nan Gao. "Morphism Categories of Gorenstein-projective Modules." Algebra Colloquium 25, no. 03 (August 14, 2018): 377–86. http://dx.doi.org/10.1142/s1005386718000275.
Full textKOIKE, KAZUTOSHI. "MORITA DUALITY AND RING EXTENSIONS." Journal of Algebra and Its Applications 12, no. 02 (December 16, 2012): 1250160. http://dx.doi.org/10.1142/s0219498812501605.
Full textZhang, Bo-Ye, and Ji-Wei He. "Graded Derived Equivalences." Mathematics 10, no. 1 (December 29, 2021): 103. http://dx.doi.org/10.3390/math10010103.
Full textBrochier, Adrien, David Jordan, and Noah Snyder. "On dualizability of braided tensor categories." Compositio Mathematica 157, no. 3 (March 2021): 435–83. http://dx.doi.org/10.1112/s0010437x20007630.
Full textToën, Bertrand. "The homotopy theory of dg-categories and derived Morita theory." Inventiones mathematicae 167, no. 3 (December 20, 2006): 615–67. http://dx.doi.org/10.1007/s00222-006-0025-y.
Full textSłomińska, Jolanta. "Dold–Kan type theorems and Morita equivalences of functor categories." Journal of Algebra 274, no. 1 (April 2004): 118–37. http://dx.doi.org/10.1016/j.jalgebra.2003.10.025.
Full textBreaz, Simion. "A Morita type theorem for a sort of quotient categories." Czechoslovak Mathematical Journal 55, no. 1 (March 2005): 133–44. http://dx.doi.org/10.1007/s10587-005-0009-x.
Full textRogers, Morgan. "Toposes of Topological Monoid Actions." Compositionality 5 (January 10, 2023): 1. http://dx.doi.org/10.32408/compositionality-5-1.
Full textTSEMENTZIS, DIMITRIS. "A SYNTACTIC CHARACTERIZATION OF MORITA EQUIVALENCE." Journal of Symbolic Logic 82, no. 4 (December 2017): 1181–98. http://dx.doi.org/10.1017/jsl.2017.59.
Full textTart, Lauri. "On Morita equivalence of partially ordered semigroups with local units." Acta et Commentationes Universitatis Tartuensis de Mathematica 15, no. 2 (December 11, 2020): 15–33. http://dx.doi.org/10.12697/acutm.2011.15.07.
Full textMüger, Michael. "From subfactors to categories and topology I: Frobenius algebras in and Morita equivalence of tensor categories." Journal of Pure and Applied Algebra 180, no. 1-2 (May 2003): 81–157. http://dx.doi.org/10.1016/s0022-4049(02)00247-5.
Full textKashu, Alexei. "Euclidean Combinatorial Configurations: Typology, Continuous Extensions and Representations." Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1(98) (July 2022): 83–98. http://dx.doi.org/10.56415/basm.y2022.i1.p83.
Full textBlecher, David P. "On Morita's fundamental theorem for $C^*$-algebras." MATHEMATICA SCANDINAVICA 88, no. 1 (March 1, 2001): 137. http://dx.doi.org/10.7146/math.scand.a-14319.
Full textTabuada, Gonçalo. "The fundamental theorem via derived Morita invariance, localization, and 1-homotopy invariance." Journal of K-theory 9, no. 3 (May 24, 2011): 407–20. http://dx.doi.org/10.1017/is011004009jkt155.
Full text