Academic literature on the topic 'Monolithic finite element formulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monolithic finite element formulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monolithic finite element formulation"
Gupta, Adhip, and C. S. Jog. "A Monolithic Finite Element Formulation for Magnetohydrodynamics Involving a Compressible Fluid." Fluids 7, no. 1 (January 7, 2022): 27. http://dx.doi.org/10.3390/fluids7010027.
Full textAntunes, A. R. E., P. R. M. Lyra, R. B. Willmersdorf, and S. M. A. Bastos. "An implicit monolithic formulation based on finite element formulation for incompressible Navier–Stokes equations." Journal of the Brazilian Society of Mechanical Sciences and Engineering 37, no. 1 (March 18, 2014): 199–210. http://dx.doi.org/10.1007/s40430-014-0155-x.
Full textSun, WaiChing. "A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain." International Journal for Numerical Methods in Engineering 103, no. 11 (April 30, 2015): 798–839. http://dx.doi.org/10.1002/nme.4910.
Full textKutlu, Akif. "Mixed finite element formulation for bending of laminated beams using the refined zigzag theory." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235, no. 7 (July 2021): 1712–22. http://dx.doi.org/10.1177/14644207211018839.
Full textПанасюк, Леонид, Leonid Panasyuk, Галина Кравченко, Galina Kravchenko, Елена Труфанова, Elena Trufanova, Инал Тарба, Inal Tarba, Лаша Цвейба, and Lasha Cveyba. "FINITE ELEMENT MODELLING OF INTERACTION BUILDING FRAME AND SLAB-PILE FOUNDATION." Construction and Architecture 7, no. 1 (April 19, 2019): 34–38. http://dx.doi.org/10.29039/article_5c646f16bffb38.56532696.
Full textLozovskiy, Alexander, Maxim A. Olshanskii, and Yuri V. Vassilevski. "A finite element scheme for the numerical solution of the Navier–Stokes/Biot coupled problem." Russian Journal of Numerical Analysis and Mathematical Modelling 37, no. 3 (June 1, 2022): 159–74. http://dx.doi.org/10.1515/rnam-2022-0014.
Full textChen, Xiangxiang, Xudong Chen, Andrew Chan, Yingyao Cheng, and Hongfan Wang. "A FDEM Parametric Investigation on the Impact Fracture of Monolithic Glass." Buildings 12, no. 3 (February 25, 2022): 271. http://dx.doi.org/10.3390/buildings12030271.
Full textGrabmaier, Sebastian, Matthias Jüttner, and Wolfgang Rucker. "Coupling of finite element method and integral formulation for vector Helmholtz equation." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, no. 4 (July 2, 2018): 1405–17. http://dx.doi.org/10.1108/compel-08-2017-0346.
Full textZoalkfl, Danial, Anton Chepurnenko, Batyr Yazyev, Aleksandr Ishchenko, and Stepan Litvinov. "Determination of temperature fields and stresses during the construction of a massive monolithic foundation slab of a wind turbine tower." E3S Web of Conferences 402 (2023): 12002. http://dx.doi.org/10.1051/e3sconf/202340212002.
Full textLiu, Chun Jie, Xi Wang, and De’an Wan. "Study on Angular Stiffness of Monolithic Flexible Joint." Advanced Materials Research 189-193 (February 2011): 1816–21. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1816.
Full textDissertations / Theses on the topic "Monolithic finite element formulation"
Chiang, Chen-Yu. "Transport in biological systems. Monolithic method for fluid-structure interaction." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS477.
Full textThe present work aims at developing a numerical solver for fluid-structure interaction (FSI) problems, especially those encountered in biology such as blood circulation in valved veins. Blood flow is investigated using anatomically and physically relevant models. The first aspect of FSI problems is related to management of algorithm stability. An Eulerian monolithic formulation based on the characteristic method unconditionally achieves stability and introduce a first order in time approximation with two distinct hyperelastic material models. The second aspect deals with between-solid domain contact such as that between valve leaflets during closure and in the closed state over a finite surface, which avoid vcusp tilting and back flow. A contact algorithm is proposed and validated using benchmarks. Computational study of blood flow in valved veins is investigated, once the solver was verified and validated. The 2D computational domain comprises a single basic unit or the ladder-like model of a deep and superficial veins communicating by a set of perforating veins. A 3D mesh of the basic unit was also built. Three-dimensional computation relies on high performance computing. Blood flow dynamics is strongly coupled to vessel wall mechanics. Deformable vascular walls of large veins and arteries are composed of three main layers (intima, media, and adventitia) that consist of composite material with a composition specific to each layer. In the present work, the wall rheology is assumed to be a Mooney-Rivlin material
El, Feghali Stéphanie. "Nouvelle formulation monolithique en élément finis stabilisés pour l'interaction fluide-structure." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00743488.
Full textSivess, Andrew Gregory. "Chebyshev polynomial based finite element stiffness matrix formulation." Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p1427762.
Full textLiu, Guanhui, and 刘冠辉. "Formulation of multifield finite element models for Helmholtzproblems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44204875.
Full textPASTOR, JORGE AURELIO SANTA CRUZ. "RESERVOIR MODELING THROUGH A COUPLED FINITE ELEMENT FORMULATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2082@1.
Full textA produção de hidrocarbonetos resulta na redução da pressão do reservatório( depletação ). À medida que a pressão do reservatório diminui, as tensôes efetivas aplicadas na matriz rochosa aumentam, provocando reduções na porosidade e na permeabilidade da rocha assim como redução de volume, esta última conhecida como compactação.A compactação do reservatório pode provocar subsidência da superfície com conseqüentes impactos ambientais e problemas em equipamentos localizados no poço, tais como revestimentos, e outros problemas associados, tais como produção de sólidos. No entanto, compactação não é sempre prejudicial porque ajuda a manter a pressão do reservatório e, conseqüentemente, a produtividade. O acoplamento fluxo-deformação é fundamental na análise deste problema. Este trabalho tem com objetivo discutir a teoria e as equações que modelam este processo acoplado, suas limitações e sua capacidade de representar corretamente os fenômenos físicos envolvidos.Além disto, foi desenvolvido um simulador numérico baseado no método dos elementos finitos, para a modelagem transiente de um fluxo monofásico através de um meio poroso, considerando-se o acoplamento fluxo do fluido,deformações e temperatura.O material rochoso é modelado segundo um modelo poroelástico. O simulador foi testado comparando resultados com resultados obtidos através de soluções analíticas.Além disto, uma simulção de fluxo em reservatório foi efetuada para avaliar a capacidade do simulador, tendo-se comparado os resultados com resultados encontrados na literatura. A análise foi feita considerando o overburden e o sideburden.Foi verificada uma ótima concordância entre os resultados.O simulador mostrou-se capaz de representar as variações de pressão não apenas decorrentes da difusão do fluido, mas também aquelas provocadas por variações de tensões totais. Em alguns casos, a variação de tensões totais no topo do reservatório é significativa,demonstrando que simuladores convencionais podem induzir erros significativos em termos de variações das pressões no fluido.
Prodution ofhydrocarbon often to a reduction in reservoir pressure. Depending upon the rock compressibility, this reduction in reservoir pressure causes substancial strains and eventual shear collapse. While reservoir pressure decreases the effective stress increases, induting porosity and permeability reduction changes and an overall volume decrease known as compaction. Compaction of reservoir may eventually be transmitted to the surface and cause vertical movements, known as subsidence. Compaction may have serious consequences upon well casing,and other associated problems, such as solid production. However, compaction is not always detrimental because it helps maitaining reservoir pressure and consequently, reservoir productivity. Hydromechaninical coupling is essential to analyze this problem.The aim of this work is to discuss the theory and develop the equations that governthis coupled process. The limitations and possibilities in representing the associated phenomena are highlighted. A numerical, finite element based, simulator was developed to model the single-phase flow through porous media taking into accout the hydrothermo-mechanical coupling. The rock material is assumed to behave as a poroelastic material.The results obtained by the computer simulator were compared with theorical solutions for the classical problem of uniaxial deformation test and for the stress concentration aroun inclined welbores in porous media. The results showed excellent agreement. A idealized reservoir simulation was carrierd out using the computer model and the results of pore pressure, total stresses and displacement changes were compared with results published in the literature, obtained by similar approaches. The comparisons showed very good agreement. In the simulations the presences of overburden, sideburden and underburden were recognized. The simulator represented well the changes in fluid pressure associated with both the diffusion process and the changes in total stresses. In some cases, the changes in total stresses at the top of the reservoir are significant which demonstrates the partial flaw of the conventional flow simulators that are not able to take this effect into account.
Liu, Guanhui. "Formulation of multifield finite element models for Helmholtz problems." Click to view the E-thesis via HKUTO, 2010. http://sunzi.lib.hku.hk/hkuto/record/B44204875.
Full textFREY, SERGIO LUIZ. "A FINITE ELEMENT FORMULATION FOR THE NAVIER-STOKES PROBLEM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19805@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Métodos estabilizados de elementos finitos são propostos e analisados para problemas de fluidos, com particular ênfase nas equações de Navier-Stokes incomprenssível. Após a apresentação da mecânica dos escoamentos dos fluidos, introduzimos no Capítulo 3, no contexto de problema de Stokes, as dificuldadas numéricas associadas ao método de Galerkin em problemas de fluidos e simulamos em sucesso alguns escoamentos lentos através de formulações finitos para estabilizadas. No capítulo 4, propomos uma nova formulação de elementos finitos para a equação da energia, mais precisamente para o modelo da advecção-difusão do calor. Graças a um novo desenho do parâmetro de estabilidade T, o qual permite adicionar difusão às regiões advectivas e difusivas-dominadas do escoamento de maneira diferemciada, obtivemos um bom desempenho novo método mesmo em situações de altíssimo número de Péclet (10(2) menor que Pe menor que 10 e (6)), conforme ilustram os testes numéricos realizados. Coletando as experiências adquiridas com modelos lineares de Stokes e da advencção-difusão, nos foi possível propor, analisar o erro e testar dois novos métodos estabilizados para o problema de Navier-Stokes transiente. Construídos de maneira a herdar as boas características de estabilidade dos métodos propostos apresentam bom desempenho em escoamentos fortemente advectivos, bem como não necessitam atender a priori à condição de Baduska-Brezzi. Através de um algoritmo preditor/ multi-corretor de integração do termo inercial da equação de movimento, estes ,métodos foram capazes de de simular de maneira precisa escoamentos de interesse em Mecânica(400 menor que Re< menor que 500), captando escoamentos secundários, tais como recirculações de fluido.
Stabilized methods for fluid problems are proposed and analysed with particular emphasis to the incompressible Navier-Stokes equations. We Begin in Chapter 2 introducing the balance equations of fluid Mechanics. Next. In Chapter 3, we discuss the numerical difficulties of the Galerkin method in fluids(in the contexto f the Stokes problem) and performance some succeful simulations of creeping flows, employing stabilized formulations. In Chapter 4, we propose a new finite element formulation for the energy equation, or more preciselly for the advective-diffusive model. Taking advantage of new design of the stability parameter T, which permits to add diffusion to advective and diffusive regions of the flow in a different way, we success to obtain a good performance of the new method in flows with very high Péclet numbers (10(2) lass than Pe lessa than 10(6)), as illustred at numerical testes performed. By collecting the Stokes and advective-diffusive experiences,it was possible to propose, analyse and test two new stabilized methods for the transient Navier-Stokes problem. These methods were built in a way to heritage the good characteristics showed by the stabilized methods introduced for the Stokes and adventive-diffusive models. The new methods propoposed have a good performance in high advective flows, besides there is no need to satisfy the Babuska-Brezzi condition. Employing a predictor/multi-corretor algorithm, we were able to simulate accruratly some useful flows(400 less than Re less than 500), such as fluid recirculations.
Pratap, Rudra 1964. "A NEW RESIDUAL FINITE-ELEMENT FORMULATION FOR ELASTODYNAMIC PROBLEMS." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276552.
Full textWang, Haitao, and 王海濤. "Formulation of finite element methods for determining singular stress fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243708.
Full textPORTO, ANA CRISTINA DOS SANTOS DA SILVA. "CAVITY BACKED SLOT ANTENNAS: A FINITE ELEMENT-BOUNDARY INTEGRAL FORMULATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5270@1.
Full textDevido às propriedades de banda larga e polarização circular, as antenas espirais tornaram-se bastante atrativas para diversos serviços de telecomunicações modernos e móveis. Neste trabalho uma antena espiral tipo fenda apoiada em uma cavidade cilíndrica metálica foi analisada. Por causa de sua geometria complexa, optou-se por um método numérico híbrido, realizado através de uma implementação de elementos mistos do método dos elementos finitos - integral de fronteira. Baseado nesta formulação, um programa computacional foi desenvolvido. Um grande esforço foi realizado a fim de escrever o programa de maneira que o armazenamento e as necessidades computacionais fossem mínimos, boa parte conseguida pela aplicação das condições de contorno na superfície metálica. Com o objetivo de melhor explorar a geometria do problema, definiu-se uma malha de elementos finitos onde a parte que cabia a abertura foi dividida em quadriláteros enquanto que no restante da superfície, elementos triangulares foram utilizados. Repetiu-se então esta malha ao longo da altura da cavidade, de maneira que hexaedros e prismas formaram a malha final. Para cada espécie de elemento, funções de base vetoriais específicas foram aplicadas. A fim de verificar a precisão do algoritmo, o mesmo programa computacional foi utilizado na análise de uma antena tipo fenda retangular, também apoiada em uma cavidade cilíndrica metálica.
Known for the properties of broadband and circular polarization, spiral antennas have become sufficiently attractive for services of modern and mobile telecommunications. In this work a cavity-backed slot spiral antenna was analyzed. Because of its complex geometry, it was chosen a hybrid numerical method, carried through an implementation of mixing elements of the finite elements - boundary integral method. Based in this formulation, a computer program was developed. A great effort was carried out in order to write the program thus the computational storage and necessities were minimum, good part obtained by application of the boundary conditions on the metallic surface. With the goal of better exploring the geometry of the problem, a mesh of finite elements was defined where the part that fit the aperture was divided into quadrilaterals, while that in the rest of the surface, triangular elements were used. By repeating this mesh along the height of the cavity, hexahedrals and prisms formed the final mesh. For each kind of element, specific vector base functions were applied. In order to verify the accuracy of the algorithm, the same computational program was used in the analysis of a cavity-backed slot rectangular antenna.
Books on the topic "Monolithic finite element formulation"
Carrera, Erasmo. Finite element analysis of structures through unified formulation. Chichester, West Sussex: John Wiley & Sons, Inc., 2014.
Find full textCarrera, Erasmo, Maria Cinefra, Enrico Zappino, and Marco Petrolo. Finite Element Analysis of Structures Through Unified Formulation. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118536643.
Full textSzabo, B. A. Introduction to finite element analysis: Formulation, verification, and validation. Hoboken, N.J: Wiley, 2011.
Find full textPramote, Dechaumphai, Wieting A. R, and Langley Research Center, eds. Thermal-structural finite element analysis using linear flux formulation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textPramote, Dechaumphai, Wieting A. R, and Langley Research Center, eds. Thermal-structural finite element analysis using linear flux formulation. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textCollins, J. D. A combined finite element-boundary element formulation for solution of axially symmetric bodies. Ann Arbor, Mich: University of Michigan, Radiation Laboratory, Dept. of Electrical Engineering and Computer Science, 1991.
Find full textUnited States. National Aeronautics and Space Administration., ed. A variational justification of the assumed natural strain formulation of finite elements. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Find full textWaldman, W. A penalty element formulation for calculating bulk stress. Melbourne, Australia: Aeronautical Research Laboratory, 1989.
Find full textGolla, David Frank. Dynamics of viscoelastic structures: a time-domain finite element formulation. [Downsview, Ont.]: [Institute for Aerospace Studies], 1985.
Find full textGolla, David Frank. Dynamics of viscoelastic structures: A time-domain finite element formulation. [Downsview, Ont.]: Institute for Aerospace Studies, 1986.
Find full textBook chapters on the topic "Monolithic finite element formulation"
Ida, Nathan. "Finite element formulation." In Numerical Modeling for Electromagnetic Non-Destructive Evaluation, 276–352. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-0560-7_8.
Full textSłużalec, Andrzej. "Finite-Element Formulation." In Introduction to Nonlinear Thermomechanics, 135–47. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1906-7_14.
Full textMarques, Severino P. C., and Guillermo J. Creus. "Viscoelastic Finite Element Formulation." In Computational Viscoelasticity, 77–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25311-9_9.
Full textPariseau, William G. "Finite element seepage formulation." In Notes on Numerical Modeling in Geomechanics, 63–66. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003166283-12.
Full textTzou, H. S. "Finite Element Formulation and Analyses." In Piezoelectric Shells, 405–56. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1783-8_10.
Full textNielsen, C. V., W. Zhang, L. M. Alves, N. Bay, and P. A. F. Martins. "Coupled Finite Element Flow Formulation." In Modeling of Thermo-Electro-Mechanical Manufacturing Processes, 11–36. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4643-8_3.
Full textTzou, Hornsen. "Finite Element Formulation and Analyses." In Piezoelectric Shells, 409–45. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1258-1_13.
Full textGan, Buntara S. "Finite Element Formulation of Beam Elements." In An Isogeometric Approach to Beam Structures, 61–126. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56493-7_3.
Full textGopalakrishnan, Srinivasan. "Introduction to Spectral Finite Element Formulation." In Elastic Wave Propagation in Structures and Materials, 357–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003120568-12.
Full textChattopadhyay, Adhir Baran, Shazia Hasan, and Snehaunshu Chowdhury. "Finite Element Formulation of Field Problems." In Advances in Intelligent Systems and Computing, 113–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7558-5_6.
Full textConference papers on the topic "Monolithic finite element formulation"
Ebna Hai, Bhuiyan Shameem Mahmood, Markus Bause, and Paul Kuberry. "Finite Element Approximation of the Extended Fluid-Structure Interaction (eXFSI) Problem." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7506.
Full textRochus, Ve´ronique, Gaetan Kerschen, and Jean-Claude Golinval. "Dynamic Analysis of the Nonlinear Behavior of Capacitive MEMS Using the Finite Element Formulation." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84994.
Full textEbna Hai, Bhuiyan Shameem Mahmood, and Markus Bause. "Adaptive Finite Elements Simulation Methods and Applications for Monolithic Fluid-Structure Interaction (FSI) Problem." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21379.
Full textEbna Hai, Bhuiyan Shameem Mahmood, and Markus Bause. "Adaptive Multigrid Methods for Extended Fluid-Structure Interaction (eXFSI) Problem: Part I — Mathematical Modelling." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53265.
Full textMiller, Samuel J., and Hakan Ozaltun. "Evaluation of U10Mo Fuel Plate Irradiation Behavior via Numerical and Experimental Benchmarking." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89588.
Full textJadaan, Osama M., Lynn M. Powers, and John P. Gyekenyesi. "Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-489.
Full textFatima, Arooj, Stefan Turek, Abderrahim Ouazzi, and Muhammad Aaqib Afaq. "An adaptive discrete Newton method for regularization-free Bingham model." In VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12389.
Full textKim, Cheol, and Dong-Yeub Lee. "Design Optimization of a Piezoelectric Fiber Actuator With a Natural Curvature." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33989.
Full textKim, Cheol, and Kun-Hyung Koo. "Development of a PZT Fiber/Piezo-Polymer Composite Actuator With Interdigitated Electrodes." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ad-23749.
Full textLandis, Chad M. "New finite element formulation for electromechanics." In SPIE's 9th Annual International Symposium on Smart Structures and Materials, edited by Christopher S. Lynch. SPIE, 2002. http://dx.doi.org/10.1117/12.475012.
Full textReports on the topic "Monolithic finite element formulation"
Curfman, L. V. A new finite element formulation for incompressible flow. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/26516.
Full textHong, Jung-Wuk. Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada582696.
Full textBochev, Pavel Blagoveston. Control volume finite element method with multidimensional edge element Scharfetter-Gummel upwinding. Part 1, formulation. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1020517.
Full textLanders, Joseph A., and Robert L. Taylor. An Augmented Alagrangian Formulation for the Finite Element Solution of Contact Problems. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada166649.
Full textRomkes, Albert, Serge Prudhomme, and J. T. Oden. Convergence Analysis of a Discontinuous Finite Element Formulation Based on Second Order Derivatives. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada439718.
Full textGlowinski, R., W. Kinton, and M. F. Wheeler. A Mixed Finite Element Formulation for the Boundary Controllability of the Wave Equation. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada226066.
Full textAlexander, A., J. T. Tzeng, W. H. Drysdale, and B. P. Burns. Effective Three-Dimensional (3-D) Finite Element Material Stiffness Formulation for Modeling Laminated Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada306454.
Full textMasud, Arif, and Mohammad Panahandeh. A Finite Element Formulation of Multi-Layered Shells for the Analysis of Laminated Composites. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada348947.
Full textYang, T. Y., and Alex T. Chen. Static and Dynamic Formulation of a Symmetrically Laminated Beam Finite Element for a Microcomputer. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada170885.
Full textJuanes, Ruben, and Tadeusz W. Patzek. Stabilized numerical solutions of three-phase porous media flow using a multiscale finite element formulation. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/834625.
Full text