Academic literature on the topic 'MOMENTS METHOD'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MOMENTS METHOD.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MOMENTS METHOD"
Jurczek, E. "Orthogonalized-moments method." Physical Review B 32, no. 6 (September 15, 1985): 4208–11. http://dx.doi.org/10.1103/physrevb.32.4208.
Full textMorrison, Hugh, Matthew R. Kumjian, Charlotte P. Martinkus, Olivier P. Prat, and Marcus van Lier-Walqui. "A General N-Moment Normalization Method for Deriving Raindrop Size Distribution Scaling Relationships." Journal of Applied Meteorology and Climatology 58, no. 2 (February 2019): 247–67. http://dx.doi.org/10.1175/jamc-d-18-0060.1.
Full textKliche, Donna V., Paul L. Smith, and Roger W. Johnson. "L-Moment Estimators as Applied to Gamma Drop Size Distributions." Journal of Applied Meteorology and Climatology 47, no. 12 (December 1, 2008): 3117–30. http://dx.doi.org/10.1175/2008jamc1936.1.
Full textHeadrick, Todd C. "A Characterization of Power Method Transformations throughL-Moments." Journal of Probability and Statistics 2011 (2011): 1–22. http://dx.doi.org/10.1155/2011/497463.
Full textJiade Yuan, Changqing Gu, and Guodong Han. "Efficient Generation of Method of Moments Matrices Using Equivalent Dipole-Moment Method." IEEE Antennas and Wireless Propagation Letters 8 (2009): 716–19. http://dx.doi.org/10.1109/lawp.2009.2024337.
Full textGholizadeh, Mahdieh, Mohammad Hossein Gholizadeh, Hossein Ghayoumi Zadeh, and Mostafa Danaeian. "The noise reduction of medical radiography images using fractional moments." Medical Journal of Tabriz University of Medical Sciences and Health Services 42, no. 6 (February 24, 2021): 649–58. http://dx.doi.org/10.34172/mj.2021.005.
Full textDell'Aquila, Rosario. "Generalized Method of Moments." Journal of the American Statistical Association 101, no. 475 (September 2006): 1309–10. http://dx.doi.org/10.1198/jasa.2006.s120.
Full textBenoit, C., E. Royer, and G. Poussigue. "The spectral moments method." Journal of Physics: Condensed Matter 4, no. 12 (March 23, 1992): 3125–52. http://dx.doi.org/10.1088/0953-8984/4/12/010.
Full textMat Jan, Nur Amalina, Ani Shabri, and Ruhaidah Samsudin. "Handling non-stationary flood frequency analysis using TL-moments approach for estimation parameter." Journal of Water and Climate Change 11, no. 4 (August 16, 2019): 966–79. http://dx.doi.org/10.2166/wcc.2019.055.
Full textHOSNY, KHALID M. "EFFICIENT COMPUTATION OF LEGENDRE MOMENTS FOR GRAY LEVEL IMAGES." International Journal of Image and Graphics 07, no. 04 (October 2007): 735–47. http://dx.doi.org/10.1142/s021946780700288x.
Full textDissertations / Theses on the topic "MOMENTS METHOD"
Shin, Changmock. "Entropy Based Moment Selection in Generalized Method of Moments." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-06072005-112026/.
Full textLai, Yanzhao. "Generalized method of moments exponential distribution family." View electronic thesis (PDF), 2009. http://dl.uncw.edu/etd/2009-2/laiy/yanzhaolai.pdf.
Full textVirk, Bikram. "Implementing method of moments on a GPGPU using Nvidia CUDA." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33980.
Full textLi, Tao. "3D Capacitance Extraction With the Method of Moments." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/86.
Full textLiang, Yitian. "Generalized method of moments : theoretical, econometric and simulation studies." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/36866.
Full textMcLeod, James William. "An investigation of the CDF-based method of moments." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0009/MQ34121.pdf.
Full textStrydom, Willem Jacobus. "Recovery based error estimation for the Method of Moments." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96881.
Full textENGLISH ABSTRACT: The Method of Moments (MoM) is routinely used for the numerical solution of electromagnetic surface integral equations. Solution errors are inherent to any numerical computational method, and error estimators can be effectively employed to reduce and control these errors. In this thesis, gradient recovery techniques of the Finite Element Method (FEM) are formulated within the MoM context, in order to recover a higher-order charge of a Rao-Wilton-Glisson (RWG) MoM solution. Furthermore, a new recovery procedure, based specifically on the properties of the RWG basis functions, is introduced by the author. These recovered charge distributions are used for a posteriori error estimation of the charge. It was found that the newly proposed charge recovery method has the highest accuracy of the considered recovery methods, and is the most suited for applications within recovery based error estimation. In addition to charge recovery, the possibility of recovery procedures for the MoM solution current are also investigated. A technique is explored whereby a recovered charge is used to find a higher-order divergent current representation. Two newly developed methods for the subsequent recovery of the solenoidal current component, as contained in the RWG solution current, are also introduced by the author. A posteriori error estimation of the MoM current is accomplished through the use of the recovered current distributions. A mixed second-order recovered current, based on a vector recovery procedure, was found to produce the most accurate results. The error estimation techniques developed in this thesis could be incorporated into an adaptive solver scheme to optimise the solution accuracy relative to the computational cost.
AFRIKAANSE OPSOMMING: Die Moment Metode (MoM) vind algemene toepassing in die numeriese oplossing van elektromagnetiese oppervlak integraalvergelykings. Numeriese foute is inherent tot die prosedure: foutberamingstegnieke is dus nodig om die betrokke foute te analiseer en te reduseer. Gradiënt verhalingstegnieke van die Eindige Element Metode word in hierdie tesis in die MoM konteks geformuleer. Hierdie tegnieke word ingespan om die oppervlaklading van 'n Rao-Wilton-Glisson (RWG) MoM oplossing na 'n verbeterde hoër-orde voorstelling te neem. Verder is 'n nuwe lading verhalingstegniek deur die outeur voorgestel wat spesifiek op die eienskappe van die RWG basis funksies gebaseer is. Die verhaalde ladingsverspreidings is geïmplementeer in a posteriori fout beraming van die lading. Die nuut voorgestelde tegniek het die akkuraatste resultate gelewer, uit die groep verhalingstegnieke wat ondersoek is. Addisioneel tot ladingsverhaling, is die moontlikheid van MoM-stroom verhalingstegnieke ook ondersoek. 'n Metode vir die verhaling van 'n hoër-orde divergente stroom komponent, gebaseer op die verhaalde lading, is geïmplementeer. Verder is twee nuwe metodes vir die verhaling van die solenodiale komponent van die RWG stroom deur die outeur voorgestel. A posteriori foutberaming van die MoM-stroom is met behulp van die verhaalde stroom verspreidings gerealiseer, en daar is gevind dat 'n gemengde tweede-orde verhaalde stroom, gebaseer op 'n vektor metode, die beste resultate lewer. Die foutberamingstegnieke wat in hierdie tesis ondersoek is, kan in 'n aanpasbare skema opgeneem word om die akkuraatheid van 'n numeriese oplossing, relatief tot die berekeningskoste, te optimeer.
Arvas, Serhend. "A method of moments analysis of microstructured optical fibers." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.
Full textCUNHA, JOAO MARCO BRAGA DA. "ESTIMATING ARTIFICIAL NEURAL NETWORKS WITH GENERALIZED METHOD OF MOMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26922@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
As Redes Neurais Artificiais (RNAs) começaram a ser desenvolvidas nos anos 1940. Porém, foi a partir dos anos 1980, com a popularização e o aumento de capacidade dos computadores, que as RNAs passaram a ter grande relevância. Também nos anos 1980, houve dois outros acontecimentos acadêmicos relacionados ao presente trabalho: (i) um grande crescimento do interesse de econometristas por modelos não lineares, que culminou nas abordagens econométricas para RNAs, no final desta década; e (ii) a introdução do Método Generalizado dos Momentos (MGM) para estimação de parâmetros, em 1982. Nas abordagens econométricas de RNAs, sempre predominou a estimação por Quasi Máxima Verossimilhança (QMV). Apesar de possuir boas propriedades assintóticas, a QMV é muito suscetível a um problema nas estimações em amostra finita, conhecido como sobreajuste. O presente trabalho estende o estado da arte em abordagens econométricas de RNAs, apresentando uma proposta alternativa à estimação por QMV que preserva as suas boas propriedades assintóticas e é menos suscetível ao sobreajuste. A proposta utiliza a estimação pelo MGM. Como subproduto, a estimação pelo MGM possibilita a utilização do chamado Teste J para verifificar a existência de não linearidade negligenciada. Os estudos de Monte Carlo realizados indicaram que as estimações pelo MGM são mais precisas que as geradas pela QMV em situações com alto ruído, especialmente em pequenas amostras. Este resultado é compatível com a hipótese de que o MGM é menos suscetível ao sobreajuste. Experimentos de previsão de taxas de câmbio reforçaram estes resultados. Um segundo estudo de Monte Carlo apontou boas propriedades em amostra finita para o Teste J aplicado à não linearidade negligenciada, comparado a um teste de referência amplamente conhecido e utilizado. No geral, os resultados apontaram que a estimação pelo MGM é uma alternativa recomendável, em especial no caso de dados com alto nível de ruído.
Artificial Neural Networks (ANN) started being developed in the decade of 1940. However, it was during the 1980 s that the ANNs became relevant, pushed by the popularization and increasing power of computers. Also in the 1980 s, there were two other two other academic events closely related to the present work: (i) a large increase of interest in nonlinear models from econometricians, culminating in the econometric approaches for ANN by the end of that decade; and (ii) the introduction of the Generalized Method of Moments (GMM) for parameter estimation in 1982. In econometric approaches for ANNs, the estimation by Quasi Maximum Likelihood (QML) always prevailed. Despite its good asymptotic properties, QML is very prone to an issue in finite sample estimations, known as overfiting. This thesis expands the state of the art in econometric approaches for ANNs by presenting an alternative to QML estimation that keeps its good asymptotic properties and has reduced leaning to overfiting. The presented approach relies on GMM estimation. As a byproduct, GMM estimation allows the use of the so-called J Test to verify the existence of neglected nonlinearity. The performed Monte Carlo studies indicate that the estimates from GMM are more accurate than those generated by QML in situations with high noise, especially in small samples. This result supports the hypothesis that GMM is susceptible to overfiting. Exchange rate forecasting experiments reinforced these findings. A second Monte Carlo study revealed satisfactory finite sample properties of the J Test applied to the neglected nonlinearity, compared with a reference test widely known and used. Overall, the results indicated that the estimation by GMM is a better alternative, especially for data with high noise level.
Kluskens, Michael S. "Method of moments analysis of scattering by chiral media /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487688507504775.
Full textBooks on the topic "MOMENTS METHOD"
Generalized method of moments. Oxford: Oxford University Press, 2005.
Find full textThe Method of moments in electromagnetics. Boca Raton: CRC Press/Taylor & Francis, 2014.
Find full textGibson, Walton C. The method of moments in electromagnetics. Boca Raton: Chapman & Hall/CRC, 2008.
Find full textShaeffer, John F. MOM3D method of moments code: Theory manual. Sunland, Calif: Lockheed Advanced Development Co., 1992.
Find full textBourlier, Christophe, Nicolas Pinel, and Gildas Kubické. Method of Moments for 2D Scattering Problems. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648674.
Full textDeshpande, Manohar D. Analysis of electromagnetic scattering from irregularly shaped, thin, metallic flat plates. Hampton, Va: Langley Research Center, 1993.
Find full textReddy, C. J. Analysis of three-dimensional-cavity-backed aperture antennas using a combined finite element method/method of moments/geometrical theory of diffraction technique. Hampton, Va: Langley Research Center, 1995.
Find full textBossaerts, Peter. "Method of moments tests of contingent claims asset pricing models". Fontainbleau: INSEAD, 1986.
Find full textStark, A. F. Coupled cluster theory, sum rules and the method of moments. Manchester: UMIST, 1995.
Find full textBourlier, Christophe. Method of moments for 2D scattering problems: Basic concepts and applications. London: ISTE Ltd, 2013.
Find full textBook chapters on the topic "MOMENTS METHOD"
Archambeault, Bruce, Colin Brench, and Omar M. Ramahi. "Method of Moments." In EMI/EMC Computational Modeling Handbook, 71–86. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1557-9_4.
Full textHaas, Fernando. "The Moments Method." In Quantum Plasmas, 189–204. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8201-8_9.
Full textKarnovsky, Igor A., and Evgeniy Lebed. "Krein Moments Method." In Theory of Vibration Protection, 385–426. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28020-2_11.
Full textArchambeault, Bruce, Omar M. Ramahi, and Colin Brench. "Method of Moments." In EMI/EMC Computational Modeling Handbook, 69–82. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-5124-6_4.
Full textCercignani, Carlo, and Gilberto Medeiros Kremer. "Method of Moments." In The Relativistic Boltzmann Equation: Theory and Applications, 149–70. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8165-4_6.
Full textBarkeshli, Kasra, and Sina Khorasani. "Method of Moments." In Advanced Electromagnetics and Scattering Theory, 309–28. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11547-4_9.
Full textQin, Jing. "Generalized Method of Moments." In Biased Sampling, Over-identified Parameter Problems and Beyond, 129–38. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4856-2_7.
Full textRylander, Thomas, Pär Ingelström, and Anders Bondeson. "The Method of Moments." In Computational Electromagnetics, 185–221. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5351-2_7.
Full textWansbeek, Tom J. "Generalized Method of Moments." In International Series in Quantitative Marketing, 453–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53469-5_15.
Full textGibson, Walton C. "The Method of Moments." In The Method of Moments in Electromagnetics, 7–24. 3rd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429355509-2.
Full textConference papers on the topic "MOMENTS METHOD"
Hu, Hongchang. "Method of weighted moments." In 2012 IEEE Symposium on Robotics and Applications (ISRA). IEEE, 2012. http://dx.doi.org/10.1109/isra.2012.6219223.
Full textSong, J. M., W. W. Shu, and W. C. Chew. "Numerical resonances in method of moments." In 2007 IEEE Antennas and Propagation Society International Symposium. IEEE, 2007. http://dx.doi.org/10.1109/aps.2007.4396633.
Full textNair, N. V., and B. Shanker. "Implementation of Generalized Method of Moments." In 2009 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, 2009. http://dx.doi.org/10.1109/aps.2009.5171540.
Full textDault, D., and B. Shanker. "A penalty method for the Generalized Method of Moments." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6905408.
Full textBrench, Colin E. "Method of moments use, validation and limitations." In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652201.
Full textMasek, Michal, Miloslav Capek, Lukas Jelinek, and Kurt Schab. "Utilization of Symmetries in Method of Moments." In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019. http://dx.doi.org/10.1109/apusncursinrsm.2019.8888654.
Full textD'Ambrosio, K., R. Pirich, K. Petkov, and A. Kaufman. "Method of Moments software for GPU hardware." In Expo on Emerging Technologies for a Smarter World (CEWIT 2011). IEEE, 2011. http://dx.doi.org/10.1109/cewit.2011.6135878.
Full textBose, Arup, Rajat Subhra Hazra, and Koushik Saha. "Patterned Random Matrices and Method of Moments." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0142.
Full textKURYLEV, Y. "MOMENTS' METHOD FOR INVERSE BOUNDARY VALUE PROBLEMS." In Proceedings of the Sixth International Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702593_0034.
Full textLee, Ikjin, Kyung K. Choi, and Liu Du. "Alternative Methods for Reliability-Based Robust Design Optimization Including Dimension Reduction Method." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99732.
Full textReports on the topic "MOMENTS METHOD"
Gallant, Ron, Raffaella Giacomini, and Giuseppe Ragusa. Generalized method of moments with latent variables. Institute for Fiscal Studies, October 2013. http://dx.doi.org/10.1920/wp.cem.2013.5013.
Full textTaylor, Douglas. Hybrid Version of Method of Moments Computer Code: IBC3D. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada363040.
Full textWilhelm, Daniel. Optimal bandwidth selection for robust generalized method of moments estimation. Cemmap, March 2014. http://dx.doi.org/10.1920/wp.cem.2014.1514.
Full textBurnside, Craig, and Martin Eichenbaum. Small Sample Properties of Generalized Method of Moments Based Wald Tests. Cambridge, MA: National Bureau of Economic Research, May 1994. http://dx.doi.org/10.3386/t0155.
Full textLynch, Anthony, and Jessica Wachter. Using Samples of Unequal Length in Generalized Method of Moments Estimation. Cambridge, MA: National Bureau of Economic Research, October 2008. http://dx.doi.org/10.3386/w14411.
Full textGlynn, Peter W., and Donald L. Iglehart. Estimation of Steady-State Central Moments by the Regenerative Method of Simulation. Fort Belvoir, VA: Defense Technical Information Center, August 1985. http://dx.doi.org/10.21236/ada161435.
Full textClark, W. Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7107279.
Full textClark, W. G. (Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments). Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6233086.
Full textClarke, Paul S., Tom M. Palmer, and Frank Windmeijer. Estimating structural mean models with multiple instrumental variables using the generalised method of moments. Institute for Fiscal Studies, August 2011. http://dx.doi.org/10.1920/wp.cem.2011.2811.
Full textNeely, Christopher J. A Reconsideration of the Properties of the Generalized Method of Moments in Asset Pricing Models. Federal Reserve Bank of St. Louis, 1994. http://dx.doi.org/10.20955/wp.1994.010.
Full text