Journal articles on the topic 'Mono Lake excursion'

To see the other types of publications on this topic, follow the link: Mono Lake excursion.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 33 journal articles for your research on the topic 'Mono Lake excursion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kent, D. V., S. R. Hemming, and B. D. Turrin. "Laschamp Excursion at Mono Lake?" Earth and Planetary Science Letters 197, no. 3-4 (April 2002): 151–64. http://dx.doi.org/10.1016/s0012-821x(02)00474-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liddicoat, Joseph C. "Mono Lake Excursion in Mono Basin, California, and at Carson Sink and Pyramid Lake, Nevada." Geophysical Journal International 108, no. 2 (February 1992): 442–52. http://dx.doi.org/10.1111/j.1365-246x.1992.tb04627.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Benson, Larry, Joseph Liddicoat, Joseph Smoot, Andrei Sarna-Wojcicki, Robert Negrini, and Steve Lund. "Age of the Mono Lake excursion and associated tephra." Quaternary Science Reviews 22, no. 2-4 (February 2003): 135–40. http://dx.doi.org/10.1016/s0277-3791(02)00249-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liddicoat, Joseph C. "Research Note Mono Lake Excursion In the Lahontan Basin, Nevada." Geophysical Journal International 125, no. 2 (May 1996): 630–35. http://dx.doi.org/10.1111/j.1365-246x.1996.tb00025.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Negrini, Robert M., Daniel T. McCuan, Robert A. Horton, James D. Lopez, William S. Cassata, James E. T. Channell, Kenneth L. Verosub, et al. "Nongeocentric axial dipole field behavior during the Mono Lake excursion." Journal of Geophysical Research: Solid Earth 119, no. 4 (April 2014): 2567–81. http://dx.doi.org/10.1002/2013jb010846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Voelker, Antje H. L., Pieter M. Grootes, Marie-Josee Nadeau, and Michael Sarnthein. "Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity." Radiocarbon 42, no. 3 (2000): 437–52. http://dx.doi.org/10.1017/s0033822200030368.

Full text
Abstract:
By correlating the climate records and radiocarbon ages of the planktonic foraminifera N. pachyderma(s) of deep-sea core PS2644 from the Iceland Sea with the annual-layer chronology of the GISP2 ice core, we obtained 80 marine 14C calibration points for the interval 11.4-53.3 ka cal BP. Between 27 and 54 ka cal BP the continuous record of 14C/cal age differences reveals three intervals of highly increased 14C concentrations coincident with low values of paleomagnetic field intensity, two of which are attributed to the geomagnetic Mono Lake and Laschamp excursions (33.5-34.5 ka cal BP with maximum 550 marine δ14C, and 40.3-41.7 ka cal BP with maximum 1215 marine δ14C, respectively). A third maximum (marine δ14C: 755) is observed around 38 ka cal BP and attributed to the geomagnetic intensity minimum following the Laschamp excursion. During all three events the A14C values increase rapidly with maximum values occurring at the end of the respective geomagnetic intensity minimum. During the Mono Lake Event, however, our A14C values seem to underestimate the atmospheric level, if compared to the 36Cl flux measured in the GRIP ice core (Wagner et al. 2000) and other records. As this excursion coincides with a meltwater event in core PS2644, the underestimation is probably caused by an increased planktonic reservoir age. The same effect also occurs from 38.5 to 40 ka cal BP when the meltwater lid of Heinrich Event 4 affected the planktonic record.
APA, Harvard, Vancouver, ISO, and other styles
7

Mankinen, Edward A., and Carl M. Wentworth. "Mono Lake excursion recorded in sediment of the Santa Clara Valley, California." Geochemistry, Geophysics, Geosystems 5, no. 2 (February 2004): n/a. http://dx.doi.org/10.1029/2003gc000592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, Maxwell, Monika Korte, Richard Holme, Ingo Wardinski, and Sydney Gunnarson. "Earth’s magnetic field is probably not reversing." Proceedings of the National Academy of Sciences 115, no. 20 (April 30, 2018): 5111–16. http://dx.doi.org/10.1073/pnas.1722110115.

Full text
Abstract:
The geomagnetic field has been decaying at a rate of ∼5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30–50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today’s field, with an intensity structure similar to today’s South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.
APA, Harvard, Vancouver, ISO, and other styles
9

Ticich, T., L. Lundberg, D. K. Pal, C. M. Smith, G. F. Herzog, R. K. Moniot, C. Tuniz, W. Savin, T. H. Kruse, and J. C. Liddicoat. "10Be contents of Mono Lake sediments: search for enhancement during a geomagnetic excursion." Geophysical Journal International 87, no. 2 (November 1, 1986): 487–92. http://dx.doi.org/10.1111/j.1365-246x.1986.tb06633.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cassidy, John, and Mimi J. Hill. "Absolute palaeointensity study of the Mono Lake excursion recorded by New Zealand basalts." Physics of the Earth and Planetary Interiors 172, no. 3-4 (February 2009): 225–34. http://dx.doi.org/10.1016/j.pepi.2008.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Thompson, Gregory Richard, Lindsey D. Medina, Martin Matthew Jimenez, Esteban Macias, Cristina Rivas, Rob Negrini, and Manuel R. Palacios-Fest. "Correlation of climate records between a Great Basin lake and a Greenland ice core during the Mono Lake excursion." Quaternary International 387 (November 2015): 147–48. http://dx.doi.org/10.1016/j.quaint.2015.01.180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nowaczyk, Norbert R., Jiabo Liu, and Helge W. Arz. "Records of the Laschamps geomagnetic polarity excursion from Black Sea sediments: magnetite versus greigite, discrete sample versus U-channel data." Geophysical Journal International 224, no. 2 (October 23, 2020): 1079–95. http://dx.doi.org/10.1093/gji/ggaa506.

Full text
Abstract:
SUMMARY Magnetostratigraphic investigation of sediment cores from two different water depths in the SE Black Sea based on discrete samples, and parallel U-channels in one of the cores, yielded high-resolution records of geomagnetic field variations from the past about 68 ka. Age constrains are provided by three tephra layers of known age, accelerator mass spectrometry 14C dating, and by tuning element ratios obtained from X-ray fluorescence scanning to the oxygen isotope record from Greenland ice cores. Sedimentation rates vary from a minimum of ∼5 cm ka−1 in the Holocene to a maximum of ∼50 cm ka−1 in glacial marine isotope stage 4. Completely reversed inclinations and declinations as well as pronounced lows in relative palaeointensity around 41 ka provide evidence for the Laschamps geomagnetic polarity excursion. In one of the investigated cores also a fragmentary record of the Mono Lake excursion at 34.5 ka could be revealed. However, the palaeomagnetic records are more or less affected by greigite, a diagenetically formed magnetic iron sulphide. By definition of an exclusion criterion based on the ratio of saturation magnetization over volume susceptibility, greigite-bearing samples were removed from the palaeomagnetic data. Thus, only 25–55 per cent of the samples were left in the palaeomagnetic records obtained from sediments from the shallower coring site. The palaeomagnetic record from the deeper site, based on both discrete samples and U-channels, is much less affected by greigite. The comparison of palaeomagnetic data shows that the major features of the Laschamps polarity excursion were similarly recovered by both sampling techniques. However, several intervals had to be removed from the U-channel record due to the presence of greigite, carrying anomalous directions. By comparison to discrete sample data, also some directional artefacts in the U-channel record, caused by low-pass filtering of the broad magnetometer response functions, averaging across fast directional and large amplitude changes, can be observed. Therefore, high-resolution sampling with discrete samples should be the preferred technique when fast geomagnetic field variations, such as reversals and excursions, shall be studied from sedimentary records in the very detail.
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Jiabo, Norbert Nowaczyk, Ute Frank, and Helge Arz. "Geomagnetic paleosecular variation record spanning from 40 to 20 ka – implications for the Mono Lake excursion from Black Sea sediments." Earth and Planetary Science Letters 509 (March 2019): 114–24. http://dx.doi.org/10.1016/j.epsl.2018.12.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kissel, C., H. Guillou, C. Laj, J. C. Carracedo, S. Nomade, F. Perez-Torrado, and C. Wandres. "The Mono Lake excursion recorded in phonolitic lavas from Tenerife (Canary Islands): Paleomagnetic analyses and coupled K/Ar and Ar/Ar dating." Physics of the Earth and Planetary Interiors 187, no. 3-4 (August 2011): 232–44. http://dx.doi.org/10.1016/j.pepi.2011.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Makaroğlu, Özlem, Norbert R. Nowaczyk, Kadir K. Eriş, and M. Namık Çağatay. "High-resolution palaeomagnetic record from Sea of Marmara sediments for the last 70 ka." Geophysical Journal International 222, no. 3 (June 5, 2020): 2024–39. http://dx.doi.org/10.1093/gji/ggaa281.

Full text
Abstract:
SUMMARY Magnetostratigraphic and geochemical analyses were performed on two sediment cores recovered from the Sea of Marmara to investigate geomagnetic field variations over the last 70 ka. A chronology for each of the two cores was developed from eight AMS 14C datings, tephrochronology, and tuning of Ca concentrations with stadials and interstadials observed in Greenland ice core oxygen isotope data. Based on the age models, cores MD01–2430 and MRS-CS19 reach back to 70 and 32 ka, respectively. High average sedimentation rates of 43 cm kyr–1 for core MD01–2430 and 68 cm kyr–1 for core MRS-CS19 allow high-resolution reconstruction of geomagnetic field variations for the Sea of Marmara. Mineral magnetic properties are sensitive to glacioeustatic sea level changes and palaeoclimate variations in this region, reflecting the variable palaeoenvironmental conditions of the Sea of Marmara during last 70 ka. Despite the impairment of the palaeomagnetic record in some stratigraphic intervals due to early diagenesis, relative palaeointensity variations in the Sea of Marmara sediments correlate well with similar records derived from other regions, such as the nearby Black Sea and the GLOPIS-75 stack. The directional record derived from the Sea of Marmara cores exhibits typical palaeosecular variation patterns, with directional anomalies at 41 and 18 ka, representing the Laschamps and postulated Hilina Pali excursions, respectively. Both directional anomalies are also associated with palaeointensity minima. A further palaeointensity minimum at 34.5 ka is likely related to the Mono Lake excursion, with no directional deviation documented in the Sea of Marmara palaeomagnetic record so far.
APA, Harvard, Vancouver, ISO, and other styles
16

Conway, F. Michael, Jimmy F. Diehl, William I. Rose, and Otoniel Matías. "Age and Magma Flux of Santa María Volcano, Guatemala: Correlation of Paleomagnetic Waveforms with the 28,000 to 25,000 yr B.P. Mono Lake Excursion." Journal of Geology 102, no. 1 (January 1994): 11–24. http://dx.doi.org/10.1086/629645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cox, Stephen E., Kenneth A. Farley, and Sidney R. Hemming. "Insights into the age of the Mono Lake Excursion and magmatic crystal residence time from (U‐Th)/He and 230Th dating of volcanic allanite." Earth and Planetary Science Letters 319-320 (February 2012): 178–84. http://dx.doi.org/10.1016/j.epsl.2011.12.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

González-López, Alicia, María Luisa Osete, Saioa A. Campuzano, Alberto Molina-Cardín, Pablo Rivera, and Francisco Javier Pavón-Carrasco. "Eccentric Dipole Evolution during the Last Reversal, Last Excursions, and Holocene Anomalies. Interpretation Using a 360-Dipole Ring Model." Geosciences 11, no. 11 (October 23, 2021): 438. http://dx.doi.org/10.3390/geosciences11110438.

Full text
Abstract:
The eccentric dipole (ED) is the next approach of the geomagnetic field after the generally used geocentric dipole. Here, we analyzed the evolution of the ED during extreme events, such as the Matuyama-Brunhes polarity transition (~780 ka), the Laschamp (~41 ka) and Mono Lake (~34 ka) excursions, and during the time of two anomalous features of the geomagnetic field observed during the Holocene: the Levantine Iron Age Anomaly (LIAA, ~1000 BC) and the South Atlantic Anomaly (SAA, analyzed from ~700 AD to present day). The analysis was carried out using the paleoreconstructions that cover the time of the mentioned events (IMMAB4, IMOLEe, LSMOD.2, SHAWQ-Iron Age, and SHAWQ2k). We found that the ED moves around the meridian plane of 0–180° during the reversal and the excursions; it moves towards the region of the LIAA; and it moves away from the SAA. To investigate what information can be extracted from its evolution, we designed a simple model based on 360-point dipoles evenly distributed in a ring close to the inner core boundary that can be reversed and their magnitude changed. We tried to reproduce with our simple model the observed evolution of the ED, and the total field energy at the Earth’s surface. We observed that the modeled ED moves away from the region where we set the dipoles to reverse. If we consider that the ring dipoles could be related to convective columns in the outer core of the Earth, our simple model would indicate the potential of the displacement of the ED to give information about the regions in the outer core where changes start for polarity transitions and for the generation of important anomalies of the geomagnetic field. According to our simple model, the regions in which the most important events of the Holocene occur, or in which the last polarity reversal or excursion begin, are related to the regions of the Core Mantle Boundary (CMB), where the heat flux is low.
APA, Harvard, Vancouver, ISO, and other styles
19

Nowaczyk, Norbert R., and Martin Antonow. "High-resolution magnetostratigraphy of four sediment cores from the Greenland Sea-I. Identification of the Mono Lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events." Geophysical Journal International 131, no. 2 (November 1997): 310–24. http://dx.doi.org/10.1111/j.1365-246x.1997.tb01224.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cassata, William S., Brad S. Singer, and John Cassidy. "Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand." Earth and Planetary Science Letters 268, no. 1-2 (April 2008): 76–88. http://dx.doi.org/10.1016/j.epsl.2008.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Krainov, M., E. Bezrukova, A. Shchetnikov, and E. Kerber. "First Data on Gothenburg and Mono Lake Excursions in Paleomagnetic Records from Bottom Sediments of Transbaikal Lakes (Exemplified by Baunt Lake)." Доклады академии наук 481, no. 4 (August 2018): 407–9. http://dx.doi.org/10.31857/s086956520001842-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mangerud, Jan, Reidar Løvlie, Steinar Gulliksen, Anne-Karin Hufthammer, Eiliv Larsen, and Vidar Valen. "Paleomagnetic correlations between Scandinavian Ice-Sheet fluctuations and Greenland Dansgaard–Oeschger events, 45,000–25,000 yr B.P." Quaternary Research 59, no. 2 (March 2003): 213–22. http://dx.doi.org/10.1016/s0033-5894(03)00010-3.

Full text
Abstract:
AbstractTwo paleomagnetic excursions, the Skjong correlated with the Laschamp (about 41,000 GISP2 yr B.P.) and the Valderhaug correlated with the Mono Lake (about 34,000 GISP2 yr B.P.), have been identified in stratigraphic superposition in laminated clay deposited in ice-dammed lakes in three large caves in western Norway. During both periods the margin of the Scandinavian Ice Sheet advanced and reached the continental shelf beyond the outermost coastline. The mild, 4000-yr-long Ålesund interstade, when the coast and probably much of the hinterland were ice-free, separated the two glacial advances. The two paleomagnetic excursions have also been indirectly identified as increased fluxes of 36Cl and 10Be in the GRIP ice core, Greenland. This article presents a correlation between ice-margin fluctuations of the Scandinavian Ice Sheet and the stratigraphy of GRIP/GISP cores, using the paleomagnetic excursions and the 36Cl and 10Be peaks and thus circumventing the application of different dates or time scales. Some of the fluctuations of the Scandinavian Ice Sheet were of the “Allerød/Younger Dryas type” in the sense that its margin retreated during mild interstades on Greenland and readvanced during cold stades. However, some fluctuations were apparently not in phase with the Greenland climate.
APA, Harvard, Vancouver, ISO, and other styles
23

Krainov, M. A., E. V. Bezrukova, A. A. Shchetnikov, and E. V. Kerber. "First Data on the Gothenburg and Mono Lake Excursions in Paleomagnetic Records from Bottom Sediments of Lakes of Transbaikalia (Exemplified by Baunt Lake)." Doklady Earth Sciences 481, no. 2 (August 2018): 980–83. http://dx.doi.org/10.1134/s1028334x18080068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

McHargue, Lanny R., Paul E. Damon, and Douglas J. Donahue. "Enhanced cosmic-ray production of10Be coincident with the Mono Lake and Laschamp Geomagnetic Excursions." Geophysical Research Letters 22, no. 5 (March 1, 1995): 659–62. http://dx.doi.org/10.1029/95gl00169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

CHANNELL, J. "Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin)." Earth and Planetary Science Letters 244, no. 1-2 (April 15, 2006): 378–93. http://dx.doi.org/10.1016/j.epsl.2006.01.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lund, S., L. Benson, R. Negrini, J. Liddicoat, and S. Mensing. "A full-vector paleomagnetic secular variation record (PSV) from Pyramid Lake (Nevada) from 47–17 ka: Evidence for the successive Mono Lake and Laschamp Excursions." Earth and Planetary Science Letters 458 (January 2017): 120–29. http://dx.doi.org/10.1016/j.epsl.2016.09.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Scheidt, Stephanie, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, et al. "A 62 kyr geomagnetic palaeointensity record from the Taymyr Peninsula, Russian Arctic." Geochronology 4, no. 1 (January 28, 2022): 87–107. http://dx.doi.org/10.5194/gchron-4-87-2022.

Full text
Abstract:
Abstract. This work presents unprecedented, high-resolution palaeomagnetic data from the sedimentary record of Lake Levinson-Lessing, the deepest lake in northern central Siberia. Palaeomagnetic analyses were carried out on 730 discrete samples from the upper 38 m of the 46 m long core Co1401, which was recovered from the central part of the lake. Alternating field demagnetization experiments were carried out to obtain the characteristic remanent demagnetization. The relative palaeointensity is determined using the magnetic susceptibility, the anhysteretic remanent magnetization, and the isothermal remanent magnetization for normalization of the partial natural remanent magnetization. The chronology of Co1401 derives from correlation of the relative palaeointensity of 642 discrete samples with the GLOPIS-75 reference curve, accelerated mass spectrometer radiocarbon ages, and optically stimulated luminescence dating. This study focuses on the part > 10 ka but also presents preliminary results for the younger part of the core. The record includes the geomagnetic excursions Laschamps and Mono Lake and resolves sufficient geomagnetic features to establish a chronology that continuously covers the last ∼ 62 kyr. The results reveal continuous sedimentation at high rates between 45 and 95 cm kyr−1. The low variability of the magnetic record compared to datasets of reference records with lower sedimentation rates may be due to a smoothing effect associated with the lock-in depths. Because Co1401 was cored without core segment overlap the horizontal component of the characteristic remanent magnetization can only be used with caution. Nevertheless, the magnetic record of Co1401 is exceptional as it is the only high-resolution record of relative palaeointensity and palaeosecular variations from the Arctic tangent cylinder going back to ∼ 62 ka.
APA, Harvard, Vancouver, ISO, and other styles
28

Nowaczyk, Norbert R., and Jochen Knies. "Magnetostratigraphic results from the eastern Arctic Ocean: AMS14C ages and relative palaeointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions." Geophysical Journal International 140, no. 1 (January 2000): 185–97. http://dx.doi.org/10.1046/j.1365-246x.2000.00001.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Voelker, Antje H. L., Michael Sarnthein, Pieter M. Grootes, Helmut Erlenkeuser, Carlo Laj, Alain Mazaud, Marie-Josée Nadeau, and Markus Schleicher. "Correlation of Marine 14C Ages from the Nordic Seas with the GISP2 Isotope Record: Implications for 14C Calibration Beyond 25 ka BP." Radiocarbon 40, no. 1 (1997): 517–34. http://dx.doi.org/10.1017/s0033822200018397.

Full text
Abstract:
We present two new high-resolution sediment records from the southwestern Iceland and Norwegian Seas that were dated by numerous 14C ages up to 54 14C ka bp. Based on various lines of evidence, the local 14C reservoir effect was restricted to 400–1600 yr. The planktic stable isotope records reveal several meltwater spikes that were sampled with an average time resolution of 50 yr in PS2644 and 130 yr in core 23071 during isotope stage 3. Most of the δ18O spikes correlate peak-by-peak to the stadials and cold rebounds of the Dansgaard-Oeschger cycles in the annual-layer counted GISP2 ice core, with the major spikes reflecting the Heinrich events 1–6. This correlation indicates large fluctuations in the calibration of 14C ages between 20 and 54 14C ka bp. Generally the results confirm the 14C age shifts as predicted by the geomagnetic model of Laj, Mazaud and Duplessy (1996). However, the amplitude and speed of the abrupt decrease and subsequent major increase of our 14C shifts after 45 14C ka bp clearly exceed the geomagnetic prediction near 40–43 and 32–34 calendar (cal) ka bp. At these times, the geomagnetic field intensity minima linked to the Laschamp and the Mono Lake excursions and confirmed by a local geomagnetic record, probably led to a sudden increase in cosmogenic 14C and 10Be production, giving rise to excess 14C in the atmosphere of up to 1200%.
APA, Harvard, Vancouver, ISO, and other styles
30

Laj, Carlo, Hervé Guillou, and Catherine Kissel. "Dynamics of the earth magnetic field in the 10–75 kyr period comprising the Laschamp and Mono Lake excursions: New results from the French Chaîne des Puys in a global perspective." Earth and Planetary Science Letters 387 (February 2014): 184–97. http://dx.doi.org/10.1016/j.epsl.2013.11.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Korte, Monika, Maxwell C. Brown, Sanja Panovska, and Ingo Wardinski. "Robust Characteristics of the Laschamp and Mono Lake Geomagnetic Excursions: Results From Global Field Models." Frontiers in Earth Science 7 (April 30, 2019). http://dx.doi.org/10.3389/feart.2019.00086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Jiabo, Norbert R. Nowaczyk, Sanja Panovska, Monika Korte, and Helge W. Arz. "The Norwegian‐Greenland Sea, the Laschamps, and the Mono Lake Excursions Recorded in a Black Sea Sedimentary Sequence Spanning From 68.9 to 14.5 ka." Journal of Geophysical Research: Solid Earth 125, no. 8 (August 2020). http://dx.doi.org/10.1029/2019jb019225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Pedro, Palermo. "Estudios de variaciones paleoseculares del campo magnético terrestre registradas en la patagonia argentina." RIDAA Tesis Unicen, May 20, 2022. http://dx.doi.org/10.52278/3089.

Full text
Abstract:
El objetivo de esta tesis es llevar a cabo estudios paleomagnéticos y de magnetismo de rocas para analizar las propiedades de una serie de registros sedimentarios localizados en la Patagonia (Argentina). La localización de los sitios estudiados es clave para reconstruir los cambios del campo geomagnético en el pasado, teniendo en cuenta la deficiente distribución de registros en el Hemisferio Sur. Además, la proximidad de la Anomalía del Atlántico Sur (SAA), así como las características particulares determinadas en el Hemisferio Sur, a partir de los estudios desarrollados en esta tesis, permitirán identificar diferencias en la evolución de dicho campo en el extremo sur de Sud América, con respecto al Hemisferio Norte. Los trabajos de investigación contenidos en este trabajo se llevaron a cabo en el Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, CONICET – UNCPBA – CICPBA). En particular, la Laguna Cháltel fue estudiada en el marco del Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO), con la participación de investigadores del Geopolar, grupo de trabajo de la Universidad de Bremen (Alemania). La laguna Carmen fue uno de los sitios enmarcados en el proyecto Estudios Paleomagnéticos y Paleoambientales del Sudeste de la Provincia de Buenos Aires y Patagonia Norte (PICT 1713), y se contó con la participación de investigadores del Instituto de Geociencias Básicas, Aplicadas y Ambientales de Bs. As (IGEBA-CONICET). Finalmente, el afloramiento Río Valdéz, forma parte de los objetivos del Proyecto Estudios Geofísicos y Paleoclimáticos Aplicados a Lagunas de la República Argentina (PIP 0573); el trabajo de campo ii y de gabinete fue llevado a cabo en colaboración con investigadores del Instituto de Geociencias Básicas, Aplicadas y Ambientales de Bs. As (IGEBACONICET) y del Centro Austral de Investigaciones Científicas (CADICCONICET). El primer capítulo contiene un desarrollo teórico sobre el concepto de campo magnético terrestre, sus elementos y características. Se aborda los conceptos de variaciones temporarias, variaciones seculares, excursiones y reversiones del campo magnético terrestre. En el segundo capítulo, se lleva a cabo la introducción teórica de los conceptos involucrados con el origen, registro y estudio del magnetismo remanente natural. En particular, se desarrolla el concepto de magnetización remanente natural, haciendo hincapié en la diferencia entre magnetización primaria y secundaria. Posteriormente se detallan las magnetizaciones impartidas en el laboratorio, enumerando los diferentes parámetros asociados, los cuales permitirán la caracterización de los minerales magnéticos involucrados. A continuación, se detallan los principios vinculados con la metodología de muestreo, medición y representación de los estudios paleomagnéticos, resaltando los estudios en sedimentos lacustres. Finalmente, se enuncian brevemente conceptos vinculados al método de datación mediante radiocarbono. En el tercer capítulo se detallan los estudios desarrollados en testigos correspondientes al período Holoceno Tardío pertenecientes a dos lagunas (Carmen y Cháltel). Se construye un registro del vector paleomagnético completo (inclinación, declinación y paleointensidad relativa) derivado de una iii serie de testigos de sedimentos de la Laguna Cháltel (Santa Cruz, Argentina). Posteriormente, se llevan a cabo estudios de magnetismo de rocas y paleomagnéticos de dos testigos de sedimentos colectados en la laguna Carmen (Tierra del Fuego, Argentina). Rock-magnetic and paleomagnetic studies on Late-Holocene sediments from Laguna Cháltel (Patagonia, Argentina) Journal of South American Earth Sciences 90 (2019) 204–215 Pedro Palermo, María A. Irurzun, Claudia S.G. Gogorza, Ana M. Sinito, Christian Ohlendorf, Bernd Zolitscha A continuous Late Holocene paleosecular variation record from Carmen Lake (Tierra del Fuego, Argentina) Physics of the Earth and Planetary Interiors 280 (2018) 40–52 Claudia S.G. Gogorza, María A. Irurzun, María J. Orgeira, Pedro Palermo, María Llera El cuarto capítulo detalla los estudios de magnetismo de rocas y paleomagnéticos del afloramiento Río Valdéz (Tierra del Fuego, Argentina). Se destacan las determinaciones en dichos registros de las excursiones de Laschamp y Mono Lake. Se hace una breve reseña de los estudios geofísicos desarrollados en el área. A full-vector paleomagnetic secular variation record from 55,000 to 33,000 cal. years BP from Río Valdéz glaciolacustrine outcrop (Tierra del Fuego, Argentina) Physics of the Earth and Planetary Interiors 318 (2021) 106768 Pedro Palermo, Claudia Gogorza, María J. Orgeira, María De Bernardi, María A. Irurzun, Ana M. Sinito, Romina Sanci, Andrea Coronato Late Pleistocene glaciolacustrine MIS 3 record at Fagnano Lake, Central Tierra del Fuego, southern Argentina Quaternary Research, https://doi.org/10.1017/qua.2020.93 iv Romina Sanci, María J. Orgeira, Andrea Coronato, Rita Tófalo, Héctor O. Panarello, Diego Quiroga, Ramiro López, Pedro Palermo, Claudia S. Gogorza Geophysical methods applied to Quaternary studies in glacial environments: Río Valdez outcrop, Tierra del Fuego, Argentina. Prezzi, C. B., Orgeira, M. J., Coronato, A. M. J., Quiroga, D. R. A., Ponce, J. F., Núñez Demarco, P. A. and Palermo, P., 2019. Quaternary International, 525. doi.org/10.1016/j.quaint.2019.07.022 En el capítulo quinto se lleva a cabo el análisis y discusión de los resultados obtenidos, recalcando las características locales determinadas a partir de los estudios desarrollados en la tesis y los análisis comparativos con registros a nivel mundial. En el capítulo sexto se elaboran las conclusiones de esta serie de trabajos y se detallan los trabajos futuros y en desarrollo.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography