Journal articles on the topic 'Monolithic finite element formulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Monolithic finite element formulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gupta, Adhip, and C. S. Jog. "A Monolithic Finite Element Formulation for Magnetohydrodynamics Involving a Compressible Fluid." Fluids 7, no. 1 (January 7, 2022): 27. http://dx.doi.org/10.3390/fluids7010027.
Full textAntunes, A. R. E., P. R. M. Lyra, R. B. Willmersdorf, and S. M. A. Bastos. "An implicit monolithic formulation based on finite element formulation for incompressible Navier–Stokes equations." Journal of the Brazilian Society of Mechanical Sciences and Engineering 37, no. 1 (March 18, 2014): 199–210. http://dx.doi.org/10.1007/s40430-014-0155-x.
Full textSun, WaiChing. "A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain." International Journal for Numerical Methods in Engineering 103, no. 11 (April 30, 2015): 798–839. http://dx.doi.org/10.1002/nme.4910.
Full textKutlu, Akif. "Mixed finite element formulation for bending of laminated beams using the refined zigzag theory." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 7 (July 2021): 1712–22. http://dx.doi.org/10.1177/14644207211018839.
Full textПанасюк, Леонид, Leonid Panasyuk, Галина Кравченко, Galina Kravchenko, Елена Труфанова, Elena Trufanova, Инал Тарба, Inal Tarba, Лаша Цвейба, and Lasha Cveyba. "FINITE ELEMENT MODELLING OF INTERACTION BUILDING FRAME AND SLAB-PILE FOUNDATION." Construction and Architecture 7, no. 1 (April 19, 2019): 34–38. http://dx.doi.org/10.29039/article_5c646f16bffb38.56532696.
Full textLozovskiy, Alexander, Maxim A. Olshanskii, and Yuri V. Vassilevski. "A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem." Russian Journal of Numerical Analysis and Mathematical Modelling 37, no. 3 (June 1, 2022): 159–74. http://dx.doi.org/10.1515/rnam-2022-0014.
Full textChen, Xiangxiang, Xudong Chen, Andrew Chan, Yingyao Cheng, and Hongfan Wang. "A FDEM Parametric Investigation on the Impact Fracture of Monolithic Glass." Buildings 12, no. 3 (February 25, 2022): 271. http://dx.doi.org/10.3390/buildings12030271.
Full textGrabmaier, Sebastian, Matthias Jüttner, and Wolfgang Rucker. "Coupling of finite element method and integral formulation for vector Helmholtz equation." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, no. 4 (July 2, 2018): 1405–17. http://dx.doi.org/10.1108/compel-08-2017-0346.
Full textZoalkfl, Danial, Anton Chepurnenko, Batyr Yazyev, Aleksandr Ishchenko, and Stepan Litvinov. "Determination of temperature fields and stresses during the construction of a massive monolithic foundation slab of a wind turbine tower." E3S Web of Conferences 402 (2023): 12002. http://dx.doi.org/10.1051/e3sconf/202340212002.
Full textLiu, Chun Jie, Xi Wang, and De’an Wan. "Study on Angular Stiffness of Monolithic Flexible Joint." Advanced Materials Research 189-193 (February 2011): 1816–21. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1816.
Full textAgrawal, Manish, and C. S. Jog. "Monolithic formulation of electromechanical systems within the context of hybrid finite elements." Computational Mechanics 59, no. 3 (November 28, 2016): 443–57. http://dx.doi.org/10.1007/s00466-016-1356-1.
Full textStanford, B., P. Beran, and M. Kurdi. "Model reduction strategies for nonlinear beams subjected to large rotary actuations." Aeronautical Journal 113, no. 1150 (December 2009): 751–62. http://dx.doi.org/10.1017/s0001924000003419.
Full textZHANG, L. X., and Y. GUO. "SIMULATION OF TURBULENT FLOW IN A COMPLEX PASSAGE WITH A VIBRATING STRUCTURE BY FINITE ELEMENT FORMULATIONS." Modern Physics Letters B 23, no. 03 (January 30, 2009): 257–60. http://dx.doi.org/10.1142/s021798490901814x.
Full textBaaran, J., L. Kärger, and A. Wetzel. "Efficient prediction of damage resistance and tolerance of composite aerospace structures." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 222, no. 2 (February 1, 2008): 179–88. http://dx.doi.org/10.1243/09544100jaero278.
Full textHajano, Nazim Hussain, Muhammad Sabeel Khan, and Lisheng Liu. "Increasing Micro-Rotational Viscosity Results in Large Micro-Rotations: A Study Based on Monolithic Eulerian Cosserat Fluid–Structure Interaction Formulation." Mathematics 10, no. 22 (November 9, 2022): 4188. http://dx.doi.org/10.3390/math10224188.
Full textVescovini, Riccardo, and Lorenzo Dozio. "Analysis of Monolithic and Sandwich Panels Subjected To Non-Uniform Thickness-Wise Boundary Conditions." Curved and Layered Structures 5, no. 1 (August 1, 2016): 232–49. http://dx.doi.org/10.1515/cls-2018-0017.
Full textMatseevich, Tatiana. "Finite Element Analysis of the Bearing Capacity of Beamless Floor Slabs under Punching, Taking into Account the Design Parameters of the Contacting Elements." Buildings 13, no. 5 (May 5, 2023): 1221. http://dx.doi.org/10.3390/buildings13051221.
Full textAissa, Nesrine, Louis Douteau, Emmanuelle Abisset-Chavanne, Hugues Digonnet, Patrice Laure, and Luisa Silva. "Octree Optimized Micrometric Fibrous Microstructure Generation for Domain Reconstruction and Flow Simulation." Entropy 23, no. 9 (September 2, 2021): 1156. http://dx.doi.org/10.3390/e23091156.
Full textFrost, Miroslav, and Jan Valdman. "Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys." Mathematics 10, no. 23 (November 23, 2022): 4412. http://dx.doi.org/10.3390/math10234412.
Full textHa, Truong Sang. "A NUMERICAL INVESTIGATION OF BLOOD FLOW THROUGH THE AORTIC VALVE." Journal of Science and Technique 17, no. 5 (November 29, 2022): 16–27. http://dx.doi.org/10.56651/lqdtu.jst.v17.n05.527.
Full textPhan, Thanh Vu, and Huy-Tuan Pham. "Design and Optimization of a Large-Stroke Compliant Constant-Torque Mechanism." Journal of Technical Education Science, no. 68 (February 28, 2022): 93–100. http://dx.doi.org/10.54644/jte.68.2022.1098.
Full textJadaan, O. M., L. M. Powers, and J. P. Gyekenyesi. "Multixial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method." Journal of Engineering for Gas Turbines and Power 121, no. 4 (October 1, 1999): 577–85. http://dx.doi.org/10.1115/1.2818511.
Full textKos, Zeljko, Yevhenii Klymenko, Irina Karpiuk, and Iryna Grynyova. "Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages." Applied Sciences 12, no. 2 (January 11, 2022): 685. http://dx.doi.org/10.3390/app12020685.
Full textМеретин, А. С. "A software package for the mathematical simulation of fracture in a thermo-poroelastic medium." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 2 (March 19, 2020): 138–51. http://dx.doi.org/10.26089/nummet.v21r212.
Full textKim, Cheol, and Dong Yeub Lee. "Design Optimization of a Curved Actuator with Piezoelectric Fibers." International Journal of Modern Physics B 17, no. 08n09 (April 10, 2003): 1971–75. http://dx.doi.org/10.1142/s0217979203019964.
Full textHachem, E., H. Digonnet, E. Massoni, and T. Coupez. "Immersed volume method for solving natural convection, conduction and radiation of a hat‐shaped disk inside a 3D enclosure." International Journal of Numerical Methods for Heat & Fluid Flow 22, no. 6 (August 3, 2012): 718–41. http://dx.doi.org/10.1108/09615531211244871.
Full textIslam, Mohammad, Nicolas Huerta, and Robert Dilmore. "Effect of Computational Schemes on Coupled Flow and Geo-Mechanical Modeling of CO2 Leakage through a Compromised Well." Computation 8, no. 4 (November 13, 2020): 98. http://dx.doi.org/10.3390/computation8040098.
Full textBedon, Chiara, and Maria Vittoria Santi. "Simplified Procedure for Capacity Check of Historic Monolithic Glass Windows under Soft-Body Collision/Bird-Strike." Symmetry 14, no. 10 (October 19, 2022): 2198. http://dx.doi.org/10.3390/sym14102198.
Full textGandhi, M. V., B. S. Thompson, S. B. Choi, and S. Shakir. "Electro-Rheological-Fluid-Based Articulating Robotic Systems." Journal of Mechanisms, Transmissions, and Automation in Design 111, no. 3 (September 1, 1989): 328–36. http://dx.doi.org/10.1115/1.3259003.
Full textKožar, Ivica, and Adnan Ibrahimbegović. "Finite element formulation of the finite rotation solid element." Finite Elements in Analysis and Design 20, no. 2 (June 1995): 101–26. http://dx.doi.org/10.1016/0168-874x(95)00014-k.
Full textKemal Öztorun, Namik. "A rectangular finite element formulation." Finite Elements in Analysis and Design 42, no. 12 (August 2006): 1031–52. http://dx.doi.org/10.1016/j.finel.2006.03.004.
Full textAgrawal, Om Prakash. "A GENERAL FRACTIONAL FINITE ELEMENT FORMULATION." IFAC Proceedings Volumes 39, no. 11 (January 2006): 141. http://dx.doi.org/10.3182/20060719-3-pt-4902.00024.
Full textHayata, K., K. Miura, and M. Koshiba. "Finite element formulation for lossy waveguides." IEEE Transactions on Microwave Theory and Techniques 36, no. 2 (1988): 268–76. http://dx.doi.org/10.1109/22.3515.
Full textKang, Yeon June, Bryce K. Gardner, and J. Stuart Bolton. "An axisymmetric poroelastic finite element formulation." Journal of the Acoustical Society of America 106, no. 2 (August 1999): 565–74. http://dx.doi.org/10.1121/1.428041.
Full textLe van, Anh, and Christian Wielgosz. "Finite element formulation for inflatable beams." Thin-Walled Structures 45, no. 2 (February 2007): 221–36. http://dx.doi.org/10.1016/j.tws.2007.01.015.
Full textDemir, Çiğdem, and Ömer Civalek. "Nonlocal Finite Element Formulation for Vibration." International Journal Of Engineering & Applied Sciences 8, no. 2 (August 19, 2016): 109. http://dx.doi.org/10.24107/ijeas.252149.
Full textIrudayaraj, Joseph, and Kamyar Haghighi. "I. THEORY AND FINITE ELEMENT FORMULATION." Drying Technology 11, no. 5 (January 1993): 900–927. http://dx.doi.org/10.1080/07373939308916876.
Full textIzamshah R.A., R., John Mo, and Song Lin Ding. "Finite Element Analysis of Machining Thin-Wall Parts." Key Engineering Materials 458 (December 2010): 283–88. http://dx.doi.org/10.4028/www.scientific.net/kem.458.283.
Full textBalah, Mohamed, and Hamdan N. Al-Ghamedy. "Finite element formulation of a third order laminated finite rotation shell element." Computers & Structures 80, no. 26 (October 2002): 1975–90. http://dx.doi.org/10.1016/s0045-7949(02)00222-5.
Full textRamesh, Binoj, and Antoinette M. Maniatty. "Stabilized finite element formulation for elastic–plastic finite deformations." Computer Methods in Applied Mechanics and Engineering 194, no. 6-8 (February 2005): 775–800. http://dx.doi.org/10.1016/j.cma.2004.06.025.
Full textKoch, S., H. De Gersem, and T. Weiland. "Magnetostatic Formulation With Hybrid Finite-Element, Spectral-Element Discretizations." IEEE Transactions on Magnetics 45, no. 3 (March 2009): 1136–39. http://dx.doi.org/10.1109/tmag.2009.2012654.
Full textYang, Yong, Chang He Li, and Fa Zhan Yang. "Mechanics Model and Machining Distortion Analysis for High Speed Milling of Titanium Alloy Aircraft Monolithic Component." Applied Mechanics and Materials 29-32 (August 2010): 354–59. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.354.
Full textBonghwan Kim, Lee, Chi-Woo, and 안국찬. "Finite element simulations of ballistic impact on monolithic glass." Journal of the Korean Society of Mechanical Technology 16, no. 3 (June 2014): 1477–82. http://dx.doi.org/10.17958/ksmt.16.3.201406.1477.
Full textJog, C. S., and G. S. J. Gautam. "A monolithic hybrid finite element strategy for nonlinear thermoelasticity." International Journal for Numerical Methods in Engineering 112, no. 1 (February 10, 2017): 26–57. http://dx.doi.org/10.1002/nme.5500.
Full textMarinkovic, Dragan, and Manfred Zehn. "Finite Element Formulation for Active Composite Laminates." American Journal of Engineering and Applied Sciences 8, no. 3 (March 1, 2015): 328–35. http://dx.doi.org/10.3844/ajeassp.2015.328.335.
Full textCihan, Mertcan, BlaŽ Hudobivnik, Fadi Aldakheel, and Peter Wriggers. "Virtual Element Formulation for Finite Strain Elastodynamics." Computer Modeling in Engineering & Sciences 129, no. 3 (2021): 1151–80. http://dx.doi.org/10.32604/cmes.2021.016851.
Full textZhao, MingHao, XiaoYing Yan, BingBing Wang, and QiaoYun Zhang. "Finite element formulation for piezoelectric semiconductor plates." Materials Today Communications 30 (March 2022): 103098. http://dx.doi.org/10.1016/j.mtcomm.2021.103098.
Full textSpacone, E., V. Ciampi, and F. C. Filippou. "Mixed formulation of nonlinear beam finite element." Computers & Structures 58, no. 1 (January 1996): 71–83. http://dx.doi.org/10.1016/0045-7949(95)00103-n.
Full textClough, Ray W. "Original formulation of the finite element method." Finite Elements in Analysis and Design 7, no. 2 (November 1990): 89–101. http://dx.doi.org/10.1016/0168-874x(90)90001-u.
Full textBarrenechea, Gabriel R., and Petr Knobloch. "Analysis of a group finite element formulation." Applied Numerical Mathematics 118 (August 2017): 238–48. http://dx.doi.org/10.1016/j.apnum.2017.03.008.
Full text