Academic literature on the topic 'Monte-Charge'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monte-Charge.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Monte-Charge"

1

Aung, Pyie Phyo. "Monte Carlo Simulations of charge Transport in Organic Semiconductors." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1418272111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jakobsson, Mattias. "Monte Carlo Studies of Charge Transport Below the Mobility Edge." Doctoral thesis, Linköpings universitet, Beräkningsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74322.

Full text
Abstract:
Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of hopping charge transport has increased greatly. The work documented in this thesis has been dedicated to the understanding of this charge transport below the mobility edge. While analytical solutions exist for the transport coefficients in several simplified models of hopping charge transport, no analytical solutions yet exist that can describe these coefficients in most real systems. Due to this, Monte Carlo simulations, sometimes described as ideal experiments performed by computers, have been extensively used in this work. A particularly interesting organic system is deoxyribonucleic acid (DNA). Besides its overwhelming biological importance, DNA’s recognition and self-assembly properties have made it an interesting candidate as a molecular wire in the field of molecular electronics. In this work, it is shown that incoherent hopping and the Nobel prize-awarded Marcus theory can be used to describe the results of experimental studies on DNA. Furthermore, using this experimentally verified model, predictions of the bottlenecks in DNA conduction are made. The second part of this work concerns charge transport in conjugated polymers, the flagship of organic materials with respect to processability. It is shown that polaronic effects, accounted for by Marcus theory but not by the more commonly used Miller-Abrahams theory, can be very important for the charge transport process. A significant step is also taken in the modeling of the off-diagonal disorder in organic systems. By taking the geometry of the system from large-scale molecular dynamics simulations and calculating the electronic transfer integrals using Mulliken theory, the off-diagonal disorder is for the first time modeled directly from theory without the need for an assumed parametric random distribution.
APA, Harvard, Vancouver, ISO, and other styles
3

Krapohl, David. "Monte Carlo and Charge Transport Simulation of Pixel Detector Systems." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24763.

Full text
Abstract:
This thesis is about simulation of semiconductor X-ray and particledetectors. The simulation of a novel coating for solid state neutrondetectors is discussed as well as the implementation of a simulationframework for hybrid pixel detectors.Today’s most common thermal neutron detectors are proportionalcounters, that use 3He gas in large tubes or multi wire arrays. Globalnuclear disarmament and the increase in use for homeland securityapplications has created a shortage of the gas which poses a problemfor neutron spallation sources that require higher resolution and largersensors. In this thesis a novel material and clean room compatible pro-cess for neutron conversion are discussed. Simulations and fabricationhave been executed and analysed in measurements. It has been proventhat such a device can be fabricated and detect thermal neutrons.Spectral imaging hybrid pixel detectors like the Medipix chipare the most advanced imaging systems currently available. Thesechips are highly sophisticated with several hundreds of transistors perpixel to enable features like multiple thresholds for noise free photoncounting measurements, spectral imaging as well as time of arrivalmeasurements. To analyse and understand the behaviour of differentsensor materials bonded to the chip and to improve development offuture generations of the chip simulations are necessary. Generally, allparts of the detector system are simulated independently. However, itis favourable to have a simulation framework that is able to combineMonte Carlo particle transport, charge transport in the sensor as wellas analogue and digital response of the pixel read-out electronics. Thisthesis aims to develop such a system that has been developed withGeant4 and analytical semiconductor and electronics models. Further-more, it has been verified with data from measurements with severalMedipix and Timepix sensors as well as TCAD simulations.Results show that such a framework is feasible even for imagingsimulations. It shows great promise to be able to be extended withfuture pixel detector designs and semiconductor materials as well asneutron converters to aim for next generation imaging devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Coco, Marco. "Monte Carlo study of charge and phonon transport in graphene." Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3811.

Full text
Abstract:
In this thesis, we investigate charge transport in graphene. Graphene is one of the most important new materials with a wide range of properties, rarely together in the same material, and it is the ideal candidate for future electronic devices. The dynamics of electrons in the conduction band is analyzed, by considering values of Fermi levels high enough to neglect the dynamics in the valence band. This is equivalent to a n-type doping for traditional semiconductors. Degeneracy effects are very important in graphene and then it becomes mandatory to consistently include the Pauli exclusion principle. We develop a new Direct Simulation Monte Carlo (DSMC) procedure to solve the Boltzmann transport equation, that properly takes into account the Pauli principle. For a cross-validation of the results, we also solve the Boltzmann equation in a deterministic way by using the Discontinuous Galerkin method. The agreement of the results is excellent. A comparison of the new DSMC results with those obtained by means of well established hydrodynamical models are presented as well, and again the agreement is very good. This new approach is applied to study the transport properties in suspended monolayer graphene and then in a layer of graphene on different substrates, obtaining the expected results as the degradation of mobilities. Regarding phonon transport, we investigate the thermal effects in a suspended monolayer graphene due to the charge flow under an applied electric field. A complete model is considered, with all the phonon branches, both in-plane and out of plane ones. Moreover, we describe the phonon populations without any approximation of the distribution with an equivalent Bose-Einstein one. The distribution is built by means of the intermediate results arising from the new DSMC, by counting the number of the emission and absorption processes due to the interaction between electrons and phonons. The phonon-phonon interaction is treated in a standard way with a BGK approximation. We are able to determine the increase of the temperature due to the charge flow and to predict its raise for any values of electric fields and Fermi energies. Moreover, it is shown that the inclusion of a complete phonon model leads to a lower heating effect with respect to other simplified models.
APA, Harvard, Vancouver, ISO, and other styles
5

Volpi, Riccardo. "Charge Transport Simulations for Organic Electronics : A Kinetic Monte Carlo Approach." Licentiate thesis, Linköpings universitet, Teoretisk kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122991.

Full text
Abstract:
In this thesis we focus on the modelling and simulation of organic electronic devices, investigating their structural and electronic properties. Organic devices have attracted great interest for their innovative properties, but their functioning still represent a theoretical and technological challenge. They are composed by one or more organic materials depending on the particular application. The morphology of organic devices in the single phase or at the interface is known to strongly determine mobility and efficiency of the devices. The structural disorder is studied through molecular dynamics (MD) simulations. Marcus formula is used to calculate the hopping rate of the charge carriers and the model developed is tested by simulations in a Kinetic Monte Carlo scheme. The dependence of the transfer integrals on the relative molecular orientation is achieved through a weighted Mulliken formula or through a dimer projection approach using the semi-empirical Hartree Fock method ZINDO. Electrostatic effects, have been included through atomic charges and atomic polarizabilities, calculated at the B3LYP level of theory. The inclusion of electrostatic effects has been shown (through simulations in 4PV and C60) to be crucial to obtain a good qualitative agreement with experiments, for both mobility field and temperature dependence in the single phase. In particular the external reorganization energy, calculated through the polarization of the environment, has been shown to have a great impact on the conduction, shifting the inverse Marcus region and helping CT state separation at the interface (between C60 and anthracene).
APA, Harvard, Vancouver, ISO, and other styles
6

Gonçalves, Thomas. "Contributions à la parallélisation de méthodes de type transport Monte-Carlo." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM047/document.

Full text
Abstract:
Les applications de transport de particules Monte-Carlo consistent à étudier le comportement de particules se déplaçant dans un domaine de simulation. La répartition des particules sur le domaine de simulation n'est pas uniforme et évolue dynamiquement au cours de la simulation. La parallélisation de ce type d'applications sur des architectures massivement parallèles amène à résoudre une problématique complexe de répartition de charges de calculs et de données sur un grand nombre de cœurs de calcul.Nous avons d'abord identifié les difficultés de parallélisation des applications de transport de particules Monte-Carlo à l'aide d'analyses théoriques et expérimentales des méthodes de parallélisation de référence. Une approche semi-dynamique reposant sur des techniques de partitionnement a ensuite été proposée. Enfin, nous avons défini une approche dynamique capable de redistribuer les charges de calcul et les données tout en maintenant un faible volume de communication. L'approche dynamique a obtenu des accélérations en extensibilité forte et une forte réduction de la consommation mémoire par rapport à une méthode de réplication de domaine parfaitement équilibrée<br>Monte Carlo particle transport applications consist in studying the behaviour of particles moving about a simulation domain. Particles distribution among simulation domains is not uniform and change dynamically during simulation. The parallelization of this kind of applications on massively parallel architectures leads to solve a complex issue of workloads and data balancing among numerous compute cores.We started by identifying parallelization pitfalls of Monte Carlo particle transport applications using theoretical and experimental analysis of reference parallelization methods. A semi-dynamic based on partitioning techniques has been proposed then. Finally, we defined a dynamic approach able to redistribute workloads and data keeping a low communication volume. The dynamic approach obtains speedups using strong scaling and a memory footprint reduction compared to the perfectly balanced domain replication method
APA, Harvard, Vancouver, ISO, and other styles
7

Hjelm, Mats. "Monte Carlo Simulations of Homogeneous and Inhomogeneous Transport in Silicon Carbide." Doctoral thesis, KTH, Microelectronics and Information Technology, IMIT, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3700.

Full text
Abstract:
<p>The importance of simulation is increasing in the researchon semiconductor devices and materials. Simulations are used toexplore the characteristics of novel devices as well asproperties of the semiconductor materials that are underinvestigation, i.e. generally materials where the knowledge isinsufficient. A wide range of simulation methods exists, andthe method used in each case is selected according to therequirements of the work performed. For simulations of newsemiconductor materials, extremely small devices, or deviceswhere non-equilibrium transport is important, the Monte Carlo(MC) method is advantageous, since it can directly exploit themodels of the important physical processes in the device.</p><p>One of the semiconductors that have attracted a lot ofattraction during the last decade is silicon carbide (SiC),which exists in a large number of polytypes, among which3C-SiC, 4H-SiC and 6H-SiC are most important. Although SiC hasbeen known for a very long time, it may be considered as a newmaterial due to the relatively small knowledge of the materialproperties. This dissertation is based on a number of MCstudies of both the intrinsic properties of different SiCpolytypes and the qualities of devices fabricated by thesepolytypes. In order to perform these studies a new full-bandensemble device MC simulator, the General Monte CarloSemiconductor (GEMS) simulator was developed. Algorithmsimplemented in the GEMS simulator, necessary when allmaterial-dependent data are numerical, and for the efficientsimulation of a large number of charge carriers in high-dopedareas, are also presented. In addition to the purely MC-relatedstudies, a comparison is made between the MC, drift-diffusion,and energy-balance methods for simulation of verticalMESFETs.</p><p>The bulk transport properties of electrons in 2H-, 3C-, 4H-and 6H-SiC are studied. For high electric fields the driftvelocity, and carrier mean energy are presented as functions ofthe field. For 4H-SiC impact-ionization coefficients,calculated with a detailed quantum-mechanical model ofband-to-band tunneling, are presented. Additionally, a study oflow-field mobility in 4H-SiC is presented, where the importanceof considering the neutral impurity scattering, also at roomtemperature, is pointed out.</p><p>The properties of 4H- and 6H-SiC when used in short-channelMOSFETs, assuming a high quality semiconductor-insulatorinterface, are investigated using a simple model for scatteringin the semiconductor-insulator interface. Furthermore, theeffect is studied on the low and high-field surface mobility,of the steps formed by the common off-axis-normal cutting ofthe 4H- and 6H-SiC crystals. In this study an extension of theprevious-mentioned simple model is used.</p>
APA, Harvard, Vancouver, ISO, and other styles
8

Islam, Sharnali. "ATOMISTIC MODELING OF UNINTENTIONAL SINGLE CHARGE EFFECTS IN NANOSCALE FETS." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/209.

Full text
Abstract:
Numerical simulations have been performed to study the single-charge-induced ON current fluctuations (random telegraphic noise) in conventional (MOSFET) and non-conventional (silicon nanowire) nanoscale field-effect transistors. A semi-classical three-dimensional particle-based Monte Carlo device simulator (MCDS 3-D) has been integrated and used in this work. Quantum mechanical space-quantization effects have been accounted for via a parameter-free effective potential scheme that has been proved quite successful in describing charge set back from the interface and quantization of the energy (bandgap widening) within the channel region of the device. The effective potential is based on a perturbation theory around thermodynamic equilibrium and leads to a quantum field formalism in which the size of the electron depends upon its energy. To treat full Coulomb (electron-ion and electron-electron) interactions properly, the simulator implements two different real-space molecular dynamics (MD) schemes: the particle-particle-particle-mesh (P3M) method and the corrected Coulomb approach. For better accuracy, particularly in case of nanowire FETs, bandstructure parameters (bandgap, effective masses, and density of states) have been computed via a 20-band nearest-neighbor sp3d5s* tight-binding scheme. Also, since the presence of single impurities in the channel region represents a rare event in the carrier transport process, necessary event-biasing algorithms have been implemented in the simulator that, while enhancing the statistics, results in a faster convergence in the chan-nel current. The study confirms that, due to the presence of single channel charges, both the electrostatics (carrier density) and dynamics (mobility) are modified and, therefore, simultaneously play important roles in determining the magnitude of the current fluctuations. The relative impact (percentage change in the ON current) depends on an intricate interplay of device size, geometry, crystal direction, gate bias, temperature, and energetics and spatial location of the trap.
APA, Harvard, Vancouver, ISO, and other styles
9

Gali, Sai Manoj. "Modélisation des relations structure / propriétés de transport de charge dans les matériaux pour l'électronique organique." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0693/document.

Full text
Abstract:
Les avancées technologiques et l'intégration massive de dispositifs électroniques nanométriques dans les objets de notre vie quotidienne ont généré une explosion des coûts de R&amp;D, de conception et de production, ainsi que des inquiétudes sociétales quant à l'impact environnemental des déchets électroniques. En raison de procédés de production moins coûteux et à faible impact environnemental, de leur souplesse d’utilisation et de la possibilité de moduler leurs propriétés à l’infini, les molécules et polymères organiques constituent une classe de matériaux prometteuse pour la mise au point de nouveaux dispositifs électroniques. L’électronique organique couvre ainsi un vaste domaine d’applications, parmi lesquelles se trouvent les diodes électroluminescentes, les transistors à effet de champ ou les cellules photovoltaïques. Bien que la plupart de ces dispositifs soient déjà commercialisés, les processus gouvernant leur efficacité à l’échelle atomique sont loin d’être entièrement compris et maîtrisés. C’est en particulier le cas des processus de transport de charge, qui interviennent dans tous ces dispositifs.L'objectif de cette thèse est d’apporter une compréhension fondamentale des processus de transport de charge dans les semiconducteurs organiques, à partir d'approches théoriques combinant dynamique moléculaire, calculs quantiques et simulations Monte Carlo. Ce travail est développé suivant trois axes principaux:(I) Etude des relations liant l'organisation structurale et les propriétés de transport de cristaux moléculaires, et du rôle des fluctuations énergétiques dans des matériaux polymères amorphes. Des simulations Monte Carlo Cinétique (KMC) couplés au formalisme de Marcus-Levich-Jortner pour le calcul des taux de transfert ont été effectués afin de déterminer les mobilités des électrons et des trous au sein de dix structures cristallines de dérivés phtalocyanines. Dans une deuxième étude, une approche similaire a été employée afin de décrire les propriétés de transport de charge au sein d'un copolymère amorphe de fluorène-triphénylamine, ainsi que l'impact des fluctuations énergétiques sur ces dernières. La méthodologie développée permet d'obtenir, pour un faible coût calculatoire, une estimation semi-quantitative des mobilités des porteurs de charge dans ce type de système.(II) Etude de l'impact de contraintes mécaniques sur les propriétés de transport de matériaux organiques cristallins. La réponse électronique et les propriétés de transport de matériaux organiques soumis à une contrainte mécanique ont été étudiés à l'aide de simulations de dynamique moléculaire et de calculs DFT. Le rubrène cristallin et ses polymorphes, ainsi que les dérivés du BTBT, ont été considérés pour cette étude, qui révèle un couplage électromécanique inhabituel entre les différents axes cristallographiques. Les résultats démontrent en particulier que l'anisotropie structurale des monocristaux organiques conduit à une anisotropie du couplage électromécanique.(III) Etude du rôle du polyélectrolyte dans la conductivité des complexes conducteurs. Le polystyrène substitué par du bis(sulfonyl)imide est utilisé comme un contre-ion et un dopant dans les complexes conducteurs PEDOT-polyélectrolytes. En complément des analyses expérimentales, des simulations de dynamique moléculaire couplées à des calculs DFT ont été effectuées dans ces systèmes afin d'analyser l'impact de la conformation et de l'état de protonation du polyélectrolyte sur la conductivité du complexe formé avec le PEDOT.Les études décrites ci-dessus, réalisées sur différents types de matériaux en couplant différents types d'approches théoriques, ont permis d'apporter une compréhension fondamentale des propriétés de transport dans les semiconducteurs organiques. Elles mettent en particulier en évidence l'impact de l'organisation structurale, des interactions intermoléculaires et de l'application de contraintes mécaniques sur la mobilité des porteurs de charges dans ces matériaux<br>With the advancement of technology, miniaturized electronic devices are progressively integrated into our everyday lives, generating concerns about cost, efficiency and environmental impact of electronic waste. Organic electronics offers a tangible solution paving the way for low-cost, flexible, transparent and environment friendly devices. However, improving the functionalities of organic (opto) electronic devices such as light emitting diodes and photovoltaics still poses technological challenges due to factors like low efficiencies, performance stability, flexibility etc. Although more and more organic materials are being developed to meet these challenges, one of the fundamental concerns still arises from the lack of established protocols that correlate the inherent properties of organic materials like the chemical structure, molecular conformation, supra-molecular arrangement to their resulting charge-transport characteristics.In this context, this thesis addresses the prediction of charge transport properties of organic semiconductors through theoretical and computational studies at the atomistic scale, developed along three main axes :(I) Structure-charge transport relationships of crystalline organic materials and the role of energetic fluctuations in amorphous polymeric organic semiconductors. Kinetic Monte-Carlo (KMC) studies employing the Marcus-Levich-Jortner rate formalism are performed on ten crystalline Group IV phthalocyanine derivatives and trends linking the crystalline arrangement to the anisotropic mobility of electrons and holes are obtained. Subsequently, KMC simulations based on the simpler Marcus formalism are performed on an amorphous semiconducting fluorene-triphenylamine (TFB) copolymer, to highlight the impact of energetic fluctuations on charge transport characteristics. A methodology is proposed to include these fluctuations towards providing a semi-quantitative estimate of charge-carrier mobilities at reduced computational cost.(II) Impact of a mechanical strain on the electronic and charge transport properties of crystalline organic materials. Crystalline rubrene and its polymorphs, as well as BTBT derivatives (well studied high mobility organic materials) are subjected to mechanical strain and their electronic response is analyzed. Employing tools like Molecular Dynamic (MD) simulations and plane wave DFT (PW-DFT) calculations, unusual electro-mechanical coupling between different crystallographic axes is demonstrated, highlighting the role of inherent anisotropy that is present in the organic single crystals which translates in an anisotropy of their electro-mechanical coupling.(III) Protonation-dependent conformation of polyelectrolyte and its role in governing the conductivity of polymeric conducting complexes. Polymeric bis(sulfonyl)imide substituted polystyrenes are currently employed as counter-ions and dopants for conducting poly(3,4-ethylenedioxythiophene) (PEDOT), resulting in PEDOT-polyelectrolyte conducting complexes. Employing MD simulations and DFT calculations, inherent characteristics of the polyelectrolyte like its acid-base behavior, protonation state and conformation, are analyzed in conjunction with available experimental data and the role of these characteristics in modulating the conductivity of resulting PEDOT-polyelectrolyte conducting complexes is highlighted.The above studies, performed on different organic electronic systems, emphasize the importance of inherent characteristics of organic materials in governing the charge transport behavior in these materials. By considering the inherent characteristics of organic electronic materials and systematically incorporating them into simulation models, accuracy of simulation predictions can be greatly improved, thereby serving not only as a tool to design new, stable and high performance organic materials but also for optimizing device performances
APA, Harvard, Vancouver, ISO, and other styles
10

Renoud, Raphaël. "Simulation par la méthode de Monte-Carlo de la charge d'un isolant soumis au bombardement d'un faisceau électronique focalisé." Lyon 1, 1995. http://www.theses.fr/1995LYO10029.

Full text
Abstract:
La caracterisation des materiaux isolants (par exemple par la methode du miroir) passe par une connaissance approfondie de la physique de la charge d'espace. La distribution des charges, la forme du potentiel et du champ electrostatique, ainsi que les rendements de l'emission secondaire, sont autant d'indicateurs essentiels pour apprecier la tenue dielectrique d'un materiau soumis a une contrainte (electrique, mecanique, thermique,). Dans ce cadre, nous simulons le bombardement d'un echantillon isolant par un faisceau electronique tel qu'on le realise dans un microscope electronique a balayage. En utilisant la methode de monte-carlo, il est alors possible de suivre les trajectoires electroniques dans l'echantillon. Dans la premiere partie de ce memoire, nous exposons les fondements theoriques necessaires a notre etude. Nous insistons notamment sur les proprietes des isolants (polarisation, champ electrique, piegeage) et sur la propagation des electrons a l'interieur de ces milieux (modele d'interaction electron-isolant). Nous abordons aussi l'etude du phenomene de l'emission electronique secondaire, dont le role est important pour confronter notre modele a l'experience. L'expose de la technique de simulation de monte-carlo fait l'objet de la seconde partie. Nous y indiquons notamment comment convertir les lois physiques en informations et modeles exploitables par un ordinateur. Nous detaillons en particulier le traitement du champ electrique. Dans la troisieme partie sont exposes les resultats obtenus. Nous calculons alors les taux d'emission secondaire, ce qui nous permet de valider notre modele. Nous pouvons ainsi calculer, a divers instants de la charge, la distribution des charges piegees, en fonction des caracteristiques du materiau, et nous en deduisons le champ et le potentiel en tout point de l'espace. Une etude du taux d'emission secondaire permet de deduire les caracteristiques de piegeage du materiau
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography