Academic literature on the topic 'Monsoon Low Pressure Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monsoon Low Pressure Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Monsoon Low Pressure Systems"

1

Pickering, Paul Frederick. "Instabilities in low pressure boiling systems." Thesis, Imperial College London, 1994. http://hdl.handle.net/10044/1/7784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Bowen. "Aerodynamics of low pressure steam turbine exhaust systems." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290137.

Full text
Abstract:
The low pressure (LP) exhaust system presents a promising avenue for improving the performance of large steam turbines. For this reason, LP exhaust systems have attracted the attention of the research community for decades. Nevertheless, we still lack understanding of the flow physics and loss mechanisms in the exhaust system, especially at part-load conditions. It is also unclear how the exhaust system should be designed when its required operating range widens. This thesis provides solutions to these aerodynamic issues through experimental and numerical investigations, and provides tools that could contribute to better designs of LP exhaust systems. Firstly, the Computational Fluid Dynamics (CFD) solver ANSYS CFX was validated against experiments performed on a scaled test rig under representative part-load flow conditions. This validation exposed the weakness of Reynolds-averaged Navier-Stokes (RANS) CFD when there is a highly swirling flow and large separation regions in the exhaust diffuser. To facilitate the numerical studies, a series of tools were also developed. A design suite, ExhaustGen, was used to automate the pre- and post-processing of CFD calculations. The exhaust diffuser was parametrised using "Minimum Energy Curves", which reduce the dimension of parameter space. Further, a suitable stage-hood interface treatment (Multiple Mixing Planes) was chosen to predict the circumferentially non-uniform flow in the exhaust hood at low computational cost. Numerical investigation of the baseline geometry provided insights into the key flow features and loss mechanisms in the exhaust system, over a wide range of operating conditions. In particular, the bearing cone separation was identified as a key source of loss at part-load conditions. The effect of stage-hood interaction on the performance and design of the exhaust system was studied by varying the rotor blade design, which can positively influence system performance. Finally, a global sensitivity study was performed to identify the most influential design parameters of the exhaust hood. These findings allow, for the first time, LP exhaust hood performance maps to be constructed, so that the benefits of choosing a suitable hood geometry and blade design can be revealed. The thesis also offers contribution towards formulating LP exhaust system design guidance for a wide operating range.
APA, Harvard, Vancouver, ISO, and other styles
3

Degen, Marcia J. "Denitrification in low pressure distribution onsite wastewater disposal systems." Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/29272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rattner, Alexander S. "Single-pressure absorption refrigeration systems for low-source-temperature applications." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53912.

Full text
Abstract:
The diffusion absorption refrigeration (DAR) cycle is a promising technology for fully thermally driven cooling. It is well suited to applications in medicine refrigeration and air-conditioning in off-grid settings. However, design and engineering knowhow for the technology is limited; therefore, system development has historically been an iterative and expensive process. Additionally, conventional system designs require high-grade energy input for operation, and are unsuitable for low-temperature solar- or waste-heat activated applications. In the present effort, component- and system-level DAR engineering analyses are performed. Detailed bubble-pump generator (BPG) component models are developed, and are validated experimentally and with direct simulations. Investigations into the BPG focus on the Taylor flow pattern in the intermediate Bond number regime, which has not yet been thoroughly characterized in the literature, and has numerous industry applications, including nuclear fuel processing and well dewatering. A coupling-fluid heated BPG design is also investigated experimentally for low-source-temperature operation. Phase-change simulation methodologies are developed to rigorously study the continuously developing flow pattern in this BPG configuration. Detailed component-level models are also formulated for all of the other DAR heat and mass exchangers, and are integrated to yield a complete system-level model. Results from these modeling studies are applied to develop a novel fully passive low-source-temperature (110 - 130°C) DAR system that delivers refrigeration grade cooling. This design achieves operation at target conditions through the use of alternate working fluids (NH3-NaSCN-He), the coupling-fluid heated BPG, and a novel absorber configuration. The complete DAR system is demonstrated experimentally, and evaluated over a range of operating conditions. Experimental results are applied to assess and refine component- and system- level models.
APA, Harvard, Vancouver, ISO, and other styles
5

Rouse, Anna Jane. "Fast cycle low pressure drop systems for the separation of COâ‚‚." Thesis, University College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cameron, Christopher Alistair. "High-pressure studies on molecular systems at ambient and low temperatures." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/9952.

Full text
Abstract:
Pressure and temperature are two environmental variables that are increasingly being exploited by solid-state researchers probing structure-property relationships in the crystalline state. Modern high-pressure apparatus is capable of generating many billions of Pascals in the laboratory, and therefore can produce significantly greater alterations to crystalline materials than changes in temperature, which can typically be varied by only a few thousand Kelvin. Many systems such as single-molecule magnets exhibit interesting properties under low-temperature regimes that can be substantially altered with pressure. The desire by investigators to perform analogous single-crystal X-ray diffraction studies has driven the development of new high-pressure apparatus and techniques designed to accommodate low-temperature environments. [Ni(en)3][NO3]2 undergoes a displacive phase transition from P6322 at ambient pressure to a lower symmetry P6122/P6522 structure between 0.82 and 0.87 GPa, which is characterized by a tripling of the unit cell c axis and the number of molecules per unit cell. The same transition has been previously observed at 108 K. The application of pressure leads to a general shortening of O···H hydrogen bonding interactions in the structure, with the greatest contraction (24%) occurring diagonally between stacks of Ni cation moieties and nitrate anions. A novel Turnbuckle Diamond Anvil Cell designed for high-pressure low-temperature single-crystal X-ray experiments on an open-flow cryostat has been calibrated using the previously reported phase transitions of five compounds: NH4H2PO4 (148 K), ferrocene (164 K), barbituric acid dihydrate (216 K), ammonium bromide (235 K), and potassium nitrite (264 K). From the observed thermal differentials between the reported and observed transition temperatures a linear calibration curve has been constructed that is applicable between ambient-temperature and 148 K. Low-temperature measurements using a thermocouple have been shown to vary significantly depending on the experimental setup for the insertion wire, whilst also adding undesirable thermal energy into the sample chamber which was largely independent of attachment configuration. High-pressure low-temperature single-crystal X-ray diffraction data of [Mn12O12(O2CMe)16(H2O)4] (known as Mn12OAc) reveals a pressure-induced expulsion of the crystallized acetic acid from the crystal structure and resolution of the Jahn-Teller axes disorder between ambient pressure and 0.87 GPa. These structural changes have been correlated with high-pressure magnetic data indicating the elimination of a slow-relaxing isomer over this pressure range. Further application of pressure to 2.02 GPa leads to the expansion of these Jahn-Teller axes, resulting in an enhancement of the slow-relaxing magnetic anisotropy as observed in the literature. Relaxation of pressure leads to a resolvation of the crystal structure and re-disordering of the Jahn-Teller axes, demonstrating that this structural-magnetic phenomenon is fully reversible with respect to pressure. The space group of the Prussian blue analogue Mn3[Cr(CN)6].15H2O has been re-evaluated as R-3m between ambient pressure and 2.07 GPa using high-pressure single-crystal X-ray and high-pressure neutron powder data. Reductions in metal-metal distances and gradual distortions of the Mn octahedral geometry have been correlated with previously reported increases in Tc and declines in ferrimagnetic moment in the same pressure range. Increasing the applied pressure to 2.97 GPa leads to partial amorphization and results in a loss of long-range magnetic order as shown by the literature. The application of pressure (1.8 GPa) to the structure of K2[Pt(CN)4]Br0.24.3.24H2O (KCP(Br)) causes a reduction in the Pt intra-chain and inter-chain distances, and results in an enhancement of the overall conductivity under these conditions as demonstrated in the literature. Almost no changes occur to the high-pressure crystal structure upon cooling to 4 K, except in the Pt-Pt intra-chain distances which converge and suppress the Peierls distortion known to occur at 4 K, resulting in a comparatively greater electrical conductivity under these conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Burton, Zoe. "Analysis of low pressure steam turbine diffuser and exhaust hood systems." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10531/.

Full text
Abstract:
This thesis concerns the computational modelling of low pressure (LP) steam turbine exhaust hood flows. A test case for LP last stage blades (LSBs) with a full aerodynamic definition and an accompanying exhaust hood was developed which is representative of current industrial practice. The test case geometry is freely available allowing other researchers to build on this work and is the first of its kind. Studies on this Durham Stage and Exhaust Hood Test Case showed the geometry produces a representative flow pattern and performance metrics comparable to other published research. Using the test case, the effect of condenser cooling water pressure gradient on the hood flow was computed for the first time. A generic boundary condition was developed to represent the transverse condenser cooling water flow and, when applied to the test case, was shown to have a larger influence on the flow asymmetry within the hood than the tip leakage jet. This thesis describes the first application of the non-linear harmonic (NLH) method to couple the LSBs to the exhaust hood. This method enabled the circumferential non-uniformity which develops in the exhaust hood to be transferred across the interface to the stage, in half the computational demand of the full annulus frozen rotor approach. The first review of the influence of inlet circumferential asymmetry on the hood flow field highlighted that modelling its effect is not as crucial as indicated in the literature, unless the diffuser axial length is very compact or if off-design flows are to be studied. A series of recommendations and guidelines for the CFD modelling of steam turbine exhaust hood flows based on this work are supplied. Experimental validation of the Durham Stage and Exhaust Hood Test Case and a comparison of full unsteady studies with the NLH method should be the next steps in this research.
APA, Harvard, Vancouver, ISO, and other styles
8

Singleton, Andrew Thomas. "Cut-off low pressure systems and extreme rainfall over South Africa." Doctoral thesis, University of Cape Town, 2005. http://hdl.handle.net/11427/6504.

Full text
Abstract:
Includes bibliographical references (p. 257-271).<br>This thesis is an investigation of cut-off low pressure systems over South Africa. These weather systems have been responsible for many of the flooding disasters that have affected South Africa, particularly the coastal regions, over recent decades. The thesis has two main objectives, namely, to construct a 30-year climatology of cut-off lows over South Africa, and to further understanding of the evolution of the low-level flow that leads to these systems producing extreme quantities of rainfall.
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Shivendra. "An Analytical Index for Evaluating Low-Pressure Hollow-Fibre Membrane Systems." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366948.

Full text
Abstract:
Water and wastewater treatment through the use of membrane filtration technology is one of the processes utilised currently to meet the growing demand for water. While new technologies can harness water from various non-traditional sources such as oceans, there remains the possibility of making drinking water more expensive through the use of costly treatment equipment. To prevent this and ensuing catastrophes around the world, the water industry needs a strategy that keeps the price of water and price of products aiding in the treatment of water controlled into the future. The overall aim of this study is to develop an analytical index that could be used by the water industry to measure, monitor, and control the price of water. A structured method to evaluate membrane manufacturing costs against the lifetime performance of membranes was developed. The method was then extended and a costing model for the application of membrane in water and wastewater treatment plants was established. Thereafter, a software application was developed to aid in the implementation of the analytical index. The results indicate that, with a measurable index in place, the evaluation of technologies with respect to the cost of water production can be effectively carried out.<br>Thesis (PhD Doctorate)<br>Doctor of Philosophy (PhD)<br>Griffith School of Engineering<br>Science, Environment, Engineering and Technology<br>Full Text
APA, Harvard, Vancouver, ISO, and other styles
10

Thompson, Evan J. "Hydraulics of IDEal Drip Irrigation Systems." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/296.

Full text
Abstract:
The hydraulics of IDEal drip irrigation system components were analyzed under controlled laboratory conditions and the results can be applied to the design of IDEal systems. The hydraulic loss coefficient for the lateral-submain connector valves was determined based on laboratory measurements. It was found that the hydraulic loss due to friction in the lay-flat laterals can be accurately estimated with standard friction loss equations using a smaller effective diameter based on the wall thickness and inlet pressure head. The equivalent length barb loss, expressed as an equivalent length of lateral, was calculated for button emitters, as well as for micro-tubes inserted to lengths of 5 and 10 cm. It was concluded that the barb loss is essentially constant over the micro-tube insertion range of 5-10 cm. The head-discharge relationship and coefficient of manufacturer's variation of pre-punched lateral holes (without emitters), button emitters, and micro-tubes were characterized. Finally, several IDEal drip irrigation systems in the Central Rift Valley of Ethiopia were evaluated in the field. Recommendations were given for future research and improvements in the manufacturing, installation, operation, and maintenance of IDEal drip irrigation equipment.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography