Academic literature on the topic 'Monopolar antenna'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monopolar antenna.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Monopolar antenna"

1

Han, T. Y., and C. T. Huang. "Reconfigurable monopolar patch antenna." Electronics Letters 46, no. 3 (2010): 199. http://dx.doi.org/10.1049/el.2010.3242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ha, Youngseok, Jae-il Jung, Sunghee Lee, and Seongmin Pyo. "Extremely Low-Profile Monopolar Microstrip Antenna with Wide Bandwidth." Sensors 21, no. 16 (August 5, 2021): 5295. http://dx.doi.org/10.3390/s21165295.

Full text
Abstract:
In this paper, we propose a new monopolar microstrip antenna for a high-speed moving swarm sensor network. The proposed antenna shows an extremely thin substrate thickness supported with an omni-directional radiation pattern and wide operation frequency bandwidth. First, to achieve the low-profile monopolar microstrip antenna, the symmetrical center feeding network and the gap-coupled six arrayed patches which form a hexagonal microstrip radiator were utilized. The partially loaded ground-slots under the top patches were employed to improve the radiation performance and adjust the impedance bandwidth. Second, to obtain the broad bandwidth of the low-profile monopolar microstrip antenna, the degenerated non-fundamental TM02 modes, that is, even and odd TM02 modes, were carefully analyzed. To verify the feasibility of the degenerated TM02 mode operation, the parametric study of the proposed antenna was theoretically investigated and implemented with the optimized parameter dimensions. Finally, the fabricated antenna showed a 0.254 mm-thick substrate and demonstrates 1.5-wavelength resonant monopolar radiation with broad impedance bandwidth of 855 MHz and its factional bandwidth of 15.24% at the resonant frequency of 5.57 GHz.
APA, Harvard, Vancouver, ISO, and other styles
3

Lau, K. L., K. C. Kong, and K. M. Luk. "Super-wideband monopolar patch antenna." Electronics Letters 44, no. 12 (2008): 716. http://dx.doi.org/10.1049/el:20080866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Row, J. S., and S. H. Chen. "Wideband Monopolar Square-Ring Patch Antenna." IEEE Transactions on Antennas and Propagation 54, no. 4 (April 2006): 1335–39. http://dx.doi.org/10.1109/tap.2006.872660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lau, Pui-Yi, and Edward K. N. Yung. "Compact wide band monopolar patch antenna." Microwave and Optical Technology Letters 49, no. 7 (2007): 1581–85. http://dx.doi.org/10.1002/mop.22535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ANDREEV, Yu A., V. P. GUBANOV, A. M. EFREMOV, V. I. KOSHELEV, S. D. KOROVIN, B. M. KOVALCHUK, V. V. KREMNEV, V. V. PLISKO, A. S. STEPCHENKO, and K. N. SUKHUSHIN. "High-power ultrawideband radiation source." Laser and Particle Beams 21, no. 2 (April 2003): 211–17. http://dx.doi.org/10.1017/s0263034603212088.

Full text
Abstract:
The article presents a source producing high-power ultrawideband electromagnetic pulses. The source includes a generator of monopolar pulses, a bipolar pulse former, and a combined ultrawideband transmitting antenna. Monopolar 150-kV, 4.5-ns pulses are transformed into bipolar 120-kV, 1-ns pulses, which are emitted by the antenna. The pulse repetition rate of the setup is up to 100 Hz. The peak power of the source is 170 MW as measured with a TEM-type receiving antenna having 0.2–2 GHz passband. The pattern width of the transmitting antenna at a half-level of peak power is 90° and 105° for the H- and E-planes, respectively. The electric field strength measured 4 m from the transmitting antenna in the direction of the main radiation maximum is 34 kV/m.
APA, Harvard, Vancouver, ISO, and other styles
7

He, Wei, Yejun He, Long Zhang, Sai-Wai Wong, Wenting Li, and Amir Boag. "A Low-Profile Circularly Polarized Conical-Beam Antenna with Wide Overlap Bandwidth." Wireless Communications and Mobile Computing 2021 (February 27, 2021): 1–11. http://dx.doi.org/10.1155/2021/6648887.

Full text
Abstract:
In this paper, a low-profile circularly polarized (CP) conical-beam antenna with a wide overlap bandwidth is presented. Such an antenna is constructed on the two sides of a square substrate. The antenna consists of a wideband monopolar patch antenna fed by a probe in the center and two sets of arc-hook-shaped branches. The monopolar patch antenna is loaded by a set of conductive shorting vias to achieve a wideband vertically polarized electric field. Two sets of arc-hook-shaped parasitic branches connected to the patch and ground plane can generate a horizontally polarized electric field. To further increase the bandwidth of the horizontally polarized electric field, two types of arc-hook-shaped branches with different sizes are used, which can generate another resonant frequency. When the parameters of the arc-hook-shaped branches are reasonably adjusted, a 90° phase difference can be generated between the vertically polarized electric field and the horizontally polarized electric field, so that the antenna can produce a wideband CP radiation pattern with a conical beam. The proposed antenna has a wide impedance bandwidth ( ∣ S 11 ∣ < − 10 dB ) of 35.6% (4.97-7.14 GHz) and a 3 dB axial ratio (AR) bandwidth at phi = 0 ° and theta = 35 ° of about 30.1% (4.97-6.73 GHz). Compared with the earlier reported conical-beam CP antennas, an important feature of the proposed antenna is that the AR bandwidth is completely included in the impedance bandwidth, that is, the overlap bandwidth of ∣ S 11 ∣ < − 10 dB and AR < 3 dB is 30.1%. Moreover, the stable omnidirectional conical-beam radiation patterns can be maintained within the whole operational bandwidth.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Ji-Xu, Peng Bai, and Jia-Fu Wang. "Ultrasmall Dual-Band Metamaterial Antennas Based on Asymmetrical Hybrid Resonators." International Journal of Antennas and Propagation 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/7019268.

Full text
Abstract:
A new type of hybrid resonant circuit model is investigated theoretically and experimentally. The resonant model consists of a right hand (RH) patch part and a composite right and left handed (CRLH) part (RH + CRLH), which determines a compact size and also a convenient frequency modulation characteristic for the proposed antennas. For experimental demonstration, two antennas are fabricated. The former dual-band antenna operating at f-1=3.5 GHz (Wimax) and f+1=5.25 GHz (WLAN) occupies an area of 0.21λ0×0.08λ0, and two dipolar radiation patterns are obtained with comparable gains of about 6.1 and 6.2 dB, respectively. The latter antenna advances in many aspects such as an ultrasmall size of only 0.16λ0×0.08λ0, versatile radiation patterns with a monopolar pattern at f0=2.4 GHz (Bluetooth), and a dipole one at f+1=3.5 GHz (Wimax) and also comparable antenna gains. Circuit parameters are extracted and researched. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Delaveaud, Ch, Ph Leveque, and B. Jecko. "New kind of microstrip antenna: the monopolar wire-patch antenna." Electronics Letters 30, no. 1 (January 6, 1994): 1–2. http://dx.doi.org/10.1049/el:19940057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jeen-Sheen Row, Shih-Huang Yeh, and Kin-Lu Wong. "A wide-band monopolar plate-patch antenna." IEEE Transactions on Antennas and Propagation 50, no. 9 (September 2002): 1328–30. http://dx.doi.org/10.1109/tap.2002.804452.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Monopolar antenna"

1

Schlub, Robert Walter, and n/a. "Practical Realization of Switched and Adaptive Parasitic Monopole Radiating Structures." Griffith University. School of Microelectronic Engineering, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040610.112148.

Full text
Abstract:
Switched and adaptive parasitic monopole array radiating structures are investigated. Antenna design is orientated toward increasing practicability for implementation in terrestrial wireless communication systems. A number of antennas are designed with the aid of optimization and commercial simulation software. Simulation procedure was verified with the experimental manufacture and measurement of the arrays. The antennas presented in this thesis comprise an active monopole surrounded by a ring of parasitic monopoles. Parasitic radiators are constructed with static loading to enable simple experimental realization. Beam positions of an electrically steered equivalent antenna are thus simulated. Antenna symmetry ensures the beam can be reproduced throughout the azimuth. Complex antenna geometries require antenna design through optimization. A genetic algorithm is employed with HFSS and NEC for electromagnetic analysis. The robust optimization method couples with simulation software flexibility to provide an effective design tool for arbitrary structures. The genetic algorithm is employed strictly for design and not complete structural optimization. Dual band, five and six element switched parasitic antennas are presented. Lumped elemental loading along the radiators provide resonance and directed radiation at two GSM frequencies. Load value, radiator dimension and spacing are incorporated as design parameters. Experimentally built, 10dB return loss bandwidths of 17.2% and 9.6% and front to back ratios of 12.6dB and 8.4dB at 900MHz and 1900MHz respectively are measured. To reduce the ground requirements of monopole arrays, a skirted ground structure for switched parasitic antennas is analyzed. A six element switched parasitic monopole array with conductive ground skirt exhibits a front to back ratio of 10.7dB and main lobe gain of 6.4dBi at 1.575GHz. Radiation is not elevated despite lateral ground terminating at the parasitic elements. Skirt height is observed to linearly control radiation elevation, depressing the principal lobe through 40 degrees from 23 degrees above the horizontal. The Electronically Steerable Passive Array Radiator or ESPAR antenna is an adaptive parasitic monopole array. An ESPAR radiating structure incorporating a conductive ground skirt is designed for operation at 2.4GHz. Utility is confirmed with a frequency sensitivity analysis showing consistent electrical characteristics over an 8.1% bandwidth. The antenna design is improved with optimization to reduce average principal lobe elevation from 25 degrees to 9.7 degrees.
APA, Harvard, Vancouver, ISO, and other styles
2

Kabalan, Aladdin. "Miniaturisation et modélisation d’antennes monopoles larges bandes utilisant des matériaux magnéto-diélectriques en bande VHF." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S041/document.

Full text
Abstract:
Les avions comportent plusieurs systèmes de navigation et de communication nécessitent des antennes VHF large bande. Réduire la taille de ses antennes est un enjeu majeur tout en gardant des bonnes performances. Cette thèse propose des nouvelles configurations d'antennes à profil bas utilisant des nouveaux matériaux nanocomposites non conducteurs constitués de nanoparticules magnétiques développés au Lab-STICC. Un monopole planaire large bande a été développé et optimisé avec un taux de miniaturisation de 60% grâce à l'utilisation d'un matériau magnéto-diélectrique de forte perméabilité et faible pertes couvrant seulement 5% de sa surface. Les résultats expérimentaux, en presque parfait accord avec les simulations, montrent que le diagramme de rayonnement est omnidirectionnel et que la polarisation est verticale, avec un bon niveau du gain. L'antenne monopole planaire insérée dans un MMD des dimensions limitées avec des pertes a été modélisée par un nouveau circuit équivalent multi résonant. Ce circuit est développé à partir de l'impédance d'entrée de l'antenne et des caractéristiques du MMD, et validé par les simulations avec un parfait accord entre les résultats
Airplanes with multiple navigation and communication systems require broadband VHF antennas. Reduce the size of these antennas is a major challenge while keeping good performances. This thesis proposes new configurations of low profile antennas using new nanocomposite non-conductive materials consisting of magnetic nanoparticles developed at Lab-STICC. A broadband planar monopole has been developed and optimized with a 60% miniaturization rate thanks to the use of a high permeability and low loss magneto-dielectric material covering only 5% of its surface. The experimental results, in almost perfect agreement with the simulations, show that the radiation pattern is omnidirectional and that the polarization is vertical, with a good level of gain. The planar monopole antenna inserted in a MMD of limited dimensions with losses was modeled by a new multi-resonant equivalent circuit. This circuit is developed from the input impedance of the antenna and the characteristics of the MMD. and validated by the simulations with a perfect agreement between the results
APA, Harvard, Vancouver, ISO, and other styles
3

Morsy, Mohamed Mostafa. "DESIGN AND IMPLEMENTATION OF MICROSTRIP MONOPOLE AND DIELECTRIC RESONATOR ANTENNAS FOR ULTRA WIDEBAND APPLICATIONS." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/dissertations/169.

Full text
Abstract:
Ultra wide-band (UWB) technology is considered one of the very promising wireless technologies in the new millennium. This increases the demand on designing UWB antennas that meet the requirements of different UWB systems. In this dissertation, different UWB antennas are proposed such as an antenna that covers almost the entire UWB bandwidth, 3.5-11 GHz, as defined by the federal communication commission (FCC). This antenna has a size of 50×40×1.5mm3. Miniaturized worldwide UWB antennas are also introduced. Miniaturized worldwide UWB antennas that have compact sizes of (30×20×1.5) mm3, and (15×15×1.5) mm3 are also investigated. The designed worldwide UWB antennas cover the UWB spectrums defined by the electronic communication committee (ECC), 6-8.5 GHz, and the common worldwide UWB spectrum, 7.4-9 GHz. A system consisting of two identical antennas (transmitter and receiver) is built in the Antennas and Propagation Lab at Southern Illinois University Carbondale (SIUC) to test the coupling properties between every two identical antennas. The performance of that system is analyzed under different ii conditions to guarantee that the transmitted signal will be correctly recovered at the receiver end. The designed UWB antennas can be used in many short range applications such as wireless USB. Wireless USB is used in PCs, printers, scanners, laptops, MP3 players, hard disks and flash drives. A new technique is introduced to widen the impedance bandwidth of dielectric resonator antennas (DRAs). DRA features compactness, low losses, and wideband antennas. Different compact UWB DRAs are investigated in this dissertation. The designed DRAs cover a wide range of frequency bands such as, 6.17-24GHz, 4.23-13.51GHz, and 4.5-13.6GHz. The designed DRAs have compact sizes of 1×1×1.5cm3, 0.9×0.9×1.32cm3, 0.6×0.6×1cm3, and 0.6×0.6×0.9cm3; and cover the following frequency bands 4.22-13.51GHz, 4.5-13.6GHz, 6.1-23.75GHz, and 6.68-26.7GHz; respectively. The proposed DRAs may be used for applications in the X, Ku and K bands such as military radars and unmanned airborne vehicles (UAV).
APA, Harvard, Vancouver, ISO, and other styles
4

Lourens, Jako. "A wideband monopole antenna design." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80026.

Full text
Abstract:
Thesis (MScEng)--Stellenbosch University, 2013.
ENGLISH ABSTRACT: The successful operation of a man-pack VHF jamming system requires a compact and efficient antenna operating over a wide bandwidth. The design of such an antenna is the focus of this thesis. The antenna should be of a practical size for a portable system and it must radiate energy efficiently across a frequency bandwidth in excess of a decade. A practical „target‟ specification of such an antenna has been drawn up based on the performance of a commercially available system. Several possible antenna topologies, each with a variety of loading section options, are tested using “Full wave” electromagnetic modelling (FEKO). Each topology/loading-section is numerically optimised for load element values by considering both its gain and reflection coefficient. Results of the „optimally loaded‟ solution for each topology are then compared to each other to arrive at the best overall design. The best result is found to be the traditional monopole whip-type antenna, with four R-L loading sections spread along its length. The simulated results show that the proposed antenna can be expected to meet the target standing wave ratio (SWR) specifications while offering a gain advantage of between 5 and 10 dBi higher than is available commercially. The selected design is constructed and its performance measured.
AFRIKAANSE OPSOMMING: Die suksesvolle werking van ʼn mobiele VHF "jammer‟ benodig ʼn kompakte antenna met ʼn bruikbare benuttingsgraad wat oor ʼn wyeband funksioneer. Die ontwerp van so ʼn antenna is die fokus van hierdie tesis. Die antenna moet kompak genoeg wees om draagbaar te wees en moet ʼn bruikbare benuttingsgraad hê oor ʼn frekwensie-bandwydte van meer as 10:1. ʼn Praktiese spesifikasie is opgestel vir die antenna deur te kyk na die sigblaaie van beskikbare stelsels. “Volgolf” elektromagnetiese modelleringsagteware is daarna gebruik om ʼn parametriese ondersoek te loods van verskillende antennas. Verskillende topologieë is getoets met ʼn verskeidenheid van belaaide seksies waar die topologieë ge-optimaliseer was vir wins en weerkaatskoëffisiënt. Die resultate vir elke optimale oplossing is vergelyk.Opgrond van hierdie resultate is bevind dat die beste topologie die tradisionele monopoolmas "whip-type‟ antenna is met vier RL lading afdelings langs die lengte versprei. Analise word gebruik om te wys dat verwag kan word dat dit aan die aanwins en staande golf verhouding (SGV) spesifikasies sal voldoen met n 10 dB verhoging in aanwins vir n laer SGV. Die geselekteerde ontwerp is gebou en gemeet om te verifieer dat dit aan die spesifikasies voldoen.
APA, Harvard, Vancouver, ISO, and other styles
5

Christman, Alan M. "Validation of NEC-3 (Numerical Electromagnetics Code) with applications to MF and HF antenna technology." Ohio : Ohio University, 1990. http://www.ohiolink.edu/etd/view.cgi?ohiou1172605318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Ming-Chun, Zheng Wen, Hao Wang, Mei Li, and Richard W. Ziolkowski. "Compact, Frequency-Reconfigurable Filtenna With Sharply Defined Wideband and Continuously Tunable Narrowband States." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2017. http://hdl.handle.net/10150/626120.

Full text
Abstract:
A compact, frequency-reconfigurable filtenna with sharp out-of-band rejection in both its wideband and continuously tunable narrowband states is presented. It is intended for use in cognitive radio applications. The wideband state is the sensing state and operationally covers 2.35-4.98 GHz. The narrowband states are intended to cover communications within the 3.05-4.39 GHz range, which completely covers the Worldwide Interoperability for Microwave Access (WiMAX) band and the satellite communications C-band. A p-i-n diode is employed to switch between these wide and narrowband operational states. Two varactor diodes are used to shift the operational frequencies continuously among the narrowband states. The filtenna consists of a funnel-shaped monopole augmented with a reconfigurable filter; it has a compact electrical size: 0.235 lambda(L) x 0.392 lambda(L), where the wavelength lambda(L) corresponds to the lower bound of its operational frequencies. The measured reflection coefficients, radiation patterns, and realized gains for both operational states are in good agreement with their simulated values.
APA, Harvard, Vancouver, ISO, and other styles
7

Sokpor, Adjo Sefofo. "Conception de balises de détresse intégrées aux équipements de sécurité maritime." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S068/document.

Full text
Abstract:
Au cours de ces dernières années, les communications sans fil connaissent une croissance vertigineuse, avec le développement de standards de communication de plus en plus nombreux, qui ouvrent la voie à de multiples applications telles que : la téléphonie mobile, le biomédical, le maritime, le civil et le militaire. De nos jours, les communications sans fil se sont diversifiées et multipliées. Cela entraîne la conception d’antennes toujours plus innovantes, performantes et de taille de plus en plus réduite (miniaturisation). Le projet FLEXBEA (FLEXible BEAcon) a pour but le développement d’un nouveau concept de balises de détresse miniatures (AIS et COSPAS-SARSAT), faible coût, intégrées dans des équipements de sécurité maritime tels qu’un radeau de survie et un gilet de sauvetage. Ces équipements sont destinés aux professionnels de la mer et aux plaisanciers. L’atout majeur de ce nouveau concept est l’intégration dans des équipements de sécurité maritime d’une fonction de détresse en cas de problème majeur : homme à la mer (MOB, Man OverBoard) par exemple lors d’un naufrage. Différentes antennes ont été étudiées. Nous présentons des antennes planaires (de type dipôle ou monopôle imprimé) développées dans la bande UHF : une solution de dipôle avec brins repliés est proposée afin de réduire l'encombrement, et deux modes d'alimentation (symétrique / dissymétrique) sont comparés. Des exemples d'antenne monopôle sont ensuite présentés avec une modification de leur géométrie (structures de type Bow-tie ou méandre) pour assurer une miniaturisation optimale. Puis les antennes filaires retenues pour le projet, avec une modélisation de ces antennes par un circuit équivalent (RLC). Des formules analytiques sont proposées afin de déterminer les valeurs de composants RLC qui interviennent dans le modèle circuit. Ensuite, nous sommes passés à la conception de l’antenne de la balise. Deux antennes ont été conçues et mesurées. Un monopôle ruban avec introduction de composants localisés pour la balise AIS et COSPAS-SARSAT, et une antenne hélice fonctionnant dans la bande AIS, intégrée dans la balise "SIMY". De nombreuses réalisations et mesures ont été effectuées pour caractériser ses antennes
Over the last few years, wireless communications have grown dramatically, with the development of more and more communication standards, which open the way to multiple applications such as: mobile telephony, biomedical, maritime, the civilian and the military. Today, wireless communications have diversified and multiplied. This leads to the design of antennas that are always more innovative, more efficient and smaller in size (miniaturization). The FLEXBEA project (FLEXible BEAcon) aims to develop a new concept of low cost miniature distress beacons (AIS and COSPAS-SARSAT) integrated into marine safety equipment such as a life raft and a lifejacket safety. This equipment is intended for professionals of the sea and boaters. The main advantage of this new concept is the integration in maritime safety equipment of a distress function in case of major problem: man overboard (MOB, Man OverBoard) for example during a shipwreck. Different antennas have been studied. We present planar antennas (dipole type or printed monopoly) developed in the UHF band: a dipole solution with folded strands is proposed to reduce the bulk, and two modes of supply (symmetrical / asymmetrical) are compared. Examples of monopole antennas are then presented with a modification of their geometry (Bow-tie or meander type structures) to ensure optimal miniaturization. Then the wired antennas selected for the project, with a modeling of these antennas by an equivalent circuit (RLC). Analytical formulas are proposed to determine the RLC component values ​​involved in the circuit model. Then we went to the design of the beacon antenna. Two antennas were designed and measured. A ribbon monopoly with introduction of localized components for the AIS and COSPAS-SARSAT beacon, and a helix antenna operating in the AIS band, integrated into the "SIMY" beacon. Many achievements and measurements have been made to characterize its antennas
APA, Harvard, Vancouver, ISO, and other styles
8

Abreu, Antonio Salvio de. "Desenvolvimento de monopolos quase-espirais para aplica??es em sistemas UWB." Universidade Federal do Rio Grande do Norte, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15289.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:37Z (GMT). No. of bitstreams: 1 AntonioSA.pdf: 2010232 bytes, checksum: 027e876fa92242a6ba0e73009f5debd5 (MD5) Previous issue date: 2009-08-11
This work is the analysis of a structure of the microstrip antenna designed for application in ultra wide band systems (Ultra Wideband - UWB). This is a prospective analytical study where they tested the changes in the geometry of the antenna, observing their suitability to the proposed objectives. It is known that the UWB antenna must operate in a range of at least 500 MHz, and answer a fractional bandwidth greater than or equal to 25%. It is also desirable that the antenna meets the specifications of track determined by FCC - Federal Communication Commission, which regulates the system in 2002 designating the UWB bandwidth of 7.5 GHz, a range that varies from 3.1 GHz to 10, 6 GHz. by setting the maximum power spectral density of operation in -41.3 dB / MHz, and defining the fractional bandwidth by 20%. The study starts of a structure of geometry in the form of stylized @, which evolves through changes in its form, in simulated commercial software CST MICROWAVE STUDIO, version 5.3.1, and then tested using the ANSOFT HFSS, version 9. These variations, based on observations of publications available from literature referring to the microstrip monopole planar antennas. As a result it is proposed an antenna, called Monopole Antenna Planar Spiral Almost Rectangular for applications in UWB systems - AMQEUWB, which presents simulated and measured results satisfactory, consistent with the objectives of the study. Some proposals for future work are mentioned
Este trabalho consiste na an?lise de uma estrutura de antena de microfita projetada para aplica??o em sistemas de banda ultra larga (ultra wideband UWB). Trata-se de um estudo prospectivo e anal?tico onde s?o experimentadas as modifica??es na geometria da antena, observando-se sua adequa??o aos objetivos propostos. Sabe-se que a antena UWB deve operar numa faixa de no m?nimo 500 MHz, e atender uma banda fracion?ria maior ou igual a 25%. ? desej?vel ainda, que a antena atenda ?s especifica??es de faixa determinadas pela FCC Federal Communication Commission, que em 2002 regulamentou o sistema UWB designando a largura de banda de 7,5 GHz, numa faixa que varia de 3,1 GHz a 10,6 GHz. fixando a densidade espectral de pot?ncia m?xima de opera??o em -41,3 dBm/MHz, e definindo a banda fracion?ria em 20%. O estudo parte de uma estrutura de geometria em forma de @ estilizada, que evolui atrav?s de modifica??es na sua forma, simuladas nos softwares comerciais CST MICROWAVE STUDIO, vers?o 5.3.1, e, em seguida, testado com o uso do ANSOFT HFSS, vers?o 9. Varia??es estas, com base em observa??es de publica??es dispon?veis na literatura, referentes a antenas de microfita monopolo planar. Como resultado ? proposta uma antena, denominada Antena Monopolo Quase-Espiral Planar Retangular para aplica??es em sistemas UWB AMQEUWB, que apresenta resultados simulados e medidos satisfat?rios, coerente com os objetivos do estudo. Algumas propostas para trabalhos futuros est?o citadas
APA, Harvard, Vancouver, ISO, and other styles
9

Jedlicka, R. P., and J. M. Williamson. "Monopatch Antenna for Balloon Telemetry Applications." International Foundation for Telemetering, 1992. http://hdl.handle.net/10150/611958.

Full text
Abstract:
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California
A new antenna design, which is particularly suited for balloon telemetry applications, is presented. In the past, simple monopoles have been utilized as transmit antennas on balloon payloads. The monopole radiation pattern has an inherent null along its axis. This causes an undesirable loss of signal when the balloon is directly overhead. To prevent this occurrence, a microstrip antenna patch was incorporated into the monopole design. This combination, a "monopatch" antenna, provides sufficient coverage even when the balloon is directly over the ground station. The monopatch has been successfully flown on high altitude balloon flights.
APA, Harvard, Vancouver, ISO, and other styles
10

Silva, Marcelo Ribeiro da. "Novas configura??es de monop?lios planares quase-fractais para sistemas de comunica??es m?veis." Universidade Federal do Rio Grande do Norte, 2008. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15211.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:09Z (GMT). No. of bitstreams: 1 MarceloRS.pdf: 2073600 bytes, checksum: e2793a47da1f2a66e002106dee02b631 (MD5) Previous issue date: 2008-12-29
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented
As propriedades ?nicas da geometria fractal t?m-se mostrado bastante ?teis para a constru??o de filtros, superf?cies seletivas em freq??ncia, circuitos sintonizados e antenas, possibilitando solu??es otimizadas para uma variedade de usos comerciais na faixa de microondas. A geometria fractal est? inclu?da na tecnologia dos sistemas de comunica??o por microondas devido a algumas propriedades interessantes para a fabrica??o de dispositivos compactos, com desempenho superior em termos de largura de banda, bem como, comportamento multibanda. Neste trabalho, descrevem-se os procedimentos para o projeto, constru??o e medi??o de monopolos quase-fractais de Koch, com n?veis 1 e 2, projetados para se investigar o efeito produzido na largura de banda de antenas planares, a partir da utiliza??o de estruturas quase-fractais nos seus patches retangulares. O efeito eletromagn?tico da varia??o do n?vel dos fractais, bem como, da miniaturiza??o das estruturas, foram avaliados. Tamb?m foram realizadas parametriza??es com o intuito de se verificar o comportamento da largura de banda, tanto para a perda de retorno quanto para o SWR. Os resultados foram obtidos atrav?s de medi??es realizadas por um analisador de redes vetorial e por meio de simula??es no Ansoft HFSS. Algumas propostas para trabalhos futuros foram citadas
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Monopolar antenna"

1

Pote, J. H. Automatic antenna matching unit for H.F. - band monopole antennas. Birmingham: University of Birmingham, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monopole antennas. New York: Marcel Dekker, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abd El Aziz Mohamed Darwish. Design of a continuous resistively loaded monopole antenna. Monterey, Calif: Naval Postgraduate School, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hurley, Robert C. Computation of monopole antenna currents using cylindrical harmonic expansions. Monterey, Calif: Naval Postgraduate School, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

DeMinco, N. Free-field measurements of the electrical properties of soil using the surface wave propagation between two monopole antennas. Washington, DC]: U.S. Department of Commerce, National Telecommunications and Information Administration, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yim, Jae Yong. An experimental and computer modeling study of stepped radius monopole antennas. Monterey, Calif: Naval Postgraduate School, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

FitzGerrell, R. G. Monopole impedance and gain measurements of finite ground planes. Washington, D.C: U.S. Dept. of Justice, National Institute of Justice, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Padmosutoyo, Slamet Suharsa. NEC, NECGS, and MININEC numerical models of LF top-hat monopole antennas. Monterey, Calif: Naval Postgraduate School, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahmud, Riaz. A study of LF top-loaded monopole antennas using numerical modeling techniques: Comparison to scaled test model measurements. Monterey, Calif: Naval Postgraduate School, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weiner, Melvin M. Monopole Antennas. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Monopolar antenna"

1

Mushiake, Yasuto. "Monopole-Slot Type Modified Self-Complementary Antennas." In Self-Complementary Antennas, 111–17. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-1003-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mujawar, Mehaboob, and T. Gunasekaran. "Effect of Encapsulating Materials on Monopole Antenna Performance for Underwater Communication." In Smart Antennas, 35–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohd Hasli, Mohamad Amir Imran, Ahmad Rashidy Razali, Aslina Abu Bakar, Mohd Aminudin Murad, and M. Feroze Akbar J. Khan. "Wideband Monopole Antenna for WWAN Services." In Lecture Notes in Electrical Engineering, 723–33. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24584-3_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mayboroda, Dmitry, and Sergey Pogarsky. "Microstrip Monopole Antenna with Complicated Topology." In Advances in Information and Communication Technology and Systems, 394–403. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58359-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prasad Jones Christydass, S., R. Saravanakumar, and M. Saravanan. "Multiband Circular Disc Monopole Metamaterial Antenna with Improved Gain for Wireless Application." In Planar Antennas, 117–29. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003187325-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sam, Prasad Jones Christydass, U. Surendar, Unwana M. Ekpe, M. Saravanan, and P. Satheesh Kumar. "A Low-Profile Compact EBG Integrated Circular Monopole Antenna for Wearable Medical Application." In Smart Antennas, 301–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poornima, T., and Korhan Cengiz. "A Novel Ultra-Wideband Monopole Antenna with Defected Ground Structure for X-Band and WiMAX Applications." In Smart Antennas, 233–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76636-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aminu-Baba, Murtala, Mohammad Kamal A. Rahim, Farid Zubir, Mohd Fairus Mohd Yusoff, and Noor Asmawati Samsuri. "Wideband Monopole Antenna with Rotational Circular SRR." In 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, 419–24. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6447-1_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lim, M. C., S. K. A. Rahim, M. I. Sabran, and A. A. Eteng. "Monopole Ellipse Antenna for Ultra-Wideband Applications." In Theory and Applications of Applied Electromagnetics, 137–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17269-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prasad, K. V., M. V. S. Prasad, and Padarti Vijaya Kumar. "Monopole Antenna for UWB Applications with DGS." In Algorithms for Intelligent Systems, 229–36. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2109-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Monopolar antenna"

1

Jecko, B., and C. Decroze. "The "monopolar wire patch antenna" concept." In 2nd European Conference on Antennas and Propagation (EuCAP 2007). Institution of Engineering and Technology, 2007. http://dx.doi.org/10.1049/ic.2007.1520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yoon, Sungjoon, Jinpil Tak, Jaehoon Choi, and Young-Mi Park. "Conformal monopolar antenna for UAV applications." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Inclan-Sanchez, Luis, Eva Rajo-Iglesias, and Jose-Luis Vazquez-Roy. "Dual band monopolar patch antenna for industrial applications." In 2013 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2013. http://dx.doi.org/10.1109/aps.2013.6710826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Shuangqi, and Juhua Liu. "A Wideband and Compact Monopolar Circular Patch Antenna." In 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2019. http://dx.doi.org/10.1109/icmmt45702.2019.8992527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu-Min Ding, Jun Hua, and Qun Wu. "A low-profile monopolar patch antenna with broad bandwidth." In 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). IEEE, 2011. http://dx.doi.org/10.1109/csqrwc.2011.6037004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Serrao, Jovita, Reena Sonkusare, and Awab Fakih. "Design and analysis of a broadband monopolar patch antenna." In 2014 Recent Advances and Innovations in Engineering (ICRAIE). IEEE, 2014. http://dx.doi.org/10.1109/icraie.2014.6909174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chan, Yi-Wah, and Kwai-Man Luk. "Low Profile Monopolar Patch Antenna with Dielectric Resonator Loading." In 2007 Asia-Pacific Microwave Conference (APMC '07). IEEE, 2007. http://dx.doi.org/10.1109/apmc.2007.4554911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rabih, Barake, Rammal Mohamed, and Vaudon Patrick. "Optimizing the monopolar wire-plate antenna for communications WBAN." In 2013 13th Mediterranean Microwave Symposium (MMS). IEEE, 2013. http://dx.doi.org/10.1109/mms.2013.6663099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herraiz-Martínez, Francisco Javier, Eduardo Ugarte-Muñoz, Vicente González-Posadas, and Daniel Segovia-Vargas. "A dual-frequency patch antenna with monopolar radiation pattern." In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bhaskar, Vignesh Shanmugam, Eng Leong Tan, King Ho Holden Li, and Man Siu Tse. "Compact combined antenna with slit for monopolar input pulse." In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072392.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Monopolar antenna"

1

Mohamed, Darwish A., and Ramakrishna Janaswamy. Design of a Continuous Resistively Loaded Monopole Antenna. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rivera, David F., and John P. Casey. Approximate Capacitance Formulas for Electrically Small Tubular Monopole Antennas. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada302235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elliot, P. G., E. N. Rosario, and R. J. Davis. Novel Quadrifilar Helix Antenna Combining GNSS, Iridium, and a UHF Communications Monopole. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada562143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Crull, E., C. Brown, Jr, M. Perkins, and M. Ong. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/945757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zaghloul, Amir I., Youn M. Lee, Gregory A. Mitchell, and Theodore K. Anthony. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada608706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Camell, D. G. NIST calibration procedure for vertically polarized monopole antennas, 30 kHz to 300 MHz. Gaithersburg, MD: National Bureau of Standards, 1991. http://dx.doi.org/10.6028/nist.tn.1347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography