Academic literature on the topic 'Monochromatization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monochromatization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Monochromatization"
ZHOU YUN-SONG, RAN JING-HUI, CHEN JIN-CHANG, and YI XIANG-DONG. "A NEW METHOD OF NEUTRON MONOCHROMATIZATION." Acta Physica Sinica 46, no. 5 (1997): 929. http://dx.doi.org/10.7498/aps.46.929.
Full textBurdilov, Alexander, Gleb Dovzhenko, Ivan Bataev, and Anatoly Bataev. "Methods of synchrotron radiation monochromatization (research review)." Metal Working and Material Science 26, no. 3 (September 13, 2024): 208–33. http://dx.doi.org/10.17212/1994-6309-2024-26.3-208-233.
Full textJark, Werner. "Concepts for flexible and efficient monochromatization of X-rays by refraction to a relative bandwidth of the order of 0.5%." Journal of Synchrotron Radiation 20, no. 1 (November 10, 2012): 190–93. http://dx.doi.org/10.1107/s0909049512041556.
Full textSergueev, Ilya, Konstantin Glazyrin, Markus G. Herrmann, Pavel Alexeev, Hans-Christian Wille, Olaf Leupold, Andrew F. May, et al. "High-pressure nuclear inelastic scattering with backscattering monochromatization." Journal of Synchrotron Radiation 26, no. 5 (August 23, 2019): 1592–99. http://dx.doi.org/10.1107/s1600577519008853.
Full textSurdu-Bob, C. C., and G. Musa. "The kinetics of monochromatization of plasma light emission." Journal of Physics D: Applied Physics 41, no. 17 (August 7, 2008): 172004. http://dx.doi.org/10.1088/0022-3727/41/17/172004.
Full textSchief, Hansjörg, Vittorio Marsico, Klaus Kuhnke, and Klaus Kern. "Monochromatization of atomic waves by nanoscopic echelette gratings." Surface Science 364, no. 3 (September 1996): L631—L637. http://dx.doi.org/10.1016/0039-6028(96)00794-7.
Full textZhang, Hongxia, Juanjuan Liu, Yufeng Zhang, Jinchen Wang, Daye Xu, Peng Cheng, Hongliang Wang, and Wei Bao. "Highly aligned pyrolytic graphite blades for neutron monochromatization." Journal of Instrumentation 19, no. 06 (June 1, 2024): P06036. http://dx.doi.org/10.1088/1748-0221/19/06/p06036.
Full textToellner, T. S., A. Alatas, and A. H. Said. "Six-reflection meV-monochromator for synchrotron radiation." Journal of Synchrotron Radiation 18, no. 4 (May 26, 2011): 605–11. http://dx.doi.org/10.1107/s0909049511017535.
Full textCotton, J. P., and J. Teixeira. "Time of flight as a monochromatization technique for sans." Physica B+C 136, no. 1-3 (January 1986): 103–5. http://dx.doi.org/10.1016/s0378-4363(86)80031-6.
Full textKozhevnikov, S. V. "Neutron monochromatization using spin-flip and spatial beam splitting." Physica B: Condensed Matter 283, no. 4 (June 2000): 305–7. http://dx.doi.org/10.1016/s0921-4526(00)00320-3.
Full textDissertations / Theses on the topic "Monochromatization"
VIEIRA, MARCO ROGERIO. "DEVELOPING A VERSATILE MONOCHROMATIZATION SYSTEM FOR X-RAYS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15703@1.
Full textFUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
A investigação da dinâmica da interação de raios-X de alta energia e moléculas de interesse biológico impõe que a energia dos raios-X seja bem definida, de modo que se possa estabelecer a dependência entre os padrões de ionização e fragmentação molecular com a energia do feixe incidente. Com este objetivo, um sistema versátil foi projetado, construído e caracterizado para ser utilizado como monocromador do feixe de amplo espectro produzido por um tubo de raios-X modelo ISOVOLT 160 M2. O sistema de monocromatização consiste de um par de cristais montados sobre duas mesas transladoras fixadas a um goniômetro de alta precisão, fabricados pela Newport Corporation. Esta configuração permite movimentos de translação independentes para os dois cristais, associados a um movimento de rotação do sistema como um todo com respeito à direção de incidência do feixe de raios-X. Estes movimentos, juntamente com uma escolha conveniente do par de cristais para uma dada faixa de energia - o que depende do material e da orientação dos cristais -, permitirão a cobertura de uma região muito extensa de energias de raios-X, de alguns até cerca de 100 kV. Quando este sistema se encontrar totalmente operacional, será possível realizar uma grande variedade de experiências nos campos da Física de Colisões e das Radiações, tais como, fragmentação molecular induzida por raios- X, fluorescência e difração seletivas em cristais, avaliação em tempo real de danos induzidos por raios-X em tecidos biológicos, testes não destrutivos em materiais, dentre muitas outras aplicações.
The investigation of the dynamics of the interaction of high-energy X-rays and molecules of biological interest requires the energy of the X-rays to be well defined, so that one can establish the dependence of the molecular ionization and fragmentation patterns as functions of the incident beam energy. For this purpose, a versatile system for the monochromatization of the broadband beams produced by an ISOVOLT 160M2 X-ray tube has been designed, constructed and characterized. The monochromator consists of a pair of crystals mounted on two translator tables fixed on a high-precision goniometer, all manufactured by Newport Corp. This configuration allows independent translational motions for the two crystals, associated to a rotational motion of the whole system in respect to the direction of the incident X-ray beam. These motions, together with a convenient choice of the pair of crystals for a given energy range - which depends on the material and orientation of the crystals -, will allow us to cover a wide range of X-rays energies, roughly from few to around 100 keV. However, it has not yet been possible to distinguish energy-defined X-ray peaks with the complete two-crystal system. Some of the possible causes may be related to the large angular dispersion of the incident beam and to the need of more accurate adjustments of the parallelism between both crystals. When this system is fully operational, it will be possible to perform a large variety of experiments in the fields of collision and radiation physics, such as, molecular fragmentation by Xrays, selective fluorescence and diffraction in crystals, real-time evaluation of Xray- induced damage in biological tissues, non-destructive testing of materials, among many other aplications.
Zhang, Zhandong. "Interaction region optics design of a monochromatization scheme for direct s-channel Higgs production at FCC-ee." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP139.
Full textThe FCC-ee offers the potential to measure the electron Yukawa coupling via direct s-channel Higgs production at a centre-of-mass (CM) energy of about 125 GeV. This measurement is significantly facilitated if the CM energy spread of electron-positron collisions can be reduced to a level comparable to the Standard Model Higgs boson's natural width of 4.1 MeV without substantial loss in luminosity. Achieving this reduction in collision-energy spread is possible through the “monochromatization” concept. The basic idea consists of creating opposite correlations between spatial position and energy deviation within the colliding beams, which can be accomplished in beam-optics terms by introducing a nonzero dispersion function with opposite signs for the two beams at the interaction point. Since the first proposal in 2016, the monochromatization implementation at the FCC-ee has been continuously improved, starting from preliminary parametric studies. In this thesis, a detailed study of the interaction region optics design has been conducted for this newly proposed collision mode, exploring different potential configurations and their implementation in the FCC-ee global lattice, along with beam dynamics simulations and performance evaluations including the “beamstrahlung” impact
Book chapters on the topic "Monochromatization"
"monochromatization, n." In Oxford English Dictionary. 3rd ed. Oxford University Press, 2023. http://dx.doi.org/10.1093/oed/6335813211.
Full textConference papers on the topic "Monochromatization"
Zeni, Gabriele, Fabio Frassetto, Antonio Vanzo, Stefano Bonora, and Luca Poletto. "Bendable grating for monochromatization in the extreme-ultraviolet." In X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation VI, edited by Thomas Tschentscher, Luc Patthey, Marco Zangrando, and Kai Tiedtke. SPIE, 2023. http://dx.doi.org/10.1117/12.2665625.
Full textAlp, E. E., E. Witthoff, T. Mooney, H. Homma, and M. Kentjana. "Layered Optics for Nuclear Monochromatization of Synchrotron Radiation." In Physics of X-Ray Multilayer Structures. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/pxrayms.1992.mc12.
Full textIbraimov, Nariman S. "Filtration and monochromatization of synchrotron radiation based on capillary optics." In Optical Science, Engineering and Instrumentation '97, edited by Richard B. Hoover and F. P. Doty. SPIE, 1997. http://dx.doi.org/10.1117/12.277679.
Full textHort, O., L. Jurkovičová, J. Vábek, M. Albrecht, M. Staněk, O. Finke, L. Ben Ltaief, et al. "Advances in HHG for User Operations: Novel Techniques for Monochromatization." In Compact EUV & X-ray Light Sources. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/euvxray.2024.eth3a.2.
Full textAdischev, Y. N., K. V. Afanasiev, A. V. Vukolov, and Alexander P. Potylitsyn. "Monochromatization of high-current nanosecond pulse source of x-ray bremsstrahlung." In SPIE Proceedings, edited by Sultan B. Dabagov. SPIE, 2007. http://dx.doi.org/10.1117/12.741842.
Full textvan der Meer, R., B. Krishnan, I. V. Kozhevnikov, M. J. De Boer, B. Vratzov, H. M. J. Bastiaens, J. Huskens, et al. "Improved resolution for soft-x-ray monochromatization using lamellar multilayer gratings." In SPIE Optical Engineering + Applications, edited by Christian Morawe, Ali M. Khounsary, and Shunji Goto. SPIE, 2011. http://dx.doi.org/10.1117/12.892687.
Full textWagner, Volker, and Pavel Mikula. "Use of focusing by bent perfect Si crystals for short-wavelength neutron monochromatization." In San Diego '92, edited by Charles F. Majkrzak and James L. Wood. SPIE, 1992. http://dx.doi.org/10.1117/12.130653.
Full textSchaefers, F., M. Grioni, J. Wood, H. Van Brug, E. J. Puik, M. Dapor, and F. Marchetti. "Application Of W/Si Multilayers For Monochromatization Of Soft X-Ray Synchrotron Radiation." In 32nd Annual Technical Symposium, edited by Charles F. Majkrzak. SPIE, 1989. http://dx.doi.org/10.1117/12.948760.
Full textSchaefers, F., M. Grioni, J. Wood, H. van Brug, E. J. Puik., M. Dapor, and F. Marchetti. "Application Of W/Si Multilayers For Monochromatization Of Soft X-Ray Synchrotron Radiation." In 32nd Annual Technical Symposium, edited by Finn E. Christensen. SPIE, 1988. http://dx.doi.org/10.1117/12.948766.
Full textMarshall, Gerald F. "Monochromatization By Multilayered Optics On A Cylindrical Reflector And On An Ellipsoidal Focusing Ring." In 30th Annual Technical Symposium, edited by D. Keith Bowen and Larry V. Knight. SPIE, 1986. http://dx.doi.org/10.1117/12.936621.
Full textReports on the topic "Monochromatization"
Seryi, A. Monochromatization Option for NLC Collisions(LCC-0134). Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/826823.
Full text