Academic literature on the topic 'Monotone splines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monotone splines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monotone splines"
Bergersen, Linn Cecilie, Kukatharmini Tharmaratnam, and Ingrid K. Glad. "Monotone splines lasso." Computational Statistics & Data Analysis 77 (September 2014): 336–51. http://dx.doi.org/10.1016/j.csda.2014.03.013.
Full textMaad Sasane, Sara. "Monotone Smoothing Splines with Bounds." Acta Applicandae Mathematicae 169, no. 1 (February 3, 2020): 613–27. http://dx.doi.org/10.1007/s10440-020-00314-0.
Full textBELIAKOV, G. "MONOTONE APPROXIMATION OF AGGREGATION OPERATORS USING LEAST SQUARES SPLINES." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, no. 06 (December 2002): 659–76. http://dx.doi.org/10.1142/s0218488502001715.
Full textRamsay, J. O. "Monotone Regression Splines in Action." Statistical Science 3, no. 4 (November 1988): 425–41. http://dx.doi.org/10.1214/ss/1177012761.
Full textFujioka, Hiroyuki, and Hiroyuki Kano. "Monotone Smoothing Spline Curves Using Normalized Uniform Cubic B-splines." Transactions of the Institute of Systems, Control and Information Engineers 26, no. 11 (2013): 389–97. http://dx.doi.org/10.5687/iscie.26.389.
Full textFujioka, Hiroyuki, and Hiroyuki Kano. "Monotone Smoothing Spline Curves Using Normalized Uniform Cubic B-splines." Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications 2013 (May 5, 2013): 152–57. http://dx.doi.org/10.5687/sss.2013.152.
Full textBreiman, Leo. "[Monotone Regression Splines in Action]: Comment." Statistical Science 3, no. 4 (November 1988): 442–45. http://dx.doi.org/10.1214/ss/1177012762.
Full textEubank, Randy. "[Monotone Regression Splines in Action]: Comment." Statistical Science 3, no. 4 (November 1988): 446–50. http://dx.doi.org/10.1214/ss/1177012763.
Full textHastie, Trevor, and Robert Tibshirani. "[Monotone Regression Splines in Action]: Comment." Statistical Science 3, no. 4 (November 1988): 450–56. http://dx.doi.org/10.1214/ss/1177012764.
Full textWahba, Grace. "[Monotone Regression Splines in Action]: Comment." Statistical Science 3, no. 4 (November 1988): 456–58. http://dx.doi.org/10.1214/ss/1177012765.
Full textDissertations / Theses on the topic "Monotone splines"
Schiavon, Laurent. "Conditions de monotonie de la courbure pour les courbes et splines d'interpolation." Valenciennes, 2002. https://ged.uphf.fr/nuxeo/site/esupversions/ebd449f2-087e-4588-b4a1-bedcc9b86660.
Full textFor a curve, the curvature is a deciding geometric feature for its shape. For some applications of CAD (automotive, aeronautics), it is important to maintain monotone curvature along the curve we aim to modelize in order to obtain aerodynamic and aesthetic shapes. In this work, solutions are given via the cubic polynomial curves and the quadratic rational curves (conic segments) which are controlled by a set of points (and weights in the rational case)
Hua, Lei. "Spline-based sieve semiparametric generalized estimating equation for panel count data." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/517.
Full textLu, Wenjing. "Monotone spline-based nonparametric estimation of longitudinal data with mixture distributions." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/6188.
Full textWu, Yuan. "The partially monotone tensor spline estimation of joint distribution function with bivariate current status data." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/762.
Full textBoschert, Sandra [Verfasser], Angela [Gutachter] Kunoth, Helmut [Gutachter] Harbrecht, and Ulrich [Gutachter] Langer. "B-Spline Based Methods: From Monotone Multigrid Schemes for American Options to Uncertain Volatility Models / Sandra Boschert ; Gutachter: Angela Kunoth, Helmut Harbrecht, Ulrich Langer." Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1223091651/34.
Full textPatenaude, Valérie. "Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésien." Thèse, 2011. http://hdl.handle.net/1866/5147.
Full textThis master’s thesis is about the estimation of bivariate tables which are monotone within the rows and/or the columns, with a special interest in the approximation of life tables. This problem is approached through a nonparametric Bayesian regression model, in particular linear combinations of regression splines. By condensing a life table, our goal is to reduce its storage space without losing the entries’ accuracy. We will also study the reconstruction time of the table with our estimators. The properties of the reference table, specifically its monotonicity, must be preserved in the estimation. We are working with a monotone spline basis since splines are flexible and their derivatives can easily be manipulated. Those properties enable the imposition of constraints of monotonicity on our model. A brief review on univariate approximations of monotone functions is then extended to bivariate estimations. We use hierarchical Bayesian modeling to include the constraints in the prior distributions. We then explain the Markov chain Monte Carlo algorithm to obtain a posterior estimator. Finally, we study the estimator’s behaviour by applying our model on the Standard Normal table and the Student’s t table. We estimate our data of interest, the life table, to establish the improvement in data accessibility.
Balabdaoui, Fadoua. "Estimation non-paramétrique d'une densité k-monotone: Une nouvelle théorie de distribution asymptotique." Phd thesis, 2004. http://tel.archives-ouvertes.fr/tel-00011980.
Full textDans l'introduction, nous présentons tout d'abord la motivation principale derrière ce problème et nous faisons l'effort d'inclure dans le cadre général de notre travail les résultats asymptotiques qui étaient déjà établis pour les cas spéciaux k=1 et k=2.
Ensuite, nous nous penchons sur l'étude des propriétés des MLE et LSE d'une densité k-monotone g_0 dans le cas où on dispose de n observations indépendantes générées de g_0. Notre étude asymptotique est locale, c'est-à-dire que nous nous intéressons uniquement aux propriétés asymptotiques des estimateurs et de leur dérivées à un point fixe, x_0. Sous certaines hypothèses que nous précisons, nous établissons d'abord les bornes inférieures minimax pour l'estimation des dérivées g^{(j)}_0(x_0), j=0,...,k-1. Les bornes obtenues indiquent que n^{-(k-j)/(2k+1)} est la vitesse de convergence optimale de n'importe quel estimateur non-paramétrique de g^{(j)}_0(x_0). Sous les mêmes hypothèses et si une certaine conjecture est vraie, nous démontrons que cette vitesse optimale est atteinte dans le cas des MLE et LSE.
Pour compléter la théorie asymptotique des estimateurs et de leur dérivées au point x_0, nous passons à la dérivation de leurs distributions limites lorsque la taille de l'échantillon n tend vers l'infini. Il s'avère que ces distributions dépendent d'un processus stochastique bien particulier défini sur l'ensemble des réels R. On note ce processus par H_k Le 3ème chapitre est consacré essentiellement à l'existence et à l'unicité de H_k, ainsi qu'à sa caractérisation. Nous démontrons que si Y_k est la primitive (k-1)-ème d'un mouvement Brownien + k!/(2k)! t^{2k}, alors H_k reste au-dessus (au-dessous) de Y_k lorsque k est pair (impair). Un simple changement de variable suffit pour reconnaître que nos résultats comprennent les cas spéciaux k=1 et k=2 où le problème se réduit à l'estimation d'une densité décroissante et d'une densité décroissante et convexe respectivement. Pour ces cas-là, la théorie asymptotique des MLE et LES a été déjà établie.
L'aspect algorithmique fait l'objet du 4ème chapitre. Les algorithmes de Splines itératifs (Iterative Spline algorithms) sont développés et implémentés afin de calculer les estimateurs et aussi pour obtenir une approximation du processus limite sur n'importe quel compact dans R. Ces algorithmes exploitent essentiellement la structure 'splineuse' des MLE, LSE et H_k, et se basent ainsi sur la suppression et l'addition itératives des noeuds de certains Splines aléatoires.
Lapointe, Marc-Élie. "Approche bayésienne de la construction d'intervalles de crédibilité simultanés à partir de courbes simulées." Thèse, 2015. http://hdl.handle.net/1866/12576.
Full textThis master's thesis addresses the problem of the simulation of simultaneous credible intervals in a Bayesian context. First, we will study precipation data and two functions based on these data : the empirical distribution function and the return period, a non-linear function of the empirical distribution. We will review different methods already known to obtain simultaneous confidence intervals of these functions with a polynomial basis and we will present a method to simulate simultaneous credible intervals. Second, we will explore some models of prior distributions and in the more complex one, we will need the Monte-Carlo method to simulate simultaneous posterior credible intervals. Finally, we will use a non-linear basis based on the angular transformation and on monotone splines to obtain valid simultaneous credible intervals for the return period.
Yu, Chao Ya, and 游詔雅. "A NOTE ON MONOTONE PIECEWISE CUBIC SPLINE." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/83784414626315526206.
Full text逢甲大學
應用數學研究所
82
A physical quantity is often known to have a certain behav- iour, monotonic increasing (or decreasing), as a function of other quantities. Thus, there is a need for algorithms which preserving the monotonicity properties of the monotonic data as well as producing physically reasonable curves and surfaces. Fritsch and Carlson [4] derived necessary and sufficient conditions for a cubic spline to be monotonic from a set of monotonic data. Those conditions may form a basis for developi- ng a numerical method to produce a monotonic interpolation and represent approximately the physical reality.
李垂勳. "Lapped splices for high strength concrete under monotonic and cyclic loading." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/12775276164145216888.
Full textBooks on the topic "Monotone splines"
On the construction of monotony preserving taper curves. Helsinki: Suomen Metsätieteellinen Seura, 1988.
Find full textBook chapters on the topic "Monotone splines"
Egerstedt, Magnus, and Clyde Martin. "Optimal Control and Monotone Smoothing Splines." In New Trends in Nonlinear Dynamics and Control and their Applications, 279–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45056-6_18.
Full textBainov, Drumi, Angel Dishliev, and Snezhana Hristova. "Monotone Iterative Technique for Impulsive Differential-Difference Equations with Variable Impulsive Perturbations." In Multivariate Approximation and Splines, 13–27. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8871-4_2.
Full textRamirez, Donald E., and Philip W. Smith. "Applications of Smoothed Monotone Regression Splines and Smoothed Bootstrapping in Survival Analysis." In COMPSTAT, 425–30. Heidelberg: Physica-Verlag HD, 1998. http://dx.doi.org/10.1007/978-3-662-01131-7_59.
Full textBellavia, Fabio, and Carlo Colombo. "Color Correction for Image Stitching by Monotone Cubic Spline Interpolation." In Pattern Recognition and Image Analysis, 165–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19390-8_19.
Full textLi, Zhong, Lizhuang Ma, Dereck Meek, Wuzheng Tan, Zhihong Mao, and Mingxi Zhao. "Curvature Monotony Condition for Rational Quadratic B-spline Curves." In Computational Science and Its Applications - ICCSA 2006, 1118–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11751540_122.
Full textKarim, Samsul Ariffin Abdul, and Malik Zawwar Hussain. "Retracted: Visualization of Positive and Monotone Data by Rational Quadratic Spline." In Lecture Notes in Computer Science, 436–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05036-7_41.
Full textKarim, Samsul Ariffin Abdul, and Malik Zawwar Hussain. "Erratum to: Visualization of Positive and Monotone Data by Rational Quadratic Spline." In Lecture Notes in Computer Science, 916. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05036-7_87.
Full text"Chapter Seven. Monotone Smoothing Splines." In Control Theoretic Splines, 113–32. Princeton University Press, 2009. http://dx.doi.org/10.1515/9781400833870.113.
Full text"Bayesian Semiparametric Regression Analysis of Interval- Censored Data with Monotone Splines." In Interval-Censored Time-to-Event Data, 177–94. Chapman and Hall/CRC, 2012. http://dx.doi.org/10.1201/b12290-14.
Full text"Methods of Monotone and Convex Spline Interpolation." In Methods of Shape-Preserving Spline Approximation, 97–126. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812813381_0005.
Full textConference papers on the topic "Monotone splines"
"An Algorithm for Constructing Monotone Quintic Interpolating Splines." In 2020 Spring Simulation Conference. Society for Modeling and Simulation International (SCS), 2020. http://dx.doi.org/10.22360/springsim.2020.hpc.003.
Full textLiu, Muye. "Approximate Growth Curve of Fetus Pancreas by Monotone Splines Regression." In international Conference on Intelligent Computing and Information Engineering (ICIE). VOLKSON PRESS, 2017. http://dx.doi.org/10.26480/icie.01.2017.41.44.
Full textWolber and Alfy. "Monotonic cubic spline interpolation." In Proceedings Computer Graphics International CGI-99. IEEE, 1999. http://dx.doi.org/10.1109/cgi.1999.777953.
Full textWang, Yong, Huanjun Jiang, Chen Wu, Zihui Xu, and Zhiyuan Qin. "Experimental study on seismic performance of suspended ceiling components." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0496.
Full textNanduri, Jagannath R., and Ismail B. Celik. "Application of Journal of Fluids Engineering CFD Verification Procedure to Flow Past Bluff Body Using Two Different Turbulence Models." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78316.
Full text