Academic literature on the topic 'Monkey visuomotor control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Monkey visuomotor control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Monkey visuomotor control"

1

Zhang, Yan, Xue Wang, Steven L. Bressler, Yonghong Chen, and Mingzhou Ding. "Prestimulus Cortical Activity is Correlated with Speed of Visuomotor Processing." Journal of Cognitive Neuroscience 20, no. 10 (October 2008): 1915–25. http://dx.doi.org/10.1162/jocn.2008.20132.

Full text
Abstract:
Response time (RT) is an important behavioral measure of the overall efficacy of sensorimotor processing and is known to vary significantly from trial to trial. Past work on how stimulus evoked cortical responses contribute to RT variability has helped delineate the stages of neuronal information processing. Much less is known about how the state of the brain immediately preceding the stimulus onset (prestimulus) affects RT. We addressed this problem by analyzing data from three macaque monkeys trained to perform a visuomotor pattern discrimination task. Local field potentials were recorded from up to 16 bipolar surface-to-depth electrodes widely distributed over one cerebral hemisphere in each monkey. The degree of linear correlation between RT and prestimulus spectral power was determined over a wide range of frequencies. In the prefrontal cortex, prestimulus power in the beta range (14–30 Hz) was negatively correlated with RT in two monkeys, suggesting a possible role of activity in this frequency range in the mediation of top-down control of visuomotor processing. In the sensorimotor cortex, prestimulus power in the beta range was positively correlated with RT in two monkeys, consistent with the hypothesis that oscillations in this range support the maintenance of steady-state motor output. In visual occipital and temporal lobe areas, prestimulus power in the alpha/low beta range (8–20 Hz) showed positive correlations with RT in three monkeys, possibly reflecting a spatially specific disengagement of visual anticipatory attention. Through measurement of prestimulus spectral coherence, it was further determined that sites showing similar patterns of correlation between spectral power and RT were also linked together in synchronized networks.
APA, Harvard, Vancouver, ISO, and other styles
2

Boussaoud, D. "Primate premotor cortex: modulation of preparatory neuronal activity by gaze angle." Journal of Neurophysiology 73, no. 2 (February 1, 1995): 886–90. http://dx.doi.org/10.1152/jn.1995.73.2.886.

Full text
Abstract:
1. This study investigated whether the neuronal activity of a cortical area devoted to the control of limb movements is affected by variations in eye position within the orbit. Two rhesus monkeys were trained to perform a conditional visuomotor task with an instructed delay period while maintaining gaze on a fixation point. 2. The experimental design required each monkey to put its hand on a metal touch pad located at arm's length and fixate a small spot of light presented on a computer screen. Then a visual cue came on, at the fixation point or elsewhere, the color of which instructed the monkey to move its limb to one of two touch pads according to a conditional rule. A red cue meant a movement to the left, whereas a green one instructed a movement to the right. The cue lasted for a variable delay period (1-3 s), and the monkey had to wait for its offset, the go signal, before performing the correct response. The fixation point and the cues were presented at various screen locations in a combination that allowed examination of whether eye position and/or target position modulate the neuronal activity. Because the monkeys' heads were fixed, all changes in eye position reflected movements in a craniocentric, head-centered, coordinate space. 3. The activity of single neurons was recorded from dorsal premotor cortex (PMd). For most neurons (79%), the activity during the instructed delay period (set-related activity) reflects the direction of the upcoming limb movement but varies significantly with eye position.(ABSTRACT TRUNCATED AT 250 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
3

Raos, Vassilis, Maria-Alessandra Umiltá, Vittorio Gallese, and Leonardo Fogassi. "Functional Properties of Grasping-Related Neurons in the Dorsal Premotor Area F2 of the Macaque Monkey." Journal of Neurophysiology 92, no. 4 (October 2004): 1990–2002. http://dx.doi.org/10.1152/jn.00154.2004.

Full text
Abstract:
We investigated the properties of neurons located in the distal forelimb field of dorsal premotor area F2 of macaque monkey using a behavioral paradigm for studying the neuronal discharge during observation (object fixation condition) and grasping of different 3-dimensional objects with and without visual guidance of the movement (movement in light and movement in dark conditions, respectively). The main result is that almost all studied neurons were selective for both the type of prehension and the wrist orientation required for grasping an object. Three categories of neurons were found: purely motor, visually modulated, and visuomotor neurons. The discharge of purely motor neurons was not affected by either object presentation or by the visual feedback of the hand approaching to and interacting with the object. Visually modulated neurons presented a different discharge in the 2 movement conditions, this determining a decrease in selectivity for the grip and wrist orientation in the movement in dark condition. Visuomotor neurons typically discharged during the object fixation task even in the absence of any grasping movement. Nine of them also displayed a different discharge rate between the 2 movement conditions. Congruence was observed between the neuron response during the most effective type of prehension and the neuron response during observation of the object requiring that particular prehension. These results indicate an important role of F2 in the control of goal-related hand movements.
APA, Harvard, Vancouver, ISO, and other styles
4

Tankus, Ariel, and Itzhak Fried. "Visuomotor Coordination and Motor Representation by Human Temporal Lobe Neurons." Journal of Cognitive Neuroscience 24, no. 3 (March 2012): 600–610. http://dx.doi.org/10.1162/jocn_a_00160.

Full text
Abstract:
The division of cortical visual processing into distinct dorsal and ventral streams is a key concept in primate neuroscience [Goodale, M. A., & Milner, A. D. Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25, 1992; Steele, G., Weller, R., & Cusick, C. Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys. Journal of Comparative Neurology, 306, 495–520, 1991]. The ventral stream is usually characterized as a “What” pathway, whereas the dorsal stream is implied in mediating spatial perception (“Where”) and visually guided actions (“How”). A subpathway emerging from the dorsal stream and projecting to the medial-temporal lobe has been identified [Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12, 217–230, 2011; Cavada, C., & Goldman-Raiuc, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory cortico-cortical connections. Journal of Comparative Neurology, 287, 393–421, 1989]. The current article studies the coordination of visual information typically associated with the dorsal stream (“Where”), with planned movements, focusing on the temporal lobe. We recorded extracellular activity from 565 cells in the human medial-temporal and frontal lobes while 13 patients performed cued hand movements with visual feedback (visuomotor task), without feedback (motor task), or observed visual feedback without motor movement (visual-only task). We discovered two different neural populations in the human medial-temporal lobe. One consists of motor-like neurons representing hand position, speed or acceleration during the motor task but not during the visuomotor or visual tasks. The other is specific to the parahippocampal gyrus (an area known to process visual motion [Gur, M., & Snodderly, D. M. Direction selectivity in V1 of alert monkeys: Evidence for parallel pathways for motion processing. Journal of Physiology, 585, 383–400, 2007; Sato, N., & Nakamura, K. Visual response properties of neurons in the parahippocampal cortex of monkeys. Journal of Neurophysiology, 90, 876–886, 2003]) and encodes speed, acceleration, or direction of hand movements, but only during the visuomotor task: neither during visual-only nor during motor tasks. These findings suggest a functional basis for the anatomical subpathway between the dorsal stream and the medial-temporal lobe. Similar to the recent expansion of the motor control process into the sensory cortex [Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., et al. Motor control by sensory cortex. Science, 330, 1240–1243, 2010], our findings render the human medial-temporal lobe an important junction in the process of planning and execution of motor acts whether internally or externally (visually) driven. Thus, the medial-temporal lobe might serve as an integration node between the two processing streams. Our findings thus shed new light on the brain mechanisms underlying visuomotor coordination which is a crucial capacity for everyday survival, whether it is identifying and picking up food, sliding a key into a lock, driving a vehicle, or escaping a predator.
APA, Harvard, Vancouver, ISO, and other styles
5

de Haan, Marcel Jan, Thomas Brochier, Sonja Grün, Alexa Riehle, and Frédéric V. Barthélemy. "Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys." Journal of Neurophysiology 120, no. 2 (August 1, 2018): 539–52. http://dx.doi.org/10.1152/jn.00262.2017.

Full text
Abstract:
Large-scale network dynamics in multiple visuomotor areas is of great interest in the study of eye-hand coordination in both human and monkey. To explore this, it is essential to develop a setup that allows for precise tracking of eye and hand movements. It is desirable that it is able to generate mechanical or visual perturbations of hand trajectories so that eye-hand coordination can be studied in a variety of conditions. There are simple solutions that satisfy these requirements for hand movements performed in the horizontal plane while visual stimuli and hand feedback are presented in the vertical plane. However, this spatial dissociation requires cognitive rules for eye-hand coordination different from eye-hand movements performed in the same space, as is the case in most natural conditions. Here we present an innovative solution for the precise tracking of eye and hand movements in a single reference frame. Importantly, our solution allows behavioral explorations under normal and perturbed conditions in both humans and monkeys. It is based on the integration of two noninvasive commercially available systems to achieve online control and synchronous recording of eye (EyeLink) and hand (KINARM) positions during interactive visuomotor tasks. We also present an eye calibration method compatible with different eye trackers that compensates for nonlinearities caused by the system's geometry. Our setup monitors the two effectors in real time with high spatial and temporal resolution and simultaneously outputs behavioral and neuronal data to an external data acquisition system using a common data format. NEW & NOTEWORTHY We developed a new setup for studying eye-hand coordination in humans and monkeys that monitors the two effectors in real time in a common reference frame. Our eye calibration method allows us to track gaze positions relative to visual stimuli presented in the horizontal workspace of the hand movements. This method compensates for nonlinearities caused by the system’s geometry and transforms kinematics signals from the eye tracker into the same coordinate system as hand and targets.
APA, Harvard, Vancouver, ISO, and other styles
6

Scalaidhe, S. P., T. D. Albright, H. R. Rodman, and C. G. Gross. "Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey." Journal of Neurophysiology 73, no. 1 (January 1, 1995): 1–19. http://dx.doi.org/10.1152/jn.1995.73.1.1.

Full text
Abstract:
1. On the basis of its anatomic connections and single-unit properties, the superior temporal polysensory area (STP) would seem to be primarily involved in visuospatial functions. We have examined the effects of lesions of STP on saccadic eye movements, visual fixation, and smooth pursuit eye movements to directly test the hypothesis that STP is involved in visuospatial and visuomotor behavior. 2. Seven monkeys were trained to make saccades to targets 8, 15, and 22 degrees from a central fixation point along the horizontal meridian and 8 degrees from the central fixation point along the vertical meridian. One monkey was also trained to make saccades to auditory targets. The same monkeys were trained to foveate a stationary central fixation point and to follow it with a smooth pursuit eye movement when it began moving 5, 13, or 20 degrees/s. Four monkeys received unilateral STP lesions, one received a bilateral STP lesion, and as a control, two received unilateral inferior temporal cortex (IT) lesions. After testing, three of the animals with unilateral STP lesions received an additional STP lesion in the hemisphere contralateral to the first lesion. Similarly, one animal with a unilateral IT lesion received an additional IT lesion in the hemisphere contralateral to the first lesion. 3. All monkeys with complete removal of STP showed a significant increase in saccade latency to the most peripheral contralateral target, and most also had increased saccade latencies to the other contralateral targets. Saccades directed to targets along the vertical meridian or toward targets in the hemifield ipsilateral to the lesion were not impaired by removal of STP. By contrast, IT lesions did not impair the monkeys' ability to make saccadic eye movements to visual stimuli at any location, showing that saccades to visually guided targets are not impaired nonspecifically by damage to visual cortex. 4. The deficit in making eye movements after STP lesions was specific to saccade latency, with little effect on the accuracy of saccades to visual targets. 5. In the one monkey trained to make saccades to auditory targets, removal of STP did not impair saccades to auditory targets contralateral to its lesion, despite this monkey showing the largest increase in saccades latencies to visual targets. 6. There was complete recovery of saccade latency to the baseline level of performance on the saccade task after all STP lesions.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
7

Brown, V. J., R. Desimone, and M. Mishkin. "Responses of cells in the tail of the caudate nucleus during visual discrimination learning." Journal of Neurophysiology 74, no. 3 (September 1, 1995): 1083–94. http://dx.doi.org/10.1152/jn.1995.74.3.1083.

Full text
Abstract:
1. The tail of the caudate nucleus and adjacent ventral putamen (ventrocaudal neostriatum) are major projection sites of the extrastriate visual cortex. Visual information is then relayed, directly or indirectly, to a variety of structures with motor functions. To test for a role of the ventrocaudal neostriatum in stimulus-response association learning, or habit formation, neuronal responses were recorded while monkeys performed a visual discrimination task. Additional data were collected from cells in cortical area TF, which serve as a comparison and control for the caudate data. 2. Two monkeys were trained to perform an asymmetrically reinforced go-no go visual discrimination. The stimuli were complex colored patterns, randomly assigned to be either positive or negative. The monkey was rewarded with juice for releasing a bar when a positive stimulus was presented, whereas a negative stimulus signaled that no reward was available and that the monkey should withhold its response. Neuronal responses were recorded both while the monkey performed the task with previously learned stimuli and while it learned the task with new stimuli. In some cases, responses were recorded during reversal learning. 3. There was no evidence that cells in the ventrocaudal neostriatum were influenced by the reward contingencies of the task. Cells did not fire preferentially to the onset of either positive or negative stimuli; neither did cells fire in response to the reward itself or in association with the motor response of the monkey. Only visual responses were apparent. 4. The visual properties of cells in these structures resembled those of cells in some of the cortical areas projecting to them. Most cells responded selectively to different visual stimuli. The degree of stimulus selectivity was assessed with discriminant analysis and was found to be quantitatively similar to that of inferior temporal cells tested with similar stimuli. Likewise, like inferior temporal cells, many cells in the ventrocaudal neostriatum had large, bilateral receptive fields. Some cells had "doughnut"-shaped receptive fields, with stronger responses in the periphery of both visual fields than at the fovea, similar to the fields of some cells in the superior temporal polysensory area. Although the absence of task-specific responses argues that ventrocaudal neostriatal cells are not themselves the mediators of visual learning in the task employed, their cortical-like visual properties suggest that they might relay visual information important for visuomotor plasticity in other structures. (ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
8

Costello, M. Gabriela, Dantong Zhu, Paul J. May, Emilio Salinas, and Terrence R. Stanford. "Task dependence of decision- and choice-related activity in monkey oculomotor thalamus." Journal of Neurophysiology 115, no. 1 (January 1, 2016): 581–601. http://dx.doi.org/10.1152/jn.00592.2015.

Full text
Abstract:
Oculomotor signals circulate within putative recurrent feedback loops that include the frontal eye field (FEF) and the oculomotor thalamus (OcTh). To examine how OcTh contributes to visuomotor control, and perceptually informed saccadic choices in particular, neural correlates of perceptual judgment and motor selection in OcTh were evaluated and compared with those previously reported for FEF in the same subjects. Monkeys performed three tasks: a choice task in which perceptual decisions are urgent, a choice task in which identical decisions are made without time pressure, and a single-target, delayed saccade task. The OcTh yielded far fewer task-responsive neurons than the FEF, but across responsive pools, similar neuron types were found, ranging from purely visual to purely saccade related. Across such types, the impact of the perceptual information relevant to saccadic choices was qualitatively the same in FEF and OcTh. However, distinct from that in FEF, activity in OcTh was strongly task dependent, typically being most vigorous in the urgent task, less so in the easier choice task, and least in the single-target task. This was true for responsive and nonresponsive cells alike. Neurons with exclusively motor-related activity showed strong task dependence, fired less, and differed most patently from their FEF counterparts, whereas those that combined visual and motor activity fired most similarly to their FEF counterparts. The results suggest that OcTh activity is more distantly related to saccade production per se, because its degree of commitment to a motor choice varies markedly as a function of ongoing cognitive or behavioral demands.
APA, Harvard, Vancouver, ISO, and other styles
9

Suzuki, D. A., J. G. May, E. L. Keller, and R. D. Yee. "Visual motion response properties of neurons in dorsolateral pontine nucleus of alert monkey." Journal of Neurophysiology 63, no. 1 (January 1, 1990): 37–59. http://dx.doi.org/10.1152/jn.1990.63.1.37.

Full text
Abstract:
1. In this study we sought to characterize the visual motion processing that exists in the dorsolateral pontine nucleus (DLPN) and make a comparison with the reported visual responses of the middle temporal (MT) and medial superior temporal (MST) areas of the monkey cerebral cortex. The DLPN is implicated as a component of the visuomotor interface involved with the regulation of smooth-pursuit eye movements, because it is a major terminus for afferents from MT and MST and also the source of efferents to cerebellar regions involved with eye-movement control. 2. Some DLPN cells were preferentially responsive to discrete (spot and bar) visual stimuli, or to large-field, random-dot pattern motion, or to both discrete and large-field visual motion. The results suggest differential input from localized regions of MT and MST. 3. The visual-motion responses of DLPN neurons were direction selective for 86% of the discrete visual responses and 95% of the large-field responses. Direction tuning bandwidths (full-width at 50% maximum response amplitude) averaged 107 degrees and 120 degrees for discrete and large-field visual motion responses, respectively. For the two visual response types, the direction index averaged 0.95 and 1.02, indicating that responses to stimuli moving in preferred directions were, on average, 20 and 50 times greater than responses to discrete or large-field stimulus movement in the opposite directions, respectively. 4. Most of the DLPN visual responses to movements of discrete visual stimuli exhibited increases in amplitude up to preferred retinal image speeds between 20 and 80 degrees/s, with an average preferred speed of 39 degrees/s. At higher speeds, the response amplitude of most units decreased, although a few units exhibited a broad saturation in response amplitude that was maintained up to at least 150 degrees/s before the response decreased. Over the range of speeds up to the preferred speeds, the sensitivity of DLPN neurons to discrete stimulus-related, retinal-image speed averaged 3.0 spikes/s per deg/s. The responses to large-field visual motion were less sensitive to retinal image speed and exhibited an average sensitivity of 1.4 spikes/s per deg/s before the visual response saturated. 5. DLPN and MT were quantitatively comparable with respect to degree of direction selectivity, retinal image speed tuning, and distribution of preferred speeds. Many DLPN receptive fields contained the fovea and were larger than those of MT and more like MST receptive fields in size.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, L. L., and S. P. Wise. "Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations." Journal of Neurophysiology 73, no. 3 (March 1, 1995): 1101–21. http://dx.doi.org/10.1152/jn.1995.73.3.1101.

Full text
Abstract:
1. The supplementary eye field (SEF) has been viewed as a premotor cortical field for the selection and control of saccadic eye movements. Drawing on studies of the neighboring premotor cortex, we hypothesized that if the SEF participates in the selection of action based on arbitrary stimulus-response associations, then task-related activity in the SEF should change during the learning of such associations. 2. Rhesus monkeys were operantly conditioned to make a saccadic eye movement to one of four targets (7 deg up, down, left, and right from center) in response to a foveal instruction stimulus (IS). One and only one of those four possible responses was arbitrarily designated "correct" for each IS. The monkeys responded to familiar ISs, four stimuli that remained unchanged throughout training and recording, as well as to novel ISs, which the monkeys had not previously seen. The monkeys initially chose responses to novel stimuli by trial and error, with near chance levels of performance, but quickly learned to select the correct saccade. 3. We studied 186 SEF cells as monkeys learned new visuomotor associations. Neuronal activity was quantified in four task periods: during the presentation of the IS, during an instructed delay period (i.e., after the removal of the IS but before a trigger or "go" stimulus), just before the saccade, and after the saccade during fixation of the target location. The discharge rate in each task period was considered a separate case for analysis, compared with that in a reference period preceding the IS, and eliminated from further analysis if not significantly different. 4. We observed two main categories of activity change during learning, which we termed learning selective and learning dependent. Learning-selective cases showed a significant evolution in activity as the monkeys learned which saccade was instructed by a novel IS, but had no significant modulation during trials with familiar ISs. Many of these cells were virtually inactive on trials with familiar ISs. However, they initially showed dramatic modulation when tested with a novel IS. As the monkey chose the correct saccade (or target) with increasing reliability, the modulation often decremented until the cell was again relatively unmodulated, as observed during familiar-IS trials. These cells usually remained relatively inactive until the monkeys were challenged to start learning another new stimulus-response association. Learning-selective activity was observed in all task periods, and 33 (18%) of the 186 adequately tested SEF cells showed learning-selective activity in one or more task periods.(ABSTRACT TRUNCATED AT 400 WORDS)
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Monkey visuomotor control"

1

Weir, D. J. "A systems analysis of visuomotor tracking in monkeys and men." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography