Journal articles on the topic 'Momentum-energy'

To see the other types of publications on this topic, follow the link: Momentum-energy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Momentum-energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nashed, Gamal G. L. "Energy momentum complex." Brazilian Journal of Physics 40, no. 3 (September 2010): 315–18. http://dx.doi.org/10.1590/s0103-97332010000300010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Zhao-Yan. "Gravitational Energy-Momentum and Conservation of Energy-Momentum in General Relativity." Communications in Theoretical Physics 65, no. 6 (June 1, 2016): 716–30. http://dx.doi.org/10.1088/0253-6102/65/6/716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lekner, John. "Energy, momentum, and angular momentum of sound pulses." Journal of the Acoustical Society of America 142, no. 6 (December 2017): 3428–35. http://dx.doi.org/10.1121/1.5014058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

JIA, Ying-hong, Shi-jie XU, and Liang TANG. "Bias Momentum Attitude Control System Using Energy/Momentum Wheels." Chinese Journal of Aeronautics 17, no. 4 (November 2004): 193–99. http://dx.doi.org/10.1016/s1000-9361(11)60236-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, K., and T. Shirafuji. "Energy, Momentum and Angular Momentum in Poincare Gauge Theory." Progress of Theoretical Physics 73, no. 1 (January 1, 1985): 54–74. http://dx.doi.org/10.1143/ptp.73.54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garecki, Janusz. "Do gravitational waves carry energy-momentum and angular momentum?" Annalen der Physik 11, no. 6 (June 2002): 442. http://dx.doi.org/10.1002/1521-3889(200206)11:6<442::aid-andp442>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kholmetskii, Alexander, Oleg Missevitch, and Tolga Yarman. "Poynting Theorem, Relativistic Transformation of Total Energy–Momentum and Electromagnetic Energy–Momentum Tensor." Foundations of Physics 46, no. 2 (October 30, 2015): 236–61. http://dx.doi.org/10.1007/s10701-015-9963-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McLennan, D. E. "Energy and Momentum in Electrodynamics." Physics Essays 1, no. 3 (September 1, 1988): 179–83. http://dx.doi.org/10.4006/1.3036461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parrott, Mary Ethel. "Demonstrations video: Energy & momentum." Physics Teacher 27, no. 7 (October 1989): 555–56. http://dx.doi.org/10.1119/1.2342866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sonego, Sebastiano, and Massimo Pin. "Deriving relativistic momentum and energy." European Journal of Physics 26, no. 1 (October 27, 2004): 33–45. http://dx.doi.org/10.1088/0143-0807/26/1/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maluf, J. W., F. F. Faria, and K. H. Castello-Branco. "The gravitational energy–momentum flux." Classical and Quantum Gravity 20, no. 21 (September 29, 2003): 4683–94. http://dx.doi.org/10.1088/0264-9381/20/21/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dodson, Christopher M., Jonathan A. Kurvits, Dongfang Li, and Rashid Zia. "Wide-angle energy-momentum spectroscopy." Optics Letters 39, no. 13 (June 25, 2014): 3927. http://dx.doi.org/10.1364/ol.39.003927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sarav , Ricardo E. Gamboa. "The electromagnetic energy momentum tensor." Journal of Physics A: Mathematical and General 35, no. 43 (October 15, 2002): 9199–203. http://dx.doi.org/10.1088/0305-4470/35/43/314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Saraví, Ricardo E. Gamboa. "On the energy–momentum tensor." Journal of Physics A: Mathematical and General 37, no. 40 (September 23, 2004): 9573–85. http://dx.doi.org/10.1088/0305-4470/37/40/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chang, Chia-Chen, James M. Nester, and Chiang-Mei Chen. "Pseudotensors and Quasilocal Energy-Momentum." Physical Review Letters 83, no. 10 (September 6, 1999): 1897–901. http://dx.doi.org/10.1103/physrevlett.83.1897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Habib, Georges. "Energy–momentum tensor on foliations." Journal of Geometry and Physics 57, no. 11 (October 2007): 2234–48. http://dx.doi.org/10.1016/j.geomphys.2007.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ares de Parga, G., R. E. González-Narvaez, and R. Mares. "Conservation of the Energy-Momentum." International Journal of Theoretical Physics 56, no. 10 (August 1, 2017): 3213–31. http://dx.doi.org/10.1007/s10773-017-3489-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

SHARIF, M., and M. AZAM. "ENERGY–MOMENTUM DISTRIBUTION: SOME EXAMPLES." International Journal of Modern Physics A 22, no. 10 (April 20, 2007): 1935–51. http://dx.doi.org/10.1142/s0217751x0703515x.

Full text
Abstract:
In this paper, we elaborate the problem of energy–momentum in General Relativity with the help of some well-known solutions. In this connection, we use the prescriptions of Einstein, Landau–Lifshitz, Papapetrou and Möller to compute the energy–momentum densities for four exact solutions of the Einstein field equations. We take the gravitational waves, special class of Ferrari–Ibanez degenerate solution, Senovilla–Vera dust solution and Wainwright–Marshman solution. It turns out that these prescriptions do provide consistent results for special class of Ferrari–Ibanez degenerate solution and Wainwright–Marshman solution but inconsistent results for gravitational waves and Senovilla–Vera dust solution.
APA, Harvard, Vancouver, ISO, and other styles
19

Yaremko, Yurij. "Self-force via energy–momentum and angular momentum balance equations." Journal of Mathematical Physics 52, no. 1 (January 2011): 012906. http://dx.doi.org/10.1063/1.3531986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Doak, P. E. "Momentum potential theory of energy flux carried by momentum fluctuations." Journal of Sound and Vibration 131, no. 1 (May 1989): 67–90. http://dx.doi.org/10.1016/0022-460x(89)90824-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lu, Jia-An. "Energy, momentum and angular momentum conservations in de Sitter gravity." Classical and Quantum Gravity 33, no. 15 (July 6, 2016): 155009. http://dx.doi.org/10.1088/0264-9381/33/15/155009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Babichev, E., and V. Dokuchaev. "Energy, momentum and angular momentum radiation from chiral cosmic string loops." Nuclear Physics B 645, no. 1-2 (November 2002): 134–54. http://dx.doi.org/10.1016/s0550-3213(02)00832-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Feng, Sze-Shiang, and Xi-Jun Qiu. "Energy-momentum and angular-momentum in ISO(1,2) Chern-Simons gravity." Physics Letters B 411, no. 3-4 (October 1997): 256–60. http://dx.doi.org/10.1016/s0370-2693(97)00735-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kawai, T. "Energy-Momentum and Angular Momentum in \overlinePoincare Gauge Theory of Gravity." Progress of Theoretical Physics 79, no. 4 (April 1, 1988): 920–35. http://dx.doi.org/10.1143/ptp.79.920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Crenshaw, Michael E., and Thomas B. Bahder. "Electromagnetic energy, momentum, and angular momentum in an inhomogeneous linear dielectric." Optics Communications 285, no. 24 (November 2012): 5180–83. http://dx.doi.org/10.1016/j.optcom.2012.08.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

CHANG, LAY NAM, DJORDJE MINIC, and TATSU TAKEUCHI. "QUANTUM GRAVITY, DYNAMICAL ENERGY–MOMENTUM SPACE AND VACUUM ENERGY." Modern Physics Letters A 25, no. 35 (November 20, 2010): 2947–54. http://dx.doi.org/10.1142/s0217732310034286.

Full text
Abstract:
We argue that the combination of the principles of quantum theory and general relativity allow for a dynamical energy–momentum space. We discuss the freezing of vacuum energy in such a dynamical energy–momentum space and present a phenomenologically viable seesaw formula for the cosmological constant in this context.
APA, Harvard, Vancouver, ISO, and other styles
27

Mallick, Sahanous, and Uday Chand De. "Spacetimes with Pseudosymmetric Energy-momentum Tensor." Communications in Physics 26, no. 2 (September 15, 2016): 121. http://dx.doi.org/10.15625/0868-3166/26/2/7446.

Full text
Abstract:
The object of the present paper is to introduce spacetimes with pseudosymmetricenergy-momentum tensor. In this paper at first we consider the relation \(R(X,Y)\cdot T=fQ(g,T)\), that is, the energy-momentumtensor \(T\) of type (0,2) is pseudosymmetric. It is shown that in a general relativistic spacetimeif the energy-momentum tensor is pseudosymmetric, then the spacetime is also Ricci pseudosymmetricand the converse is also true. Next we characterize the perfect fluid spacetimewith pseudosymmetric energy-momentum tensor. Finally, we consider conformally flat spacetime withpseudosymmetric energy-momentum tensor.
APA, Harvard, Vancouver, ISO, and other styles
28

Krupka, D. "Variational principles for energy-momentum tensors." Reports on Mathematical Physics 49, no. 2-3 (April 2002): 259–68. http://dx.doi.org/10.1016/s0034-4877(02)80024-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tripathy, S. K., B. Mishra, G. K. Pandey, A. K. Singh, T. Kumar, and S. S. Xulu. "Energy and Momentum of Bianchi TypeVIhUniverses." Advances in High Energy Physics 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/705262.

Full text
Abstract:
We obtain the energy and momentum of the Bianchi typeVIhuniverses using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the BianchiVIhuniverses are found to be zero for the parameterh=-1of the metric. The vanishing of these results supports the conjecture of Tryon that the universe must have a zero net value for all conserved quantities. This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: “Why is theh=-1case so special?”
APA, Harvard, Vancouver, ISO, and other styles
30

Jain, Prem. "Energy loss while conserving angular momentum." Physics Education 47, no. 5 (September 2012): 518–20. http://dx.doi.org/10.1088/0031-9120/47/5/f03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Abramo, L. Raul W., Robert H. Brandenberger, and V. F. Mukhanov. "Energy-momentum tensor for cosmological perturbations." Physical Review D 56, no. 6 (September 15, 1997): 3248–57. http://dx.doi.org/10.1103/physrevd.56.3248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

ABBASSI, AMIR M., and SAEED MIRSHEKARI. "ENERGY–MOMENTUM DENSITY OF GRAVITATIONAL WAVES." International Journal of Modern Physics A 23, no. 27n28 (November 10, 2008): 4569–77. http://dx.doi.org/10.1142/s0217751x08041487.

Full text
Abstract:
In this paper, we elaborate the problem of energy–momentum in general relativity by energy–momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to the same results that have been obtained by Einstein and Papapetrou prescriptions.
APA, Harvard, Vancouver, ISO, and other styles
33

Itin, Yakov. "Coframe Energy–Momentum Current. Algebraic Properties." General Relativity and Gravitation 34, no. 11 (November 2002): 1819–37. http://dx.doi.org/10.1023/a:1020759923382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Emrén, Allan T. "Energy and Momentum Conserving Molecular Dynamics." Physica Scripta T33 (January 1, 1990): 77–80. http://dx.doi.org/10.1088/0031-8949/1990/t33/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lekner, John. "Energy and momentum of sound pulses." Physica A: Statistical Mechanics and its Applications 363, no. 2 (May 2006): 217–25. http://dx.doi.org/10.1016/j.physa.2005.08.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

van den Heuvel, B. M. "Energy‐momentum conservation in gauge theories." Journal of Mathematical Physics 35, no. 4 (April 1994): 1668–87. http://dx.doi.org/10.1063/1.530563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kane, C., J. E. Marsden, and M. Ortiz. "Symplectic-energy-momentum preserving variational integrators." Journal of Mathematical Physics 40, no. 7 (July 1999): 3353–71. http://dx.doi.org/10.1063/1.532892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

GIUNTI, C. "ENERGY AND MOMENTUM OF OSCILLATING NEUTRINOS." Modern Physics Letters A 16, no. 37 (December 7, 2001): 2363–69. http://dx.doi.org/10.1142/s0217732301005801.

Full text
Abstract:
It is shown that Lorentz invariance implies that in general flavor neutrinos in oscillation experiments are superpositions of massive neutrinos with different energies and different momenta. It is also shown that for each process in which neutrinos are produced, there is either a Lorentz frame in which all massive neutrinos have the same energy or a Lorentz frame in which all massive neutrinos have the same momentum. In the case of neutrinos produced in two-body decay processes, there is a Lorentz frame in which all massive neutrinos have the same energy.
APA, Harvard, Vancouver, ISO, and other styles
39

LIU, YU-XIAO, LI-JIE ZHANG, YONG-QIANG WANG, and YI-SHI DUAN. "ENERGY–MOMENTUM FOR RANDALL–SUNDRUM MODELS." Modern Physics Letters A 23, no. 10 (March 28, 2008): 769–79. http://dx.doi.org/10.1142/s0217732308024110.

Full text
Abstract:
We investigate the conservation law of energy–momentum for Randall–Sundrum models by the general displacement transform. The energy–momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall–Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is ε = ε0 e-3k|y|.
APA, Harvard, Vancouver, ISO, and other styles
40

Bak, Dongsu, D. Cangemi, and R. Jackiw. "Energy-momentum conservation in gravity theories." Physical Review D 49, no. 10 (May 15, 1994): 5173–81. http://dx.doi.org/10.1103/physrevd.49.5173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

GOLDMAN, T. "NEUTRINO OSCILLATIONS AND ENERGY–MOMENTUM CONSERVATION." Modern Physics Letters A 25, no. 07 (March 7, 2010): 479–87. http://dx.doi.org/10.1142/s0217732310032706.

Full text
Abstract:
A description of neutrino oscillation phenomena is presented which is based on relativistic quantum mechanics with four-momentum conservation. This is different from both conventional approaches which arbitrarily use either equal energies or equal momenta for the different neutrino mass eigenstates. Both entangled state and source dependence aspects are also included. The time dependence of the wave function is found to be crucial to recovering the conventional result to second order in the neutrino masses. An ambiguity appears at fourth order which generally leads to source dependence, but the standard formula can be promoted to this order by a plausible convention.
APA, Harvard, Vancouver, ISO, and other styles
42

Itin, Yakov. "Energy–momentum current for coframe gravity." Classical and Quantum Gravity 19, no. 1 (December 19, 2001): 173–89. http://dx.doi.org/10.1088/0264-9381/19/1/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ó Murchadha, Niall. "Total energy momentum in general relativity." Journal of Mathematical Physics 27, no. 8 (August 1986): 2111–28. http://dx.doi.org/10.1063/1.527394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Obama, Barack. "The irreversible momentum of clean energy." Science 355, no. 6321 (January 9, 2017): 126–29. http://dx.doi.org/10.1126/science.aam6284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Adkins, Gregory S. "Energy and momentum in special relativity." American Journal of Physics 76, no. 11 (November 2008): 1045–47. http://dx.doi.org/10.1119/1.2967704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Haddow, Barry M., and J. Carot. "Energy - momentum types of warped spacetimes." Classical and Quantum Gravity 13, no. 2 (February 1, 1996): 289–301. http://dx.doi.org/10.1088/0264-9381/13/2/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Joglekar, Satish D., and Anuradha Misra. "Energy-momentum tensor in scalar QED." Physical Review D 38, no. 8 (October 15, 1988): 2546–58. http://dx.doi.org/10.1103/physrevd.38.2546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Frauendiener, J. "Geometric description of energy-momentum pseudotensors." Classical and Quantum Gravity 6, no. 12 (December 1, 1989): L237—L241. http://dx.doi.org/10.1088/0264-9381/6/12/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

SCHÄFER, MARCO, IDRISH HUET, and HOLGER GIES. "ENERGY-MOMENTUM TENSORS WITH WORLDLINE NUMERICS." International Journal of Modern Physics: Conference Series 14 (January 2012): 511–20. http://dx.doi.org/10.1142/s2010194512007647.

Full text
Abstract:
We apply the worldline formalism and its numerical Monte-Carlo approach to computations of fluctuation induced energy-momentum tensors. For the case of a fluctuating Dirichlet scalar, we derive explicit worldline expressions for the components of the canonical energy-momentum tensor that are straightforwardly accessible to partly analytical and generally numerical evaluation. We present several simple proof-of-principle examples, demonstrating that efficient numerical evaluation is possible at low cost. Our methods can be applied to an investigation of positive-energy conditions.
APA, Harvard, Vancouver, ISO, and other styles
50

Iofa, Mikhail Z. "Energy-momentum tensor of bouncing gravitons." Journal of Cosmology and Astroparticle Physics 2015, no. 07 (July 14, 2015): 021. http://dx.doi.org/10.1088/1475-7516/2015/07/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography