To see the other types of publications on this topic, follow the link: Monte Carlo method.

Journal articles on the topic 'Monte Carlo method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Monte Carlo method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Caflisch, Russel E. "Monte Carlo and quasi-Monte Carlo methods." Acta Numerica 7 (January 1998): 1–49. http://dx.doi.org/10.1017/s0962492900002804.

Full text
Abstract:
Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N−1/2), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Carlo quadrature is attained using quasi-random (also called low-discrepancy) sequences, which are a deterministic alternative to random or pseudo-random sequences. The points in a quasi-random sequence are correlated to provide greater uniformity. The resulting quadrature method, called quasi-Monte Carlo, has a convergence rate of approximately O((logN)kN−1). For quasi-Monte Carlo, both theoretical error estimates and practical limitations are presented. Although the emphasis in this article is on integration, Monte Carlo simulation of rarefied gas dynamics is also discussed. In the limit of small mean free path (that is, the fluid dynamic limit), Monte Carlo loses its effectiveness because the collisional distance is much less than the fluid dynamic length scale. Computational examples are presented throughout the text to illustrate the theory. A number of open problems are described.
APA, Harvard, Vancouver, ISO, and other styles
2

Makarova, K. V., A. G. Makarov, M. A. Padalko, V. S. Strongin, and K. V. Nefedev. "Multispin Monte Carlo Method." Dal'nevostochnyi Matematicheskii Zhurnal 20, no. 2 (November 25, 2020): 212–20. http://dx.doi.org/10.47910/femj202020.

Full text
Abstract:
The article offers a Monte Carlo cluster method for numerically calculating a statistical sample of the state space of vector models. The statistical equivalence of subsystems in the Ising model and quasi-Markov random walks can be used to increase the efficiency of the algorithm for calculating thermodynamic means. The cluster multispin approach extends the computational capabilities of the Metropolis algorithm and allows one to find configurations of the ground and low-energy states.
APA, Harvard, Vancouver, ISO, and other styles
3

Rajabalinejad, M. "Bayesian Monte Carlo method." Reliability Engineering & System Safety 95, no. 10 (October 2010): 1050–60. http://dx.doi.org/10.1016/j.ress.2010.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

The Lam, Nguyen. "QUANTUM DIFFUSION MONTE CARLO METHOD FOR LOW-DIMENTIONAL SYSTEMS." Journal of Science, Natural Science 60, no. 7 (2015): 81–87. http://dx.doi.org/10.18173/2354-1059.2015-0036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Siyamah, Imroatus, Endah RM Putri, and Chairul Imron. "Cat bond valuation using Monte Carlo and quasi Monte Carlo method." Journal of Physics: Conference Series 1821, no. 1 (March 1, 2021): 012053. http://dx.doi.org/10.1088/1742-6596/1821/1/012053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kandidov, V. P. "Monte Carlo method in nonlinear statistical optics." Uspekhi Fizicheskih Nauk 166, no. 12 (1996): 1309. http://dx.doi.org/10.3367/ufnr.0166.199612c.1309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rashki, Mohsen. "The soft Monte Carlo method." Applied Mathematical Modelling 94 (June 2021): 558–75. http://dx.doi.org/10.1016/j.apm.2021.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aboughantous, Charles H. "A Contributorn Monte Carlo Method." Nuclear Science and Engineering 118, no. 3 (November 1994): 160–77. http://dx.doi.org/10.13182/nse94-a19382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bruce, A. D., A. N. Jackson, G. J. Ackland, and N. B. Wilding. "Lattice-switch Monte Carlo method." Physical Review E 61, no. 1 (January 1, 2000): 906–19. http://dx.doi.org/10.1103/physreve.61.906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gubernatis, Jim, and Naomichi Hatano. "The multicanonical Monte Carlo method." Computing in Science & Engineering 2, no. 2 (March 2000): 95–102. http://dx.doi.org/10.1109/mcise.2000.5427643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Janke, Wolfhard, and Tilman Sauer. "Multicanonical multigrid Monte Carlo method." Physical Review E 49, no. 4 (April 1, 1994): 3475–79. http://dx.doi.org/10.1103/physreve.49.3475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ohta, Shigemi. "Self-Test Monte Carlo Method." Progress of Theoretical Physics Supplement 122 (1996): 193–200. http://dx.doi.org/10.1143/ptps.122.193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Jian-Sheng. "Flat Histogram Monte Carlo Method." Progress of Theoretical Physics Supplement 138 (2000): 454–55. http://dx.doi.org/10.1143/ptps.138.454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Beichl, I., and F. Sullivan. "The other Monte Carlo method." Computing in Science & Engineering 8, no. 2 (March 2006): 42–47. http://dx.doi.org/10.1109/mcse.2006.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Jian-Sheng. "Flat histogram Monte Carlo method." Physica A: Statistical Mechanics and its Applications 281, no. 1-4 (June 2000): 147–50. http://dx.doi.org/10.1016/s0378-4371(00)00016-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Jian-Sheng. "Transition matrix Monte Carlo method." Computer Physics Communications 121-122 (September 1999): 22–25. http://dx.doi.org/10.1016/s0010-4655(99)00270-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schaefer, G., and P. Hui. "The Monte Carlo flux method." Journal of Computational Physics 89, no. 1 (July 1990): 1–30. http://dx.doi.org/10.1016/0021-9991(90)90114-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ray, John R. "Microcanonical ensemble Monte Carlo method." Physical Review A 44, no. 6 (September 1, 1991): 4061–64. http://dx.doi.org/10.1103/physreva.44.4061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Oht, Shigemi. "Self-test Monte Carlo method." Nuclear Physics B - Proceedings Supplements 47, no. 1-3 (March 1996): 788–91. http://dx.doi.org/10.1016/0920-5632(96)00175-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Towler, M. D. "The quantum Monte Carlo method." physica status solidi (b) 243, no. 11 (August 21, 2006): 2573–98. http://dx.doi.org/10.1002/pssb.200642125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lee, Jin-Han, Young-Do Jo, and Lae Hyun Kim. "Reliability Assessment for Corroded Pipelines by Separable Monte Carlo Method." Journal of the Korean Institute of Gas 19, no. 5 (October 30, 2015): 81–86. http://dx.doi.org/10.7842/kigas.2015.19.5.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Puddu, G. "A comparison between the Monte Carlo shell model method and the Monte Carlo spectroscopic method." Journal of Physics G: Nuclear and Particle Physics 29, no. 9 (July 28, 2003): 2179–85. http://dx.doi.org/10.1088/0954-3899/29/9/312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Giles, Michael B. "Multilevel Monte Carlo methods." Acta Numerica 24 (April 27, 2015): 259–328. http://dx.doi.org/10.1017/s096249291500001x.

Full text
Abstract:
Monte Carlo methods are a very general and useful approach for the estimation of expectations arising from stochastic simulation. However, they can be computationally expensive, particularly when the cost of generating individual stochastic samples is very high, as in the case of stochastic PDEs. Multilevel Monte Carlo is a recently developed approach which greatly reduces the computational cost by performing most simulations with low accuracy at a correspondingly low cost, with relatively few simulations being performed at high accuracy and a high cost.In this article, we review the ideas behind the multilevel Monte Carlo method, and various recent generalizations and extensions, and discuss a number of applications which illustrate the flexibility and generality of the approach and the challenges in developing more efficient implementations with a faster rate of convergence of the multilevel correction variance.
APA, Harvard, Vancouver, ISO, and other styles
24

SIKORSKI, ANDRZEJ. "Method of Monte Carlo entropy sampling in polymer SYSTEMS." Polimery 45, no. 07/08 (July 2000): 514–19. http://dx.doi.org/10.14314/polimery.2000.514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shymanska, Alla V., and Vitali A. Babakov. "Fast Monte Carlo Method in Stochastic Modelling of Charged Particle Multiplication." International Journal of Applied Physics and Mathematics 5, no. 3 (2015): 218–26. http://dx.doi.org/10.17706/ijapm.2015.5.3.218-226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Betancourt, Michael. "The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo." Annalen der Physik 531, no. 3 (March 23, 2018): 1700214. http://dx.doi.org/10.1002/andp.201700214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

NIEDERREITER, HARALD. "QUASI-MONTE CARLO METHODS IN COMPUTATIONAL FINANCE." COSMOS 01, no. 01 (May 2005): 113–25. http://dx.doi.org/10.1142/s0219607705000097.

Full text
Abstract:
Quasi-Monte Carlo methods are deterministic versions of Monte Carlo methods, in the sense that the random samples used in the implementation of a Monte Carlo method are replaced by judiciously chosen deterministic points with good distribution properties. They outperform classical Monte Carlo methods in many problems of scientific computing. This paper discusses applications of quasi-Monte Carlo methods to computational finance, with a special emphasis on the problems of pricing mortgage-backed securities and options. The necessary background on Monte Carlo and quasi-Monte Carlo methods is also provided.
APA, Harvard, Vancouver, ISO, and other styles
28

Ohtani, Yoshihiko, Mamoru Ohkawa, Akira Uchida, and Tetsuo Yamaya. "Illuminance Calculation Using Monte Carlo Method." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 82, no. 2 (1998): 105–11. http://dx.doi.org/10.2150/jieij1980.82.2_105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wenger, Trey V., Dana S. Balser, L. D. Anderson, and T. M. Bania. "Kinematic Distances: A Monte Carlo Method." Astrophysical Journal 856, no. 1 (March 23, 2018): 52. http://dx.doi.org/10.3847/1538-4357/aaaec8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ranjbaran, Abdolrasoul, Mohammad Ranjbaran, and Fatema Ranjbaran. "Persian Curve Versus Monte Carlo Method." International Journal of Structural Glass and Advanced Materials Research 5, no. 1 (January 1, 2021): 234–46. http://dx.doi.org/10.3844/sgamrsp.2021.234.246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Takahashi, Akihiko, and Nakahiro Yoshida. "Monte Carlo Simulation with Asymptotic Method." JOURNAL OF THE JAPAN STATISTICAL SOCIETY 35, no. 2 (2005): 171–203. http://dx.doi.org/10.14490/jjss.35.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Alexander, Francis J., and Alejandro L. Garcia. "The Direct Simulation Monte Carlo Method." Computers in Physics 11, no. 6 (1997): 588. http://dx.doi.org/10.1063/1.168619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

OHTANI, Yoshihiko, Mamoru OHKAWA, Akira UCHIDA, and Tetsuo YAMAYA. "Illuminance Calculation Using Monte Carlo Method." Journal of Light & Visual Environment 24, no. 1 (2000): 42–49. http://dx.doi.org/10.2150/jlve.24.1_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bokor, Nandor. "Monte Carlo method in computer holography." Optical Engineering 36, no. 4 (April 1, 1997): 1014. http://dx.doi.org/10.1117/1.601294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lacasse, Martin-D., Jorge Viñals, and Martin Grant. "Dynamic Monte Carlo renormalization-group method." Physical Review B 47, no. 10 (March 1, 1993): 5646–52. http://dx.doi.org/10.1103/physrevb.47.5646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kröger, Helmut. "Monte Carlo method for scattering reactions." Physical Review A 35, no. 11 (June 1, 1987): 4526–32. http://dx.doi.org/10.1103/physreva.35.4526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jones, Matthew D., Gerardo Ortiz, and David M. Ceperley. "Released-phase quantum Monte Carlo method." Physical Review E 55, no. 5 (May 1, 1997): 6202–10. http://dx.doi.org/10.1103/physreve.55.6202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Iskandar, S. "Modified Monte Carlo method for integral." Journal of Physics: Conference Series 1462 (February 2020): 012061. http://dx.doi.org/10.1088/1742-6596/1462/1/012061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fernández, L. A., V. Martín-Mayor, and P. Verrocchio. "Optimized Monte Carlo method for glasses." Philosophical Magazine 87, no. 3-5 (January 21, 2007): 581–86. http://dx.doi.org/10.1080/14786430600919302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Berg, B., A. Billoire, and D. Foerster. "Monte Carlo method for random surfaces." Nuclear Physics B 251 (January 1985): 665–75. http://dx.doi.org/10.1016/s0550-3213(85)80002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

de Lataillade, A., S. Blanco, Y. Clergent, J. L. Dufresne, M. El Hafi, and R. Fournier. "Monte Carlo method and sensitivity estimations." Journal of Quantitative Spectroscopy and Radiative Transfer 75, no. 5 (December 2002): 529–38. http://dx.doi.org/10.1016/s0022-4073(02)00027-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rota, Gian-Carlo. "Simulation and the Monte-Carlo method." Advances in Mathematics 60, no. 1 (April 1986): 123. http://dx.doi.org/10.1016/0001-8708(86)90009-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gupta, Rajan, K. G. Wilson, and C. Umrigar. "Improved Monte Carlo renormalization group method." Journal of Statistical Physics 43, no. 5-6 (June 1986): 1095–99. http://dx.doi.org/10.1007/bf02628333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Socha, J. B., and J. A. Krumhansl. "The Monte Carlo trajectory integral method." Physica B+C 134, no. 1-3 (November 1985): 142–47. http://dx.doi.org/10.1016/0378-4363(85)90334-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mackenze, Paul B. "An improved hybrid Monte Carlo method." Physics Letters B 226, no. 3-4 (August 1989): 369–71. http://dx.doi.org/10.1016/0370-2693(89)91212-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Date, Hiroyuki. "1. Principle of Monte Carlo Method." Japanese Journal of Radiological Technology 70, no. 6 (2014): 582–87. http://dx.doi.org/10.6009/jjrt.2014_jsrt_70.6.582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Date, Hiroyuki. "2. Monte Carlo Method and Simulation." Japanese Journal of Radiological Technology 70, no. 7 (2014): 705–14. http://dx.doi.org/10.6009/jjrt.2014_jsrt_70.7.705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Goodman, Jonathan, and Alan D. Sokal. "Multigrid Monte Carlo method. Conceptual foundations." Physical Review D 40, no. 6 (September 15, 1989): 2035–71. http://dx.doi.org/10.1103/physrevd.40.2035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Care, C. M. "Rejection-free microcanonical Monte Carlo method." Journal of Physics A: Mathematical and General 29, no. 20 (October 21, 1996): L505—L509. http://dx.doi.org/10.1088/0305-4470/29/20/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Prokhorov, A. V. "Monte Carlo method in optical radiometry." Metrologia 35, no. 4 (August 1998): 465–71. http://dx.doi.org/10.1088/0026-1394/35/4/44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography