Academic literature on the topic 'Morita categories'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Morita categories.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Morita categories"
Caviglia, Giovanni, and Javier J. Gutiérrez. "Morita homotopy theory for (∞,1)-categories and ∞-operads." Forum Mathematicum 31, no. 3 (May 1, 2019): 661–84. http://dx.doi.org/10.1515/forum-2018-0033.
Full textGómez Pardo, J. L., and P. A. Guil Asensio. "Morita duality for Grothendieck categories." Publicacions Matemàtiques 36 (July 1, 1992): 625–35. http://dx.doi.org/10.5565/publmat_362a92_22.
Full textRickard, Jeremy. "Morita Theory for Derived Categories." Journal of the London Mathematical Society s2-39, no. 3 (June 1989): 436–56. http://dx.doi.org/10.1112/jlms/s2-39.3.436.
Full textGreenlees, J. P. C., and Greg Stevenson. "Morita theory and singularity categories." Advances in Mathematics 365 (May 2020): 107055. http://dx.doi.org/10.1016/j.aim.2020.107055.
Full textCline, E., B. Parshall, and L. Scott. "Derived categories and Morita theory." Journal of Algebra 104, no. 2 (December 1986): 397–409. http://dx.doi.org/10.1016/0021-8693(86)90224-3.
Full textDellʼAmbrogio, Ivo, and Gonçalo Tabuada. "Morita homotopy theory ofC⁎-categories." Journal of Algebra 398 (January 2014): 162–99. http://dx.doi.org/10.1016/j.jalgebra.2013.09.022.
Full textAnh, P. N., and R. Wiegandt. "Morita Duality for Grothendieck Categories." Journal of Algebra 168, no. 1 (August 1994): 273–93. http://dx.doi.org/10.1006/jabr.1994.1229.
Full textHOLSTEIN, JULIAN V. S. "Morita cohomology." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 1 (December 5, 2014): 1–26. http://dx.doi.org/10.1017/s0305004114000516.
Full textMazorchuk, Volodymyr, and Vanessa Miemietz. "Morita theory for finitary 2-categories." Quantum Topology 7, no. 1 (2016): 1–28. http://dx.doi.org/10.4171/qt/72.
Full textWang, Pei. "Morita context functors on cellular categories." Communications in Algebra 47, no. 4 (January 31, 2019): 1773–84. http://dx.doi.org/10.1080/00927872.2018.1517360.
Full textDissertations / Theses on the topic "Morita categories"
Fidélis, Michele Ribeiro. "Teorema de Morita para categoria derivada." Universidade Federal de Viçosa, 2013. http://locus.ufv.br/handle/123456789/4923.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work we present concepts and results of triangulated and derived categories. The main objective is to prove Rickard s theorem, also known as Morita s theorem for derived categories. As an application of this result we show that finiteness of finitistic dimension is invariant under derived equivalences, as it is proved in Finiteness of finitistic dimension is invariant under derived equivalences by Shengyong Pan and Changchang Xi.
Neste trabalho apresentamos conceitos e resultados de categorias trianguladas e derivadas. O principal objetivo é demonstrar o Teorema de Rickard, também conhecido como Teorema de Morita para categorias derivadas. Como aplicação deste resultado mostramos que a dimensão finítistica é preservada por equivalência derivada, conforme o artigo "Finiteness of finitistic dimension is invariant under derived equivalences" de Shengyong Pan e Changchang Xi.
Heider, Andreas. "Two results from Morita theory of stable model categories." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985718641.
Full textMarquez, Adrian Vazquez. "Universal constructions for monads on internal categories and Morita contexts." Thesis, Swansea University, 2010. https://cronfa.swan.ac.uk/Record/cronfa42890.
Full textHaioun, Benjamin. "Une approche aux invariants quantiques non-semisimples via l'algèbre supérieure." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES063.
Full textIn this manuscript, we study Topological Quantum Field Theories built from a ribbon tensor category. We are particularly interested in the non-semisimple case. The main angle of this work is to make low-dimensional topology and higher algebra communicate. In one direction, explicit constructions from skein theory guide the higher algebra towards interesting examples. In the other, the cobordism hypothesis predicts new constructions. We construct 4-dimensional TQFTs from non-semisimple finite tensor categories satisfying some non-degeneracy conditions. This construction is joint work with Costantino, Geer and Patureau-Mirand. Unlike most other non-semisimple constructions, this TQFT is defined on every 4-cobordism. This feature was actually predictable from the cobordism hypothesis. Our construction is very explicit and we study some examples. Under some extra non-degeneracy conditions, we also provide an invariant of decorated 3-manifolds which is computed by our TQFT on a bounding 4-manifold. We relate this invariant to the renormalized Lyubashenko's invariants. These invariants provide the building block of DGGPR 3-dimensional TQFTs, which are non-semisimple variants of the well-known Witten-Reshetikhin-Turaev TQFTs. We argue that this point of view is very fruitful to understand these non-semisimple WRT theories and enables one to understand them as fully extended TQFTs. In the case where the ribbon category V is modular, the (3+1)-TQFT described above is invertible. It is also shown by Brochier, Jordan, Snyder and Safronov that the category V is invertible when thought of as an object of a 4-category of braided tensor categories. It is natural to expect that the TQFT Z associated to V by the cobordism hypothesis coincides with the one described above. Moreover, one should be able to recover DGGPR theories in a similar way, in a fully extended setting. More precisely, it is expected that there exists a fully extended boundary condition to Z which, when composed with Z on a bounding manifold, recovers DGGPR. We show that the unit inclusion, expected to be associated to this boundary condition under the cobordism hypothesis, is indeed sufficiently dualizable. Actually, we show that it is almost, but not entirely, 3-dualizable. We describe a so-called non-compact version of the cobordism hypothesis, and introduce the associated notion of non-compact dualizable object. Such objects give a partially defined, which we call non-compact, TQFT under the cobordism hypothesis. This explains precisely why the DGGPR theories are not defined on every 3-cobordim. We conjecture that the cobordism hypothesis applied on the unit inclusion and the modular category recovers, through a construction we describe, the non-semisimple WRT theories. On surfaces, the fully extended 4-TQFT is known to give factorization homology, which is described as modules over the so-called internal skein algebras by Brochier, Ben-Zvi and Jordan. We relate these internal skein algebras to Lê's stated skein algebras and study some of their properties. We give an explicit proof, and show that stated skein algebras do satisfy the universal property defining internal skein algebras. In particular, we argue that internal skein algebras are a very reasonable generalization of stated skein algebras. Moreover, we show gluing properties of internal skein algebras in any ribbon category, a result which is not known for other generalizations of stated skein algebras
Maaßen, Laura [Verfasser], Gerhard [Akademischer Betreuer] Hiß, Moritz [Akademischer Betreuer] Weber, and Amaury [Akademischer Betreuer] Freslon. "Representation categories of compact matrix quantum groups / Laura Maaßen ; Gerhard Hiß, Moritz Weber, Amaury Freslon." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1240691106/34.
Full textMeléndez, Vázquez Eduardo. "Hacia un análisis del discurso: la visión de Andrés Manuel López Obrador y la conformación de Morena como partido político." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2017. http://hdl.handle.net/20.500.11799/99671.
Full textHeider, Andreas [Verfasser]. "Two results from Morita theory of stable model categories / vorgelegt von Andreas Heider." 2007. http://d-nb.info/985718641/34.
Full text"Morita equivalence and isomorphisms between general linear groups." Chinese University of Hong Kong, 1994. http://library.cuhk.edu.hk/record=b5888249.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1994.
Includes bibliographical references (leaves 74-75).
Introduction --- p.2
Chapter 1 --- "Rings, Modules and Categories" --- p.4
Chapter 1.1 --- "Rings, Subrings and Ideals" --- p.5
Chapter 1.2 --- Modules and Categories --- p.8
Chapter 1.3 --- Module Theory --- p.13
Chapter 2 --- Isomorphisms between Endomorphism rings of Quasiprogener- ators --- p.24
Chapter 2.1 --- Preliminaries --- p.24
Chapter 2.2 --- The Fundamental Theorem --- p.31
Chapter 2.3 --- Isomorphisms Induced by Semilinear Maps --- p.41
Chapter 2.4 --- Isomorphisms of General linear groups --- p.46
Chapter 3 --- Endomorphism ring of projective module --- p.54
Chapter 3.1 --- Preliminaries --- p.54
Chapter 3.2 --- Main Theorem --- p.60
Bibliography --- p.74
Arabidze, Giorgi. "Groupoids in categories with partial covers." Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E586-D.
Full textMukhopadhyay, Ankan. "Fundamental aspects of the interface engineering in the heavy metal/ferromagnet-based perpendicularly magnetized systems." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5609.
Full textBooks on the topic "Morita categories"
Blecher, David P. Categories of operator modules: Morita equivalence and projective modules. Providence, R.I: American Mathematical Society, 2000.
Find full textKirschner, Martin, ed. Subversiver Messianismus. Academia – ein Verlag in der Nomos Verlagsgesellschaft, 2020. http://dx.doi.org/10.5771/9783896658623.
Full textHolt, Robin. Critique. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199671458.003.0006.
Full textByros, Vasili. Topics and Harmonic Schemata. Edited by Danuta Mirka. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199841578.013.0015.
Full textBotti, Federica. L'Eutanasia in Svizzera. Bononia University Press, 2021. http://dx.doi.org/10.30682/sg233.
Full textGalati, Elvio. Un trialismo complejo en su justicia. Teseo, 2021. http://dx.doi.org/10.55778/ts877233087.
Full textBalestero, Gabriela Soares, and Ana Silvia Marcatto Begalli. Estudos de Direito Latino Americano. 11th ed. Editora Amplla, 2022. http://dx.doi.org/10.51859/amplla.edl1037-0.
Full textBook chapters on the topic "Morita categories"
Lam, T. Y. "Matrix Rings, Categories of Modules, and Morita Theory." In Lectures on Modules and Rings, 459–541. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0525-8_7.
Full textLam, T. Y. "Matrix Rings, Categories of Modules and Morita Theory." In Problem Books in Mathematics, 343–402. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-48899-8_7.
Full textReiner, I. "Morita Equivalence." In Maximal Orders, 154–69. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198526735.003.0004.
Full text"The Morita Theory." In Categories and Modules with K-Theory in View, 184–221. Cambridge University Press, 2000. http://dx.doi.org/10.1017/9780511608667.005.
Full textSchwede, Stefan. "Morita theory in abelian, derived and stable model categories." In Structured Ring Spectra, 33–86. Cambridge University Press, 2004. http://dx.doi.org/10.1017/cbo9780511529955.005.
Full textFittler, András, Márton Fittler, and Róbert György Vida. "Stakeholders of the Online Pharmaceutical Market." In Biomedical Engineering. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108485.
Full textWang, Tao, Hengqiong Jia, Shaoliang Wu, Zhao Wei, Xiao Xie, Haiyan Li, Hequan Zhu, Cunshan Du, and Yi Shi. "Early Hardening Process of CA Mortar Indicated by Electrical Resistivity." In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200218.
Full textda Graça David de Morais, Maria. "Anexo D. Quadros da evolução de diferentes categorias de causas de morte." In Causas de Morte no Século XX, 379–93. Publicações do Cidehus, 2002. http://dx.doi.org/10.4000/books.cidehus.3719.
Full textFrancisco-Ortega, Javier, Robert K. Jansen, Robert A. J. Mason-Gamer, and Robert S. Wallace. "Application of Chloroplast DNA Restriction Site Studies for Conservation Genetics." In Molecular Genetic Approaches in Conservation, 183–201. Oxford University PressNew York, NY, 1996. http://dx.doi.org/10.1093/oso/9780195095265.003.0012.
Full textCole, Allan Hugh. "Illness, Transformation, and Resilience." In Counseling Persons with Parkinson's Disease, 93–118. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190672928.003.0006.
Full textConference papers on the topic "Morita categories"
Djelić, Gorica, Duško Brković, Milica Pavlović, and Vesna Veličković. "BIOCHEMICAL RESEARCH OF THE SPECIES ORCHIS MORIO L. FROM ZLATAR." In 2nd International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2024. http://dx.doi.org/10.46793/sbt29.31gdj.
Full textSilva, Antônio, and Edson Silva. "Delfim Moreira e a reforma do Ensino Primário para promover a formação para o trabalho." In IX Simpósio Internacional Trabalho, Relações de Trabalho, Educação e Identidade. SITRE, 2022. http://dx.doi.org/10.47930/1980-685x.2022.2401.
Full textPaananen, Tiina, Matilda Holkkola, Markus Makkonen, Lauri Frank, and Tiina Kemppainen. "Customers’ QR Code Usage Barriers in a Brick-and-Mortar Store: A Qualitative Study." In 36th Bled eConference – Digital Economy and Society: The Balancing Act for Digital Innovation in Times of Instability. University of Maribor Press, 2023. http://dx.doi.org/10.18690/um.fov.6.2023.11.
Full textMuniz, Caio Broseghini, Larissa Leticia Andara Ramos, Luciana Aparecida Netto de Jesus, and Myllena Siqueira Santos. "Proteção e segurança em espaços públicos." In VIII SIMPÓSIO BRASILEIRO DE QUALIDADE DO PROJETO NO AMBIENTE CONSTRUÍDO (SBQP). UFPEL, 2023. http://dx.doi.org/10.46421/sbqp.v8i.4003.
Full textRosa, Mislene, and Daisy Cunha. "O lugar da mulher na divisão sexual do trabalho: trabalho múltiplo e simultâneo." In IX Simpósio Internacional Trabalho, Relações de Trabalho, Educação e Identidade. SITRE, 2022. http://dx.doi.org/10.47930/1980-685x.2022.3004.
Full textOliveira, Andresa Mendonça de, Eliete Maria Silva, and Rosana Ribeiro Tarifa. "Supervisão de enfermagem e as práticas de continuidade de cuidado no estágio curricular supervisionado." In Simpósio Internacional Programa de Pós-Graduação em Enfermagem : ciência, sustentabilidade e integralidade no caminha da saúde. Universidade Estadual de Campinas, 2024. http://dx.doi.org/10.20396/sippgenf.3.e023040.
Full text"O-024 - ANÁLISIS DE LA CRISIS DE LOS OPIOIDES A TRAVÉS DE REDES SOCIALES." In 24 CONGRESO DE LA SOCIEDAD ESPAÑOLA DE PATOLOGÍA DUAL. SEPD, 2022. http://dx.doi.org/10.17579/abstractbooksepd2022.o024.
Full textFilipe Rodrigues, Luis, Helena Rodrigues, and Abilio Oliveira. "In Times of Pandemic - How Generation XYZ Looks at Digital Banking." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001742.
Full text