Academic literature on the topic 'Monte Carlo sampling and estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monte Carlo sampling and estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monte Carlo sampling and estimation"
Liao, Meihao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang. "Efficient Personalized PageRank Computation: The Power of Variance-Reduced Monte Carlo Approaches." Proceedings of the ACM on Management of Data 1, no. 2 (June 13, 2023): 1–26. http://dx.doi.org/10.1145/3589305.
Full textWolf, A. T., T. E. Burk, and J. G. Isebrands. "Estimation of daily and seasonal whole-tree photosynthesis using Monte Carlo integration techniques." Canadian Journal of Forest Research 25, no. 2 (February 1, 1995): 253–60. http://dx.doi.org/10.1139/x95-030.
Full textMorio, Jérôme, Baptiste Levasseur, and Sylvain Bertrand. "Drone Ground Impact Footprints with Importance Sampling: Estimation and Sensitivity Analysis." Applied Sciences 11, no. 9 (April 25, 2021): 3871. http://dx.doi.org/10.3390/app11093871.
Full textNawajah, Inad, Hassan Kanj, Yehia Kotb, Julian Hoxha, Mouhammad Alakkoumi, and Kamel Jebreen. "Bayesian Regression Analysis using Median Rank Set Sampling." European Journal of Pure and Applied Mathematics 17, no. 1 (January 31, 2024): 180–200. http://dx.doi.org/10.29020/nybg.ejpam.v17i1.5015.
Full textBaker, Matthew J. "Adaptive Markov Chain Monte Carlo Sampling and Estimation in Mata." Stata Journal: Promoting communications on statistics and Stata 14, no. 3 (September 2014): 623–61. http://dx.doi.org/10.1177/1536867x1401400309.
Full textThom, H., W. Fang, Z. Wang, NJ Welton, T. Goda, and M. Giles. "Advanced Monte-Carlo Sampling Schemes for Value of Information Estimation." Value in Health 20, no. 9 (October 2017): A772. http://dx.doi.org/10.1016/j.jval.2017.08.2219.
Full textTaverniers, Søren, and Daniel M. Tartakovsky. "Estimation of distributions via multilevel Monte Carlo with stratified sampling." Journal of Computational Physics 419 (October 2020): 109572. http://dx.doi.org/10.1016/j.jcp.2020.109572.
Full textLang, Lixin, Wen-shiang Chen, Bhavik R. Bakshi, Prem K. Goel, and Sridhar Ungarala. "Bayesian estimation via sequential Monte Carlo sampling—Constrained dynamic systems." Automatica 43, no. 9 (September 2007): 1615–22. http://dx.doi.org/10.1016/j.automatica.2007.02.012.
Full textMagnussen, S., R. E. McRoberts, and E. O. Tomppo. "A resampling variance estimator for the k nearest neighbours technique." Canadian Journal of Forest Research 40, no. 4 (April 2010): 648–58. http://dx.doi.org/10.1139/x10-020.
Full textRulaningtyas, Riries, Yusrinourdi Muhammad Zuchruf, Akif Rahmatillah, Khusnul Ain, Alfian Pramudita Putra, Osmalina Nur Rahma, Limpat Salamat, and Rifai Chai. "ELBOW ANGLE ESTIMATION FROM EMG SIGNALS BASED ON MONTE CARLO SIMULATION." Jurnal Teknologi 84, no. 4 (May 30, 2022): 79–90. http://dx.doi.org/10.11113/jurnalteknologi.v84.17683.
Full textDissertations / Theses on the topic "Monte Carlo sampling and estimation"
Chen, Wen-shiang. "Bayesian estimation by sequential Monte Carlo sampling for nonlinear dynamic systems." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1086146309.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 117 p. : ill. (some col.). Advisors: Bhavik R. Bakshi and Prem K. Goel, Department of Chemical Engineering. Includes bibliographical references (p. 114-117).
Gilabert, Navarro Joan Francesc. "Estimation of binding free energies with Monte Carlo atomistic simulations and enhanced sampling." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669282.
Full textEls grans avenços en la capacitat de computació han motivat l'esperança que els mètodes de simulacions per ordinador puguin accelerar el ritme de descobriment de nous fàrmacs. Per a què això sigui possible, es necessiten eines ràpides, acurades i fàcils d'utilitzar. Un dels problemes que han rebut més atenció és el de la predicció d'energies lliures d'unió entre proteïna i lligand. Dos grans problemes han estat identificats per a aquests mètodes: la falta de mostreig i les aproximacions dels models. Aquesta tesi està enfocada a resoldre el primer problema. Per a això, presentem el desenvolupament de mètodes eficients per a l'estimació de d'energies lliures d'unió entre proteïna i lligand. Hem desenvolupat un protocol que combina mètodes anomenats enhanced sampling amb simulació clàssiques per a obtenir una major eficiència. Els mètodes d'enhanced sampling són una classe d'eines que apliquen algun tipus de pertorbació externa al sistema que s'està estudiant per tal d'accelerar-ne el mostreig. En el nostre protocol, primer correm una simulació exploratòria d'enhanced sampling, començant per una mostra de la unió de la proteïna i el lligand. Aquesta simulació esta parcialment esbiaixada cap a aquells estats del sistema on els dos components es troben més separats. Després utilitzem la informació obtinguda d'aquesta primera simulació més curta per a córrer una segona simulació més llarga, amb mètodes sense biaix per obtenir una estadística fidedigna del sistema. Gràcies a la modularitat i el grau d'automatització que la implementació del protocol ofereix, hem pogut provar tres mètodes diferents per les simulacions llargues: PELE, dinàmica molecular i AdaptivePELE. PELE i dinàmica molecular han mostrat resultats similars, tot i que PELE utilitza menys recursos. Els dos han mostrat bons resultats en l'estudi de sistemes de fragments o amb proteïnes amb llocs d'unió poc flexibles. Però, els dos han fallat a l'hora de reproduir els resultats experimentals per a una quinasa, la Mitogen-activated protein kinase 1 (ERK2). D'altra banda, AdaptivePELE no ha mostrat una gran millora respecte a PELE, amb resultats positius per a la proteïna Urokinase-type plasminogen activator (URO) i una clara falta de mostreig per al receptor de progesterona (PR). En aquest treball hem demostrat la importància d'establir un banc de proves equilibrat durant el desenvolupament de nous mètodes. Mitjançant l'ús d'un banc de proves divers hem pogut establir en quins casos es pot esperar que el protocol obtingui resultats acurats, i quines àrees necessiten més desenvolupament. El banc de proves ha consistit de quatre proteïnes i més de trenta lligands, molt més dels que comunament s'utilitzen en el desenvolupament de mètodes per a la predicció d'energies d'unió mitjançant mètodes basats en camins (pathway-based). En resum, la metodologia desenvolupada durant aquesta tesi pot contribuir al procés de recerca de nous fàrmacs per a certs tipus de sistemes de proteïnes. Per a la resta, hem observat que els mètodes de simulació no esbiaixats no són prou eficients i tècniques més sofisticades són necessàries.
Xu, Nuo. "A Monte Carlo Study of Single Imputation in Survey Sampling." Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-30541.
Full textPtáček, Martin. "Spatial Function Estimation with Uncertain Sensor Locations." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-449288.
Full textDiop, Khadim. "Estimation de la fiabilité d'un palier fluide." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0029/document.
Full textThese research is a contribution to the development of reliability theory in fluid mechanics. For the machines design and complex mechatronic systems, many fluid components are used. These components have static and dynamic sensitive characteristics and thus have a great significance on the reliabilityand lifetime of the machines and systems. Development performed focuses specifically on the reliability evaluation of a fluid bearing using a"fluid mechanics - reliability" interaction approach. This coupling requires a specific definition of the limit state function for estimating the failure probability of a fluid bearing. The Reynolds equation permits to determine the fluid bearing load capacity according to the operating conditions. Several simple geometries of fluid bearings were modeled analytically and their failure probabilities were estimated using the approximation methods FORM / SORM (First Order Reliability Method,Second Order Reliability Method) and Monte Carlo simulation
Greer, Brandi A. Young Dean M. "Bayesian and pseudo-likelihood interval estimation for comparing two Poisson rate parameters using under-reported data." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5283.
Full textThajeel, Jawad. "Kriging-based Approaches for the Probabilistic Analysis of Strip Footings Resting on Spatially Varying Soils." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4111/document.
Full textThe probabilistic analysis of geotechnical structures involving spatially varying soil properties is generally performed using Monte Carlo Simulation methodology. This method is not suitable for the computation of the small failure probabilities encountered in practice because it becomes very time-expensive in such cases due to the large number of simulations required to calculate accurate values of the failure probability. Three probabilistic approaches (named AK-MCS, AK-IS and AK-SS) based on an Active learning and combining Kriging and one of the three simulation techniques (i.e. Monte Carlo Simulation MCS, Importance Sampling IS or Subset Simulation SS) were developed. Within AK-MCS, a Monte Carlo simulation without evaluating the whole population is performed. Indeed, the population is predicted using a kriging meta-model which is defined using only a few points of the population thus significantly reducing the computation time with respect to the crude MCS. In AK-IS, a more efficient sampling technique ‘IS’ is used instead of ‘MCS’. In the framework of this approach, the small failure probability is estimated with a similar accuracy as AK-MCS but using a much smaller size of the initial population, thus significantly reducing the computation time. Finally, in AK-SS, a more efficient sampling technique ‘SS’ is proposed. This technique overcomes the search of the design points and thus it can deal with arbitrary shapes of the limit state surfaces. All the three methods were applied to the case of a vertically loaded strip footing resting on a spatially varying soil. The obtained results are presented and discussed
Wu, Yi-Fang. "Accuracy and variability of item parameter estimates from marginal maximum a posteriori estimation and Bayesian inference via Gibbs samplers." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/5879.
Full textArgouarc, h. Elouan. "Contributions to posterior learning for likelihood-free Bayesian inference." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS021.
Full textBayesian posterior inference is used in many scientific applications and is a prevalent methodology for decision-making under uncertainty. It enables practitioners to confront real-world observations with relevant observation models, and in turn, infer the distribution over an explanatory variable. In many fields and practical applications, we consider ever more intricate observation models for their otherwise scientific relevance, but at the cost of intractable probability density functions. As a result, both the likelihood and the posterior are unavailable, making posterior inference using the usual Monte Carlo methods unfeasible.In this thesis, we suppose that the observation model provides a recorded dataset, and our aim is to bring together Bayesian inference and statistical learning methods to perform posterior inference in a likelihood-free setting. This problem, formulated as learning an approximation of a posterior distribution, includes the usual statistical learning tasks of regression and classification modeling, but it can also be an alternative to Approximate Bayesian Computation methods in the context of simulation-based inference, where the observation model is instead a simulation model with implicit density.The aim of this thesis is to propose methodological contributions for Bayesian posterior learning. More precisely, our main goal is to compare different learning methods under the scope of Monte Carlo sampling and uncertainty quantification.We first consider the posterior approximation based on the likelihood-to-evidence ratio, which has the main advantage that it turns a problem of conditional density learning into a problem of binary classification. In the context of Monte Carlo sampling, we propose a methodology for sampling from such a posterior approximation. We leverage the structure of the underlying model, which is conveniently compatible with the usual ratio-based sampling algorithms, to obtain straightforward, parameter-free, and density-free sampling procedures.We then turn to the problem of uncertainty quantification. On the one hand, normalized models such as the discriminative construction are easy to apply in the context of Bayesian uncertainty quantification. On the other hand, while unnormalized models, such as the likelihood-to-evidence-ratio, are not easily applied in uncertainty-aware learning tasks, a specific unnormalized construction, which we refer to as generative, is indeed compatible with Bayesian uncertainty quantification via the posterior predictive distribution. In this context, we explain how to carry out uncertainty quantification in both modeling techniques, and we then propose a comparison of the two constructions under the scope of Bayesian learning.We finally turn to the problem of parametric modeling with tractable density, which is indeed a requirement for epistemic uncertainty quantification in generative and discriminative modeling methods. We propose a new construction of a parametric model, which is an extension of both mixture models and normalizing flows. This model can be applied to many different types of statistical problems, such as variational inference, density estimation, and conditional density estimation, as it benefits from rapid and exact density evaluation, a straightforward sampling scheme, and a gradient reparameterization approach
Kastner, Gregor, and Sylvia Frühwirth-Schnatter. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models." WU Vienna University of Economics and Business, 2013. http://epub.wu.ac.at/3771/1/paper.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Books on the topic "Monte Carlo sampling and estimation"
Lemieux, Christiane. Monte carlo and quasi-monte carlo sampling. New York: Springer, 2009.
Find full textFu, Michael. Conditional Monte Carlo: Gradient Estimation and Optimization Applications. Boston, MA: Springer US, 1997.
Find full textFu, Michael. Conditional Monte Carlo: Gradient estimation and optimization applications. Boston: Kluwer Academic Publishers, 1997.
Find full textEvans, Michael J. Monte Carlo computation of marginal posterior qualities. Toronto: University of Toronto, Dept. of Statistics, 1988.
Find full textManly, Bryan F. J., 1944-, ed. Randomization, bootstrap and Monte Carlo methods in biology. 2nd ed. London: Chapman & Hall, 1997.
Find full textManly, Bryan F. J. Randomization, bootstrap and Monte Carlo methods in biology. 2nd ed. Boca Raton, Fla: Chapman and Hall/CRC, 2001.
Find full textEvans, Michael J. Adaptive importance sampling and chaining. Toronto: University of Toronto, Dept. of Statistics, 1990.
Find full textBosá, Ivana. Exact property estimation from diffusion Monte Carlo with minimal stochastic reconfiguration. St. Catharines, Ont: Brock University, Dept. of Physics, 2004.
Find full textAït-Sahalia, Yacine. Maximum likelihood estimation of stochastic volatility models. Cambridge, MA: National Bureau of Economic Research, 2004.
Find full textPetrone, Sonia. A note on convergence rates of Gibbs sampling for nonparametric mixtures. Toronto: University of Toronto, Dept. of Statistics, 1998.
Find full textBook chapters on the topic "Monte Carlo sampling and estimation"
Han, Chuan-Hsiang. "Importance Sampling Estimation of Joint Default Probability under Structural-Form Models with Stochastic Correlation." In Monte Carlo and Quasi-Monte Carlo Methods 2010, 409–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27440-4_22.
Full textWypasek, C. J., J. V. Butera, and B. G. Fitzpatrick. "Monte Carlo Estimation of Diffusion Distributions at Inter-sampling Times." In Stochastic Analysis, Control, Optimization and Applications, 505–20. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1784-8_30.
Full textKeramat, Mansour, and Richard Kielbasa. "Latin Hypercube Sampling Monte Carlo Estimation of Average Quality Index for Integrated Circuits." In Analog Design Issues in Digital VLSI Circuits and Systems, 131–42. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6101-9_11.
Full textTyagi, Anuj Kumar, Xavier Jonsson, Theo Beelen, and W. H. A. Schilders. "An Unbiased Hybrid Importance Sampling Monte Carlo Approach for Yield Estimation in Electronic Circuit Design." In Scientific Computing in Electrical Engineering, 233–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44101-2_22.
Full textFastowicz, Jarosław, Dawid Bąk, Przemysław Mazurek, and Krzysztof Okarma. "Estimation of Geometrical Deformations of 3D Prints Using Local Cross-Correlation and Monte Carlo Sampling." In Image Processing and Communications Challenges 9, 67–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68720-9_9.
Full textBocci, Chiara, and Emilia Rocco. "On the use of auxiliary information in spatial sampling." In Proceedings e report, 151–56. Florence: Firenze University Press and Genova University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0106-3.27.
Full textKroese, Dirk P., and Joshua C. C. Chan. "Monte Carlo Sampling." In Statistical Modeling and Computation, 195–226. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8775-3_7.
Full textKleijnen, Jack P. C., and Reuven Y. Rubinstein. "Monte Carlo sampling." In Encyclopedia of Operations Research and Management Science, 524–26. New York, NY: Springer US, 2001. http://dx.doi.org/10.1007/1-4020-0611-x_638.
Full textBarbu, Adrian, and Song-Chun Zhu. "Cluster Sampling Methods." In Monte Carlo Methods, 123–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-2971-5_6.
Full textDupree, Stephen A., and Stanley K. Fraley. "Monte Carlo Sampling Techniques." In A Monte Carlo Primer, 21–56. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8491-3_2.
Full textConference papers on the topic "Monte Carlo sampling and estimation"
Guibert, Alexandre, Álvaro Díaz-Flores, Anirban Chaudhuri, and H. Alicia Kim. "Multifidelity Uncertainty Quantification in Battery Performance for eVTOL Flights Under Material and Loading Uncertainties." In Vertical Flight Society 80th Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1167.
Full textHaile, Mulugeta. "Data-Informed Structural Diagnostic Framework." In Vertical Flight Society 71st Annual Forum & Technology Display, 1–9. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10199.
Full textFrewen, Thomas, Bob LaBarre, Mark Gurvich, and Sergey Shishkin. "Enhancement of Reliability-Based Probabilistic Solutions for Rotorcraft Structural Analysis and Optimization." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–19. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11538.
Full textChryssanthacopoulos, James, Mykel Kochenderfer, and Richard Williams. "Improved Monte Carlo Sampling for Conflict Probability Estimation." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-3012.
Dong, Hui, and Marvin K. Nakayama. "Quantile estimation using conditional Monte Carlo and Latin hypercube sampling." In 2017 Winter Simulation Conference (WSC). IEEE, 2017. http://dx.doi.org/10.1109/wsc.2017.8247933.
Full textSuresh, K., and J. Lagajac. "Fast Monte Carlo domain sampling for discrete field value estimation." In the fourth ACM symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/267734.267817.
Full textDoorn, T. S., E. J. W. ter Maten, J. A. Croon, A. Di Bucchianico, and O. Wittich. "Importance sampling Monte Carlo simulations for accurate estimation of SRAM yield." In ESSCIRC 2008 - 34th European Solid-State Circuits Conference. IEEE, 2008. http://dx.doi.org/10.1109/esscirc.2008.4681834.
Full textZhang, Pushi, Li Zhao, Guoqing Liu, Jiang Bian, Minlie Huang, Tao Qin, and Tie-Yan Liu. "Independence-aware Advantage Estimation." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/461.
Full textDjuric, Petar M., and Cagla Tasdemir. "Estimation of posterior distributions with population Monte Carlo sampling and graphical modeling." In 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012. http://dx.doi.org/10.1109/ssp.2012.6319677.
Full textYi, Daqing, Shushman Choudhury, and Siddhartha Srinivasa. "Incorporating qualitative information into quantitative estimation via Sequentially Constrained Hamiltonian Monte Carlo sampling." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206336.
Full textReports on the topic "Monte Carlo sampling and estimation"
Herbst, Edward, and Frank Schorfheide. Sequential Monte Carlo Sampling for DSGE Models. Cambridge, MA: National Bureau of Economic Research, June 2013. http://dx.doi.org/10.3386/w19152.
Full textKalos, M. H. Domain Green's Function Sampling in Diffusion Monte Carlo. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/792336.
Full textJohn A. Krommes and Sharadini Rath. Monte Carlo Sampling of Negative-temperature Plasma States. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/808375.
Full textMartz, R. L., R. C. Gast, and L. J. Tyburski. Monte Carlo next-event point flux estimation for RCP01. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10193014.
Full textChilders, David, Jesús Fernández-Villaverde, Jesse Perla, Christopher Rackauckas, and Peifan Wu. Differentiable State-Space Models and Hamiltonian Monte Carlo Estimation. Cambridge, MA: National Bureau of Economic Research, October 2022. http://dx.doi.org/10.3386/w30573.
Full textDevaney, J. Uniform versus random sampling in physical calculations: Monte Carlo. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5291731.
Full textBond, Stephen, Brian Franke, Richard Lehoucq, and Scott McKinley. Sensitivity Analyses for Monte Carlo Sampling-Based Particle Simulations. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1889334.
Full textÜney, Murat, and Müjdat Çetin. Monte Carlo optimization approach for decentralized estimation networks under communication constraints. Sabanci University, November 2010. http://dx.doi.org/10.5900/su_fens_wp.2010.15985.
Full textKuruvilla Verghese. Mammographic Imaging Studies Using the Monte Carlo Image Simulation-Differential Sampling (MCMIS-DS) Code. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/793508.
Full textT.J. Donovan and Y. Danon. Application of Monte Carlo Chord-Length Sampling Algorithms to Transport Through a 2-D Binary Stochastic Mixture. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/820707.
Full text