To see the other types of publications on this topic, follow the link: Monoclonal.

Journal articles on the topic 'Monoclonal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Monoclonal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Panda, Manasi. "Rabies-Monoclonal Antibody - A Perspective." Journal of Communicable Diseases 54, no. 03 (September 30, 2022): 22–26. http://dx.doi.org/10.24321/0019.5138.202285.

Full text
Abstract:
Rabies is an acute viral zoonotic disease that affects the central nervous system (CNS) of all warm-blooded animals, including mammals. Research studies and experience from across the world have demonstrated that appropriate administration of a combination of (a) local wound treatment, (b) anti-rabies vaccination and (c) passive immunization have proved to be quite effective in preventing the occurrence of rabies. As far as passive immunization is concerned, polyclonal plasma-derived rabies immunoglobulins (RIG) pose a number of limitations with scarce supply, high cost, etc. amongst many others. On the contrary Rabies Monoclonal Antibodies (R-mAb) are much cheaper, permit longer-term storage, etc. and hence could offer a more standardized, accessible, affordable and equally efficacious and safer alternative to RIG. Accordingly, this article has tried to throw light on the transition from RIG to monoclonal antibody-based Post Exposure Prophylaxis (PEP) which has been recommended by the WHO strongly. The advantages, limitations and future scope of R-mAb have been discussed at length to give a comprehensive idea about this novel invention in the field of medicine.
APA, Harvard, Vancouver, ISO, and other styles
2

Bauvois, Adeline, Mélusine Larivière, Hervé Watier, and François Maillot. "Actualités des anticorps monoclonaux dans les maladies monogéniques aujourd’hui." médecine/sciences 35, no. 12 (December 2019): 1026–28. http://dx.doi.org/10.1051/medsci/2019203.

Full text
Abstract:
Les maladies monogéniques sont des maladies génétiques rares mais très nombreuses, avec une sévérité variable. Les premières utilisations des anticorps monoclonaux dans ces maladies remontent aux années 2000 et de nombreux essais sont désormais en cours. Les anticorps monoclonaux anti-(interleukine)IL-1β ont profondément transformé la prise en charge des maladies auto-inflammatoires en modulant la composante inflammatoire et en diminuant le risque d’amylose secondaire ; les anticorps monoclonaux anti-TNF-α et anti-IL-6 sont également prescrits dans ces maladies. Dans le syndrome hémolytique et urémique atypique lié à des défauts de régulation de la voie alterne du complément, l’éculizumab, un anticorps monoclonal anti-C5, a permis d’améliorer le pronostic rénal des patients traités. Plus récemment, le lanadélumab, un anticorps monoclonal anti-kallicréïne plasmatique, est venu renforcer l’arsenal thérapeutique des angiœdèmes héréditaires et le burosumab, un anticorps monoclonal anti-FGF23, celui du rachitisme hypophosphatémique lié à l’X. Ces exemples illustrent bien l’importance de l’utilisation des anticorps monoclonaux dans la prise en charge des maladies monogéniques, l’intérêt de considérer cette option thérapeutique dans ce domaine et la nécessité de poursuivre des recherches.
APA, Harvard, Vancouver, ISO, and other styles
3

Fujita, T., T. Kamato, and N. Tamura. "Characterization of functional properties of C4-binding protein by monoclonal antibodies." Journal of Immunology 134, no. 5 (May 1, 1985): 3320–24. http://dx.doi.org/10.4049/jimmunol.134.5.3320.

Full text
Abstract:
Abstract We prepared mouse monoclonal antibodies to human C4-binding protein (C4-bp) by fusing spleen cells from mice immunized with purified C4-bp to the mouse myeloma line P3U1. Of four monoclonal antibodies that reacted with intact C4-bp, two were specific for a 48K fragment, one of the chymotryptic cleavage products of C4-bp, and one was specific for another fragment (160K). The fourth monoclonal antibody did not react with either fragment. One of the monoclonals that reacted with the 48K fragment blocked the binding of C4-bp to cell-bound C4b. This monoclonal antibody (TK3) also inhibited two other functions of C4-bp, serving as an essential cofactor for C3b/C4b inactivator (I) in the cleavage of fluid-phase C4b and accelerating the decay of C2a from the C4b,2a complex. The other monoclonals had little or no effect on these activities of C4-bp. In addition, we found that the 48K fragment lost the binding affinity for C4b. However, it can function as a cofactor for I and as a decay-accelerator, although its activities were about 200 times weaker than intact C4-bp on a molar basis. The monoclonal antibody TK3 completely inhibited these activities of the 48K fragment. On the basis of these findings, we conclude that the functionally active site of C4-bp is located on the 48K fragment. Probably, the cofactor and decay-accelerating activities of C4-bp result from the binding of C4-bp to C4b.
APA, Harvard, Vancouver, ISO, and other styles
4

Velez, D., J. D. Macmillan, and L. Miller. "Production and use of monoclonal antibodies for identification of Bradyrhizobium japonicum strains." Canadian Journal of Microbiology 34, no. 1 (January 1, 1988): 88–92. http://dx.doi.org/10.1139/m88-018.

Full text
Abstract:
Thirteen murine hybridomas capable of producing monoclonal antibodies to somatic antigens on Bradyrhizobium japonicum were developed and an indirect enzyme-linked immunosorbent assay was used to test reactivity of the antibodies against 20 strains of B. japonicum. Although polyclonal antisera from mice immunized with strains of B. japonicum reacted with bacterial cells of all 20 strains, individual monoclonals were more specific. Some antibodies reacted with as few as 2 and one with as many as 11 strains. On the basis of reactivity with the set of 13 monoclonal antibodies, the 20 strains of B. japonicum could be divided arbitrarily into five groups. Three of five monoclonal antibodies tested reacted with bacteroids taken directly from soybean nodules. One monoclonal bound to cells of five species of Rhizobium, but none of the 13 reacted with gram-negative bacteria representing six other genera. Treatment of cells with reagents and heat indicated the chemical nature of the antigens to five of the monoclonals. Antigen reactive with one antibody was destroyed by periodate oxidation indicating that it was a polysaccharide. Two antigens were probably proteins as they could be digested by trypsin and denatured by heat. Two others were inactivated by all three treatments suggesting they were glycoproteins.
APA, Harvard, Vancouver, ISO, and other styles
5

Campbell, AM, P. Whitford, and RE Leake. "Human monoclonal antibodies and monoclonal antibody multispecificity." British Journal of Cancer 56, no. 6 (December 1987): 709–13. http://dx.doi.org/10.1038/bjc.1987.275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hanna, R. E. B., A. G. Trudgett, and A. Anderson. "Fasciola hepatica: development of monoclonal antibodies against somatic antigens and their characterization by ultrastructural localization of antibody binding." Journal of Helminthology 62, no. 1 (March 1988): 15–28. http://dx.doi.org/10.1017/s0022149x00011147.

Full text
Abstract:
ABSTRACTA series of monoclonal antibodies was prepared against tegumental and internal antigens ofFasciola hepaticaby immunizing mice with whole adult-fluke homogenates prior to harvesting the splenic lymphocytes for fusion. Preliminary screening by the Indirect Fluorescent Antibody technique indicated the occurrence of discrete groups of monoclonals differing from one another in tissue-specificity but within which IFA labelling patterns were fairly consistent. Representative hybridomas for 5 of these groups were stabilized and used to produce ascites fluid in mice. By application of an immunogold labelling technique it was possible to map the distribution of antigens for which each monoclonal antibody had affinity throughout the tissues of 4-week and 12-week flukes. Several monoclonals specifically labelled antigenic determinants on the important tegumental antigen T1. However the distribution of gold colloid labelling suggested that epitopes other than that normally exposed to the infected host were recognized; and several monoclonals specifically attached to T1 antigen in the tegument of juvenile worms only. The glycocalyx of the gut and excretory system of flukes shared T1 antigenicity with the tegument. Monoclonal antibodies were produced against an internal immunogen associated with ribosomes and heterochromatin in active protein-producing cells, and against interstitial material of adult flukes. Monoclonals against antigens in parenchymal cell cytoplasm and in mature vitelline cells were recognized but the corresponding hybridomas were not stabilized.
APA, Harvard, Vancouver, ISO, and other styles
7

Rieger, Paula Trahan. "Monoclonal Antibodies." American Journal of Nursing 87, no. 4 (April 1987): 469. http://dx.doi.org/10.2307/3470440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kosmas, C., H. Kalofonos, and A. A. Epenetos. "Monoclonal Antibodies." Drugs 38, no. 5 (November 1989): 645–57. http://dx.doi.org/10.2165/00003495-198938050-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

&NA;. "Monoclonal antibodies." Reactions Weekly &NA;, no. 1293 (March 2010): 36. http://dx.doi.org/10.2165/00128415-201012930-00100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

&NA;. "Monoclonal Antibodies." Journal of Pediatric Hematology/Oncology 25, no. 4 (April 2003): S5—S6. http://dx.doi.org/10.1097/00043426-200304000-00025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

&NA;. "Monoclonal Antibodies." Journal of Pediatric Hematology/Oncology 25, no. 4 (April 2003): S17—S18. http://dx.doi.org/10.1097/00043426-200304000-00036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Anderson, Philip O. "Monoclonal Antibodies." Breastfeeding Medicine 11, no. 3 (April 2016): 100–101. http://dx.doi.org/10.1089/bfm.2016.0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nowak, Thomas P. "Monoclonal Antibodies." American Journal of Clinical Oncology 10, no. 4 (August 1987): 278–80. http://dx.doi.org/10.1097/00000421-198708000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bourne, Debra. "Monoclonal future?" Companion Animal 22, no. 10 (October 2, 2017): 561. http://dx.doi.org/10.12968/coan.2017.22.10.561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ghobrial, Rafik M., Ronald W. Busuttil, and Jerzy W. Kupiec-Weglinski. "Monoclonal antibodies." Current Opinion in Organ Transplantation 2, no. 1 (October 1997): 82–88. http://dx.doi.org/10.1097/00075200-199710000-00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rosen, Steven T., Elyse A. Lambiase, Yixing Ma, James A. Radosevich, and Alan L. Epstein. "Monoclonal antibodies." Postgraduate Medicine 77, no. 4 (March 1985): 129–34. http://dx.doi.org/10.1080/00325481.1985.11698922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rabin, Brace S. "Monoclonal antibodies." Postgraduate Medicine 79, no. 1 (January 1986): 293–303. http://dx.doi.org/10.1080/00325481.1986.11699254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

La Pine, Timothy R., and Harry R. Hill. "Monoclonal antibodies." Seminars in Pediatric Infectious Diseases 12, no. 1 (January 2001): 64–70. http://dx.doi.org/10.1053/spid.2001.19241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mulshine, James. "Monoclonal Antibodies." Chest 89, no. 4 (April 1986): 355S. http://dx.doi.org/10.1378/chest.89.4_supplement.355s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kemshead, J. "Monoclonal evolution." Trends in Biotechnology 15, no. 5 (May 1997): 195. http://dx.doi.org/10.1016/s0167-7799(97)82756-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Borek, F. "Monoclonal antibodies." Journal of Immunological Methods 77, no. 1 (February 1985): 175. http://dx.doi.org/10.1016/0022-1759(85)90197-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Howland, J. L. "Monoclonal antibodies." Biochemical Education 23, no. 4 (October 1995): 223. http://dx.doi.org/10.1016/0307-4412(95)90177-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Carter, Philip B., Kim Holly Beegle, and Douglas H. Gebhard. "Monoclonal Antibodies." Veterinary Clinics of North America: Small Animal Practice 16, no. 6 (November 1986): 1171–79. http://dx.doi.org/10.1016/s0195-5616(86)50135-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cowden, Jessica, and Sarah K. Parker. "Monoclonal Antibodies." Pediatric Infectious Disease Journal 25, no. 6 (June 2006): 553–55. http://dx.doi.org/10.1097/01.inf.0000223443.80696.5b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Drakeman, Donald L., and Paul K. Wallace. "Monoclonal antibodies." Emerging Drugs 4, no. 1 (January 1999): 355–65. http://dx.doi.org/10.1517/14728214.4.1.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stephenson, J. "Monoclonal Milestone." JAMA: The Journal of the American Medical Association 285, no. 10 (March 14, 2001): 1283—b—1283. http://dx.doi.org/10.1001/jama.285.10.1283-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Stephenson, Joan. "Monoclonal Milestone." JAMA 285, no. 10 (March 14, 2001): 1283. http://dx.doi.org/10.1001/jama.285.10.1283-jwm10002-3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Geskin, Larisa J. "Monoclonal Antibodies." Dermatologic Clinics 33, no. 4 (October 2015): 777–86. http://dx.doi.org/10.1016/j.det.2015.05.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Buchsbaum, Donald J. "Monoclonal antibodies." International Journal of Radiation Oncology*Biology*Physics 17 (January 1989): 84–85. http://dx.doi.org/10.1016/0360-3016(89)90573-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Melamed, M. D., and C. E. Bradley. "Monoclonal antibodies." Current Opinion in Immunology 1, no. 5 (June 1989): 929–36. http://dx.doi.org/10.1016/0952-7915(89)90075-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Koch, C., and J. Bennedsen. "Monoclonal antibodies." Current Opinion in Immunology 2, no. 3 (February 1990): 385–91. http://dx.doi.org/10.1016/0952-7915(89)90146-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chatenoud, L. "Monoclonal antibodies." Current Opinion in Immunology 2, no. 2 (January 1989): 246–48. http://dx.doi.org/10.1016/0952-7915(89)90195-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Buchsbaum, Donald J. "Monoclonal antibodies." International Journal of Radiation Oncology*Biology*Physics 19 (January 1990): 92. http://dx.doi.org/10.1016/0360-3016(90)90591-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Buchsbaum, Donald J. "Monoclonal antibodies." International Journal of Radiation Oncology*Biology*Physics 21 (January 1991): 82. http://dx.doi.org/10.1016/0360-3016(91)90373-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lubkin, Margaret, Matthew Shallice, Julie Nyhus, Louis Leong, and Birte Aggeler. "Recombinant Rabbit Monoclonal Antibodies to Study Apoptosis and Apoptotic Pathways (132.4)." Journal of Immunology 184, no. 1_Supplement (April 1, 2010): 132.4. http://dx.doi.org/10.4049/jimmunol.184.supp.132.4.

Full text
Abstract:
Abstract Flow cytometry a tool for studying apoptosis and apoptotic pathways. Using monoclonal antibodies for flow cytometry leads to high specificity for the detection of the target epitope of interest, limiting the use of flow cytometry to available mouse monoclonal antibodies. Here we present high quality recombinant rabbit monoclonal antibodies that do not rely on hybridoma cell lines, but are made with a proprietary recombinant technology to obtain cloned antibodies. These rabbit monoclonals were compared to other available antibodies to demonstrate high specificity and affinity to their targets. We examined lot-to-lot consistency using the same antibody for flow cytometry, western blot and immunocytochemistry. In this study two rabbit monoclonal antibodies involved in apoptotic pathways, Cleaved Caspase-3[Asp175] and p53[pS15] were examined. The p53 antibody is the phosphorylated form of p53 [pS15], which in turn induces p53 Upregulated Modulator of Apoptosis (PUMA), the result being apoptosis through mitochondrial degradation. We performed western blot, and immunocytochemistry studies to show high specificity for both antibodies as well as obtain spatial resolution within the cell.
APA, Harvard, Vancouver, ISO, and other styles
36

Sellwood, Jane, and Lynn Smith. "Rapid Detection of Poliovirus from Waters Using Monoclonal Antibodies." Water Science and Technology 21, no. 3 (March 1, 1989): 299–301. http://dx.doi.org/10.2166/wst.1989.0123.

Full text
Abstract:
Poliovirus is present in many types of water in the environment. A rapid detection method for the presence of Poliovirus could be relevant to water management. Virus components are present in cell culture from 6-18 hours after infection. The indirect immunofluorescent staining technique can be used to detect the components. Monoclonal antibodies may provide specific and sensitive reagents for this test. Two of over 50 mouse monoclonal antibodies screened were able to recognise and attach to Poliovirus 3 infected cells. The time at which fluorescence was detected was dependent on the initial virus concentration. These two monoclonals recognise ‘early' produced structural protein before its configuration into a mature capsid.
APA, Harvard, Vancouver, ISO, and other styles
37

Gyotoku, Y., M. Abdelmoula, F. Spertini, S. Izui, and P. H. Lambert. "Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice." Journal of Immunology 138, no. 11 (June 1, 1987): 3785–92. http://dx.doi.org/10.4049/jimmunol.138.11.3785.

Full text
Abstract:
Abstract A MRL strain bearing the autosomal recessive mutant gene, lpr (lymphoproliferation), spontaneously develops, in addition to a lupus-like syndrome, unique serological and pathological manifestations. Production of high titers of IgG rheumatoid factors (RF) may be related to the formation of extremely large amounts of cryoglobulins and the development of tissue lesions such as necrotizing polyarteritis, arthritis, and glomerulonephritis. To analyze more directly the relationship of IgG RF to the development of cryoglobulins and tissue injuries, we have established four monoclonal IgG RF secreting hybridomas from unimmunized MRL-lpr/lpr mice and determined their pathogenic effects in normal strains of mice. All the monoclonal IgG RF obtained in this study were of the IgG3 subclass and generated cryoglobulins. However, the fact that not only IgG3 Rf monoclonals but also four of five non-RF IgG3 monoclonals were able to form cryoglobulins, which were composed exclusively of each IgG3 monoclonal, indicates that the IgG3 molecule has a unique physicochemical property to self-associate via nonimmunological interaction and the ability to form cryoglobulins. When the in vivo pathogenic activities of these IgG3 RF and non-RF monoclonals were examined, three of IgG3 RF monoclonals with the specificity to IgG2a were able to induce extensive pathologic manifestations including peripheral vasculitis and glomerulonephritis characteristic of patients with cryoglobulinemia. Our results indicate that the IgG3 itself, independently of its specificity, could be a potential source of cryoglobulins and IgG3 RF, combined with its activity of cryoglobulin formation, may play a significant role in the development of glomerulonephritis and cutaneous vascular lesions of ears and foot pads observed frequently in aged MRL-lpr/lpr mice.
APA, Harvard, Vancouver, ISO, and other styles
38

Tam, Christina, Luisa Cheng, Xiaohua He, Paul Merrill, David Hodge, and Larry Stanker. "A Monoclonal–Monoclonal Antibody Based Capture ELISA for Abrin." Toxins 9, no. 10 (October 18, 2017): 328. http://dx.doi.org/10.3390/toxins9100328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zonneveld, Anton-Jan van, Harry Veerman, Just P. J. Brakenhoff, Lucien A. Aarden, Jean-Francois Cajot, and Hans Pannekoek. "Mapping of Epitopes on Human Tissue-Type Plasminogen Activator with Recombinant Deletion Mutant Proteins." Thrombosis and Haemostasis 57, no. 01 (1987): 082–86. http://dx.doi.org/10.1055/s-0038-1651067.

Full text
Abstract:
SummaryAn antigen assay based on a monoclonal antibody directed against the light chain of tissue-type plasminogen activator (t-PA) was developed to quantify seven recombinant (r) t-PA deletion mutant proteins. These recombinant proteins were then employed to map different epitopes on t-PA which interact with a panel of twenty-three monoclonal anti-t-PA antibodies. Twenty were directed against domains on the heavy chain, two against the “finger” domain, three against the “epidermal growth factor-like” domain, five against the kringle 1 domain, and ten against the kringle 2 domain. Only three monoclonal anti-t-PA antibodies interact with the light chain. The finding that the epitopes of each of the monoclonals could be determined with the deletion mutant proteins supports the hypothesis of autonomous folding of structural domains and emphasizes the validity of the use of the recombinant t-PA-deletion mutant proteins for structure-function studies.
APA, Harvard, Vancouver, ISO, and other styles
40

Streicher, H. Z., F. Cuttitta, G. K. Buckenmeyer, H. Kawamura, J. Minna, and J. A. Berzofsky. "Mapping the idiotopes of a monoclonal anti-myoglobin antibody with syngeneic monoclonal anti-idiotypic antibodies: detection of a common idiotope." Journal of Immunology 136, no. 3 (February 1, 1986): 1007–14. http://dx.doi.org/10.4049/jimmunol.136.3.1007.

Full text
Abstract:
Abstract A panel of syngeneic monoclonal anti-idiotypic antibodies was prepared by immunizing A.SW mice with keyhole limpet hemocyanin-coupled A.SW monoclonal anti-myoglobin (HAL 19, IgG1) and screening the cloned hybridomas for production of IgG2 binding to idiotype but not to certain other anti-myoglobin antibodies of the same subclass in an ELISA. With these antibodies, we identified three nonoverlapping idiotopes, based on three clusters of monoclonal anti-idiotopes that mutually inhibit within each cluster, but not between clusters (Cluster I: S2, S6, S8; Cluster II: S5, S7; Cluster III: S9). Only Cluster II antibodies block the binding of myoglobin to HAL 19 and so identify a binding site-related idiotope(s). Binding of both Cluster II monoclonals (S5 and S7) to Hal 19 is inhibited by a rabbit anti-idiotype that we previously reported detects a common cross-reactive anti-myoglobin idiotope in immune sera. However, only one of these, S7, and not S5, identifies an idiotope that is present on 20 to 30% of A.SW anti-myoglobin antibodies in immune sera and ascites. The panel of syngeneic monoclonal anti-idiotype antibodies also detects new idiotopes not detected by the rabbit anti-idiotype. The development of a panel of syngeneic monoclonal anti-idiotypic antibodies to different clusters of idiotopes on the same antibody molecule, including one that identifies a major common idiotope in immune sera, should allow the analysis of possible idiotype network regulation in vivo and in vitro in a completely syngeneic system.
APA, Harvard, Vancouver, ISO, and other styles
41

Henry, Richard, John Begent, and Rosamund Barbara Pedley. "Monoclonal Antibody Administration." Clinical Pharmacokinetics 23, no. 2 (August 1992): 85–89. http://dx.doi.org/10.2165/00003088-199223020-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

&NA;. "Monoclonal antibody OKTcdr4a." Inpharma Weekly &NA;, no. 1129 (March 1998): 8. http://dx.doi.org/10.2165/00128413-199811290-00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

&NA;. "Antineoplastics/monoclonal antibodies." Reactions Weekly &NA;, no. 1227 (November 2008): 5–6. http://dx.doi.org/10.2165/00128415-200812270-00016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Greenfield, Edward A. "Generating Monoclonal Antibodies." Cold Spring Harbor Protocols 2022, no. 8 (August 2022): pdb.top103036. http://dx.doi.org/10.1101/pdb.top103036.

Full text
Abstract:
Antibodies that are produced by hybridomas are known as monoclonal antibodies. Here we introduce methods for generating and screening monoclonal antibodies, including developing the screening procedure and producing hybridomas.
APA, Harvard, Vancouver, ISO, and other styles
45

Susla, Gregory M., and Richard B. Dew. "Antiendotoxin Monoclonal Antibodies." Drug Safety 11, no. 4 (October 1994): 215–22. http://dx.doi.org/10.2165/00002018-199411040-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

O'Mahony, Deirdre. "Monoclonal antibody therapy." Frontiers in Bioscience 11, no. 1 (2006): 1620. http://dx.doi.org/10.2741/1909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tami, Joseph A., Michael D. Parr, Stephen A. Brown, and John S. Thompson. "Monoclonal antibody technology." American Journal of Health-System Pharmacy 43, no. 11 (November 1, 1986): 2816–25. http://dx.doi.org/10.1093/ajhp/43.11.2816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

"Monoclonal Antibody TfR Monoclonal Antibody." Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 36, no. 1 (February 2017): 35. http://dx.doi.org/10.1089/mab.2017.0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xu, Xiaobin. "C-termini Analysis of Monoclonal Antibody Fragmentation." Open Access Journal of Pharmaceutical Research 1, no. 1 (2017). http://dx.doi.org/10.23880/oajpr-16000102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Howland Alvarez, Ivon, Yolanda Cruz Gómez, and Jorge Grisaldo Zambrano. "Daño renal asociado con componentes monoclonales débiles en pacientes cubanos con gammapatía monoclonal." Revista Mexicana de Urología 78, no. 4 (August 30, 2018). http://dx.doi.org/10.48193/rmu.v78i4.86.

Full text
Abstract:
OBJETIVO: Analizar la relación entre las bandas monoclonales detectadas en la electroforesis de proteínas séricas y el daño renal. MATERIALES Y MÉTODOS: Estudio observacional, descriptivo y retrospectivo efectuado a partir de la revisión de los resultados de electroforesis de proteínas efectuado en el Laboratorio de Diagnóstico Clínico del Centro de Investigaciones Médico-Quirúrgicas de La Habana, Cuba, entre enero de 2010 y diciembre de 2016. Criterios de inclusión: pacientes con componente monoclonal detectado en la electroforesis y confirmado por inmunofijación, y pacientes sin componente monoclonal en la electroforesis de proteínas, pero detectado en la inmunofijación realizada por impresión diagnóstica de mieloma múltiple. Los estudios de electroforesis de proteínas en suero y orina de 24 horas se efectuaron en gel de agarosa, con el sistema automatizado Hydrasys 2 (Sebia®). Para el análisis estadístico se utilizaron las pruebas de Kolmogorov-Smirnov, χ2 y t de Student. Se consideró estadísticamente significativo el IC95% (α = 0.05). RESULTADOS: Se registraron 73 pacientes con gammapatías monoclonales. En 17 se reportaron concentraciones de inmunoglobulinas en los límites de referencia. La mayoría de los pacientes tuvo concentración elevada de creatinina en suero (129 ± 46 μmol/L), aunque solo 7/73 tenía diagnóstico de insuficiencia renal asociada con el componente monoclonal. La concentración de inmunoglobulinas (IgG, IgA e IgM), según sus valores de referencia, se relacionó con el tipo de componente monoclonal detectado. Se encontró un caso de mieloma IgD, con inicio de insuficiencia renal y estudio de electroforesis de proteínas séricas normal. CONCLUSIONES: La inmunofijación sigue siendo un método útil para establecer el diagnóstico de gammapatías monoclonales, sobre todo cuando la electroforesis de proteínas no sugiera esta alteración y pueda verse afectada la función renal. PALABRAS CLAVE: Gammapatía monoclonal; electroforesis de proteínas; inmunofijación; insuficiencia renal.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography