Academic literature on the topic 'Moore-Penrose pseudoinverses'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Moore-Penrose pseudoinverses.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Moore-Penrose pseudoinverses"

1

Stanimirovic, Predrag, Xue-Zhong Wang, and Haifeng Ma. "Complex ZNN for computing time-varying weighted pseudo-inverses." Applicable Analysis and Discrete Mathematics 13, no. 1 (2019): 131–64. http://dx.doi.org/10.2298/aadm170628019s.

Full text
Abstract:
We classify, extend and unify various generalizations of weighted Moore-Penrose inverses in indefinite inner product spaces. New kinds of generalized inverses are introduced for this purpose. These generalized inverses are included in the more general class called as the weighted indefinite pseudoinverses (WIPI), which represents an extension of the Minkowski inverse (MI), the weighted Minkowski inverse (WMI), and the generalized weighted Moore- Penrose (GWM-P) inverse. The WIPI generalized inverses are introduced on the basis of two Hermitian invertible matrices and two Hermitian involuntary matrices and represented as particular outer inverses with prescribed ranges and null spaces, in terms of appropriate full-rank and limiting representations. Application of introduced generalized inverses in solving some indefinite least squares problems is considered. New Zeroing Neural Network (ZNN) models for computing the WIPI are developed using derived full-rank and limiting representations. The convergence behavior of the proposed ZNN models is investigated. Numerical simulation results are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Sun Zhou, and Kangkang Zhang. "Structure-Specific Neural Networks for Parallel Computation of All Types of Moore-Penrose Pseudoinverses." Journal of Convergence Information Technology 7, no. 20 (November 30, 2012): 8–16. http://dx.doi.org/10.4156/jcit.vol7.issue20.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klimczak, Marek, and Witold Cecot. "On Moore-Penrose Pseudoinverse Computation for Stiffness Matrices Resulting from Higher Order Approximation." Mathematical Problems in Engineering 2019 (February 24, 2019): 1–16. http://dx.doi.org/10.1155/2019/5060397.

Full text
Abstract:
Computing the pseudoinverse of a matrix is an essential component of many computational methods. It arises in statistics, graphics, robotics, numerical modeling, and many more areas. Therefore, it is desirable to select reliable algorithms that can perform this operation efficiently and robustly. A demanding benchmark test for the pseudoinverse computation was introduced. The stiffness matrices for higher order approximation turned out to be such tough problems and therefore can serve as good benchmarks for algorithms of the pseudoinverse computation. It was found out that only one algorithm, out of five known from literature, enabled us to obtain acceptable results for the pseudoinverse of the proposed benchmark test.
APA, Harvard, Vancouver, ISO, and other styles
4

Caltenco, J. H., José Luis Lopez-Bonilla, B. E. Carvajal-Gámez, and P. Lam-Estrada. "Singular Value Decomposition." Bulletin of Society for Mathematical Services and Standards 11 (September 2014): 13–20. http://dx.doi.org/10.18052/www.scipress.com/bsmass.11.13.

Full text
Abstract:
We study the SVD of an arbitrary matrix Anxm, especially its subspaces of activation, which leads in natural manner to pseudoinverse of Moore-Bjenhammar-Penrose. Besides, we analyze the compatibility of linear systems and the uniqueness of the corresponding solution, and our approach gives the Lanczos classification for these systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Ataei, Alireza. "Improved Qrginv Algorithm for Computing Moore-Penrose Inverse Matrices." ISRN Applied Mathematics 2014 (March 12, 2014): 1–5. http://dx.doi.org/10.1155/2014/641706.

Full text
Abstract:
Katsikis et al. presented a computational method in order to calculate the Moore-Penrose inverse of an arbitrary matrix (including singular and rectangular) (2011). In this paper, an improved version of this method is presented for computing the pseudo inverse of an m×n real matrix A with rank r>0. Numerical experiments show that the resulting pseudoinverse matrix is reasonably accurate and its computation time is significantly less than that obtained by Katsikis et al.
APA, Harvard, Vancouver, ISO, and other styles
6

Górecki, Tomasz, and Maciej Łuczak. "STACKED REGRESSION WITH A GENERALIZATION OF THE MOORE-PENROSE PSEUDOINVERSE." Statistics in Transition. New Series 18, no. 3 (2017): 443–58. http://dx.doi.org/10.21307/stattrans-2016-080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shore, Aimee, and William M. Hartmann. "Improvements in transaural synthesis with the Moore-Penrose pseudoinverse matrix." Journal of the Acoustical Society of America 143, no. 3 (March 2018): 1938. http://dx.doi.org/10.1121/1.5036337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barata, João Carlos Alves, and Mahir Saleh Hussein. "The Moore–Penrose Pseudoinverse: A Tutorial Review of the Theory." Brazilian Journal of Physics 42, no. 1-2 (December 16, 2011): 146–65. http://dx.doi.org/10.1007/s13538-011-0052-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stanimirović, Predrag S., Vasilios N. Katsikis, and Igor Stojanović. "Computing the Pseudoinverse of Specific Toeplitz Matrices Using Rank-One Updates." Mathematical Problems in Engineering 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/9065438.

Full text
Abstract:
Application of the pure rank-one update algorithm as well as a combination of rank-one updates and the Sherman-Morrison formula in computing the Moore-Penrose inverse of the particular Toeplitz matrix is investigated in the present paper. Such Toeplitz matrices appear in the image restoration process and in many scientific areas that use the convolution. Four different approaches are developed, implemented, and tested on a number of numerical experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Miljkovic, Sladjana, Marko Miladinovic, Predrag Stanimirovic, and Igor Stojanovic. "Application of the pseudoinverse computation in reconstruction of blurred images." Filomat 26, no. 3 (2012): 453–65. http://dx.doi.org/10.2298/fil1203453m.

Full text
Abstract:
We present a direct method for removing uniform linear motion blur from images. The method is based on a straightforward construction of the Moore-Penrose inverse of the blurring matrix for a given mathematical model. The computational load of the method is decreased significantly with respect to other competitive methods, while the resolution of the restored images remains at a very high level. The method is implemented in the programming package MATLand respective numerical examples are presented.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Moore-Penrose pseudoinverses"

1

Novák, Jiří. "Metody FFD." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-318794.

Full text
Abstract:
The diploma thesis deals with the topic of free-form deformations. The main goal of this work were elaboration of theoretical knowledge about this issue and the programming of selected methods od free-form deformations. The first part describes the required spline theory, matrix calculus and free-form deformations. The resulting version shows three programs. The first program compares the selected free-form deformation methods to the example of the 4x4 control point grid. The second program serves as a generalization for the general case of grid of control points. The last program is based on direct manipulation of arbitrary surface point and following recomputation of the control points to obtain demanded shape.
APA, Harvard, Vancouver, ISO, and other styles
2

Verliat, Jérôme. "Transformation de Aluthge et vecteurs extrémaux." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00733771.

Full text
Abstract:
Cette thèse s'articule autour de deux thèmes : une transformation de B(H) introduite par Aluthge et la méthode d'Ansari-Enflo. La première partie fait l'objet de l'étude de la transformation d'Aluthge qui a eu un impact important ces dernières années en théorie des opérateurs. Des résultats optimaux sur la stabilité d'un certain nombre de classes d'opérateurs, telles que la classe des isométries partielles et les classes associées au comportement asymptotique d'un opérateur, sont fournis. Nous étudions également l'évolution d'invariants opératoriels, tels que le polynôme minimal, la fonction minimum, l'ascente et la descente, sous l'action de la transformation ; nous comparons plus précisément les suites des noyaux et images relatives aux itérés d'un opérateur et de sa transformée de Aluthge. La deuxième partie est l'occasion d'étudier la théorie d'Ansari-Enflo, qui a permis de gros progrès pour le problème du sous-espace hyper-invariant. Nous développons plus particulièrement la notion fondatrice de la méthode, celle de vecteur extrémal. La localisation et une nouvelle caractérisation de ces vecteurs sont données. Leur régularité et leur robustesse, au regard de différents paramètres, sont éprouvées. Enfin, nous comparons les vecteurs extrémaux d'un shift à poids et ceux associés à sa transformée d'Aluthge. Cette étude aboutit à la construction d'une suite de vecteurs extrémaux associés aux itérés de la transformation d'Aluthge, pour laquelle certaines propriétés sont mises en évidence.
APA, Harvard, Vancouver, ISO, and other styles
3

Voborníková, Iveta. "Maticové výpočty pro roztoky a směsi vícesložkové." Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-446375.

Full text
Abstract:
Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Biophysics and Physical Chemistry Candidate: Iveta Voborníková Thesis supervisor: doc. Dipl.-Math. Erik Jurjen Duintjer Tebbens, Ph.D. Title of diploma thesis: Matrix computations for mixtures and solutions In this work, we determined drug concentrations from mixtures using multicompo- nent analysis without separating them. The condition was the knowledge of the molar absorption coefficients of individual drugs for certain wavelenghts. To do this, we used tools from matrix calculations, especially the Moore-Penrose inverse, and we were in- terested in whether we would achieve more accurate results using standard, square systems or overdetermined systems of linear equations. Based on the results, we came to the conclusion that there is no dependence between the accuracy of the results and the number of wavelengths used. Only in some cases did the results appear to be more accurate when using overdetermined systems with a higher number of wavelengths. Keywords: mixtures, solutions, linear systems, least squares problems, Moore-Penrose pseudoinverses 1
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Moore-Penrose pseudoinverses"

1

Golan, Jonathan S. "Moore–Penrose Pseudoinverses." In The Linear Algebra a Beginning Graduate Student Ought to Know, 441–52. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2636-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Golan, Jonathan S. "The Moore-Penrose Pseudoinverse." In Kluwer Texts in the Mathematical Sciences, 198–203. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8502-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paszkiel, Szczepan. "Using the Moore-Penrose Pseudoinverse for the EEG Signal Reconstruction." In Analysis and Classification of EEG Signals for Brain–Computer Interfaces, 19–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30581-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bouman, Niek J., and Niels de Vreede. "A Practical Approach to the Secure Computation of the Moore–Penrose Pseudoinverse over the Rationals." In Applied Cryptography and Network Security, 398–417. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57808-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poznyak, Alexander S. "Moore–Penrose Pseudoinverse." In Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques, 97–114. Elsevier, 2008. http://dx.doi.org/10.1016/b978-008044674-5.50009-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Moore-Penrose pseudoinverses"

1

Dokmanic, Ivan, Mihailo Kolundzija, and Martin Vetterli. "Beyond Moore-Penrose: Sparse pseudoinverse." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Zhangli, Shuxing Yang, and Fenfen Xiong. "Multirotor Configuration Feasibility Analysis and Optimal Design Based on Moore-Penrose Pseudoinverse." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Yunong, Min Yang, Binbin Qiu, Huanchang Huang, and Haifeng Hu. "Different-level time-varying quadratic minimization using Zhang equivalency and Moore-Penrose pseudoinverse." In 2017 Chinese Automation Congress (CAC). IEEE, 2017. http://dx.doi.org/10.1109/cac.2017.8243650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peng, Chen, Yingbiao Ling, Ying Wang, Xiaotian Yu, and Yunong Zhang. "Three new ZNN models with economical dimension and exponential convergence for real-time solution of moore-penrose pseudoinverse." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanna, Magdy Tawfik. "The revised direct batch evaluation algorithm of optimal eigenvectors of the DFT matrix using the notion of Moore-Penrose matrix pseudoinverse." In 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). IEEE, 2014. http://dx.doi.org/10.1109/isccsp.2014.6877906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography