Contents
Academic literature on the topic 'Molécules aimants – Propriétés magnétiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molécules aimants – Propriétés magnétiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Molécules aimants – Propriétés magnétiques"
Grumbach, Nathan. "Auto-organisation de molécules-aimants et de nanoparticules magnétiques sur des surfaces de copolymères dibloc." Strasbourg, 2009. http://www.theses.fr/2009STRA6259.
Full textMagnetic information storage, used in hard disks notably, has not stopped evolving toward higher storage density. Current storage systems reach their physical and technological limits, and future improvements will necessarily consist in new materials and technologies. We have studied in this work two kinds of new magnetic nanometric objects, Single Molecule Magnets (SMM) and magnetic nanoparticles, both showing magnetic bistability at the isolated individual object. These materials could help overpass current limitations and make magnetic storage densities increase by up to five orders of magnitude. This work is focused on the multiscale organisation of these objects on a surface, with the aim of forming two dimensional organised networks. The nano-objects we considered can self-organize on a surface, but correlation lengths remain short. To control and propagate nanometric organisation up to macroscopic scales, we functionalize the surface using PS-PMMA block copolymer and use microphase separation in order to structure the surface in ten nanometers wide stripes. Oriented demixtion of the block copolymer is obtained via templated self-assembly, in our case by using a surface patterned with 100 to 200 nm wide channels. Then the magnetic nano-objects selectively self-organize in networks on the polymer stripes. Multiscale spatial organisation of nanometric objects is therefore possible by combining top-down lithographic and bottom-up self techniques. Experimental study of magnetic properties of organised monolayers of SMM is challenging and has been performed with Low Temperature XMCD. We have shown that Mn12-like SMMs remain structurally intact at the surface but that their magnetic properties are unfortunately lost. Still, other SMMs or magnetic gold nanoparticles remain interesting candidates for high density magnetic storage. Finally, we have shown that the organised deposition of these nano-objects can result in magnetic anisotropy, with a large range of potential applications
Iasco, Olga. "Aimants moléculaires à base de clusters polymétalliques : synthèse, structures cristallines et étude des propriétés magnétiques." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00838606.
Full textKerkache, Asma. "Nouveaux chemins d'accès à des molécules-aimants multifonctionnelles par post-fonctionnalisation." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1307.
Full textVirtual storage spaces (Cloud) has become common today. However, these are not dematerialized and are hosted in data centers (Data Center), they are bulky and energy consuming. Research in the field of magnetic information storage has made considerable progress with, among others, the discovery of single-molecule magnets (SMMs). These compounds could significantly increase the storage capacities of future hard drives. Magnet molecules are complexes of coordination chemistry or organometallic chemistry, isolated from each other. They have intrinsic magnetic properties unlike conventional magnets where the magnetic information retention properties come from a cooperative effect of all molecules in the material. This therefore results in a noticeable difference in the capacity for storing information. The first magnet-molecule, the famous [Mn12], was discovered in 1980. Its magnetic properties were characterized a few years later, thus opening a new chapter in the field of molecular magnetism. The characteristics of a molecule-magnet are linked to the energy barrier that defines these complexes: ΔE = | D | S² (D for anisotropy and S for the spin of the complex). From 2003, the replacement of transition metals by lanthanide ions revolutionized research in this field. Previous laboratory work has shown that the nuclearity of molecular structures and the number of ligands have a major impact on the magnetic properties of the molecule-magnet. It turns out that the simplest complexes are generally those with the best performance. The main subject of the thesis is to develop mononuclear complexes. The idea is to be able to subsequently modify these compounds by post-functionalization of the organic ligand in order to exacerbate the magnetic performances and / or to add new properties (luminescence for example, multifunctionality) to the initial molecule-magnet. To do this, a library of original β-diketone ligands was produced. These ligands have functions which subsequently make it possible to carry out organic modification reactions on the magnet molecule. Two post-functionalization reactions were thus considered: a Palladium-coupling reaction (Sonogashira or Suzuki-Miyaura) and a click reaction (Huisgen cycloaddition). A second aim of this thesis is based on the results of a recent theoretical study which proposes the use of the sulfur atom in the coordination sphere of the metal center of the SMM. The latter would improve the axiality of the molecule and therefore the magnetic properties of the final molecular structure. The synthesis of sulfur analogues of β-diketone ligands was then undertaken to study the influence of the sulfur atom compared to its oxygenated counterparts in the final magnet molecule. β-monothioketone and keto-sulfoxide ligands have therefore been synthesized. The corresponding lanthanide ion-based complexes have been isolated, their molecular structures as well as their magnetic and luminescence properties have been characterized
Lannes, Anthony. "Chimie de coordination de radicaux nitronyl-nitroxyde pontants pour l’élaboration de matériaux magnétiques moléculaires : synthèse, structures cristallines, propriétés magnétiques et spectroscopie électronique." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10173/document.
Full textFor the past decades, electronics have been developed in order to meet the increasing need of information storage, always evolving to the constant upgrade of their components: better, faster, smaller. Twenty-five years ago, the recently created field of molecular magnetism allowed designing entities responding to the aforementioned requirements: Single- Molecule-Magnets (SMMs). On the one hand, those are compounds showing magnetic bistability affording to stock information and on the other hand, they are the smallest entities available to design any information support. In spite of those remarkable qualities, they require very low temperature (< 15 K) to display their properties. Thus, it is of primary importance to understand underlying mechanisms in order to increase this temperature range. One promising route is to connect lanthanide dimer by a radical bridge. This method has led to the discovery of a SMM, whose blocking temperature is the highest known to date (14 K). This thesis work has been dedicated to the conception of SMMs and molecular-based magnets, as well as the characterization of their structures and magnetic properties, and their magneto-structural relationships by electronic spectroscopy. Those systems were mostly based on lanthanide(III) or manganese(II) ion and nitronyl-nitroxide organic free radicals. A special focus was made to the synthesis of dinuclear lanthanide complexes bridged by an organic free radical, and to the study of their mononuclear complex. We have studied the potential of NITBzImH radical as a bridge for [Ln(β-diketonate)3] and [Ln(NO3)3] molecular bricks. We also took interest to the unusual magnetic behavior of a manganese(II) coordination polymer, where each metal center is bridged by a NITIm radical, closely related to NITBzImH radical. Finally, we started to explore the changes induced by switching manganese(II) to lanthanide(III)
Apostol, Petru. "Synthèse et propriétés de cristaux liquides et magnétiques de 1,8,15,22-tétraalkoxy-phtalocyanines de métaux (II) et (III)." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0109/document.
Full textThis thesis describes the fully regioselective synthesis of symmetric all-endo tetra-alkoxy-functionalized phthalocyanines and their metal ion complexes accompanied by induction of columnar mesophases in convenient temperature ranges at moderate substituent sizes, as well as their use in organic diodes and the study of their magnetic properties. The synthetic approach to follow is lithium-induced macrocyclization of 3-(2-alkylalkoxy)-phthalonitriles prior to transition meatl ion insertion. Symmetrization of the aliphatic chains in the 3-alkoxy-phthalonitrile precursor from 2-butylocytyl to 2-pentylheptyl maintains both the regioisomeric mixture during the cyclo-tetramerization and to a somewhat greater tendency to crystallization. The combination of attainable clearing temperatures with room temperature columnar stacking and with a relatively high content of conjugated core within the molecular mass makes the first two series of materials, i.e. MPc(OCH2CHBuHex)4, and MPc(OCH2CHPent2)4, potentially useful as uniformly orientable charge transposters in organic electronic devices. We establish that these tetra-α-alkoxy substituted phthalocyanine materials, as exemplified with H2Pc(OCH2CHBuHex)4, NiPc(OCH2CHBuHex)4 and CuPc(OCH2CHBuHex)4, lead to original device performances when applied as an active organic layer in simple ITO/PEDOT:PSS/PC/Al diode structures. A pronounced current rectification of the diodes is obtained despite the preponderantly planar alignment of the columns in the films. The highly soluble tetra-α-alkoxy-substituted Pc ligand, when combined with MnIII and DyIII, gives rise to original mononuclear single molecule magnets. Remarkably, the C4h-symmetric isomer of the octa-alkoxy double decker complex is formed selectively due of presence of the bulky substituents on both Pc rings
Gutium, Ababei Rodica. "Synthèses et études de nouveaux matériaux magnétiques et photomagnétiques." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14238/document.
Full textThe exponential growth of technological demands for information storage capacity is at the origin of the nanosciences and the development of the molecular electronics. Since more than 40 years, the main objective in this field of research is mainly to store as fast as possible more information in a smaller volume. Nowadays, chemists know how to create molecules with remarkable properties, such as Single–Molecule Magnets (SMMs) and Single–Chain Magnets (SCMs), which show magnetic bistability at low temperature (T < 10 K) providing a memory effect. Therefore, the design of novel materials with original physical properties, based on molecular magnetic objects, became the focus of many researches around the world. Following this approach, the design of SMM linked by active bridges that can switch between two magnetic states under external stimuli (temperature, pressure, light...), should favor additional properties and allow an external control (by irradiation) of the magnetic properties of the final SMM-based materials. The goal of this thesis is to organize SMMs by assembling them with two types of linkers: electron-transfer building blocks (Na2[Fe(CN)5NO]) and spin-crossover complexes ([Fe(LN5)(CN)2] and [Fe(LN3O2)(CN)2]). Three new materials obtained from the organization of [MnIII(BS)]+ complexes with the [Fe(CN)5NO]2- building-block, showed no significant photoactivity unlike the Na2[Fe(CN)5NO] precursor. Nevertheless, one of these organized systems exhibits Single-Molecule Magnet behaviour. The employed strategy to link [MnIII(BS)]+ units with photomagnetic [Fe(LN5)(CN)2] and [Fe(LN3O2)(CN)2] spin-crossover complexes, leads to nine new interesting compounds. The most significant novelty from a structural point of view is the various topologies of compounds obtained from molecular complexes to one-dimensional architectures with different arrangements. All compounds exhibit interesting magnetic properties. For example, one of the unidimensional networks shows an antiferromagnetic order followed by a slow relaxation of the magnetization that has been observed for the first time in a canted system. On the other hand, magnetic investigations under light irradiation have revealed remarkable photoinduced properties in the case of five systems based on FeII units in their low spin state. In conclusion, the synthetic strategy used in this thesis has been experimentally validated and opens new perspectives for future photomagnetic SMM and SCM systems
Dhayer, Nathalie. "Nouveaux outils pour la délivrance de médicaments : du peptide vecteur à la molécule aimant." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS716.pdf.
Full textThe aim of this work is to present two tools dedicated to drug delivery. The first part focuses on the study of the internalisation mechanisms of Cell-Penetrating-Peptide (CPP) and the second part deals with the synthesis of molecular architectures for potential applications of magnetic molecules, contrast agents or hyperthermia. Cell-Penetrating-Peptide belong to a class of peptides that have the ability to cross cell membranes. Once inside the cell, CPPs can exert its effect directly. Such peptides are proving to be a preferred tool for drug delivery. Numerous studies have been carried out to elucidate the mechanisms by which such peptides are internalized into cells. In particular, there is disagreement as to whether the transmembrane potential difference is necessary or not. Electrophysiology appears to be the technique of choice to answer this remaining question. Indeed, the measurement of membrane current allows the detection of pore formation in the presence of membrane active peptides. In this thesis, we have developed an electrophysiological technique that allows the measurement of membrane current by applying a potential difference and injecting CPPs near the membrane. The second part focuses on the synthesis and characterization of magnetic and photomagnetic molecules. In the second part, work is carried out in the field of molecular magnetism, involving the synthesis and study of molecules with very high spin and single molecule magnet (SMM) with potentially photomagnetic properties. On the one hand, numerous hetero-trimetallic complexes have been synthesized to obtain anisotropic molecules with high spin whose magnetic properties have been demonstrated. Thus, compounds such as CrNi2Ni4 (S=15/2), CrNi2Mn4 (S=13/2) and, in particular, CrNi2Cd4 (S=7/2) have been successfully obtained and fully characterized, allowing the control of all the essential parameters for the observation of the expected phenomenon (spin value, anisotropy, inter- and intramolecular interactions). On the other hand, new heterobimetallic molecules based on octacyanometallates (molybdenum or tungsten) have been synthesized and their photomagnetic properties have been studied. In particular, a bond cleavage has been observed in the WZn2 complex, and new heterotrimetallic complexes such as WCd2Ni4 and MoCd2Ni4 have also been synthesized, paving the way for photomagnetic magnetic molecules
Lecren, Lollita. "Organisations d'aimants moléculaires au sein de réseaux inorganiques et de coordination : synthèse, structure et propriétés." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00583108.
Full textZakhia, Georges. "Synthèse, caractérisation et propriétés magnétiques de nano-aimants moléculaires." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112071.
Full textIn the first part of this thesis, we studied the magnetic anisotropy of pentacoordinated mononuclear Ni(II) and Co(II) complexes possessing geometries from square pyramid to trigonal bipyramid. We have shown that, for a given geometry, the metal ion nature has an important influence on the magnetic anisotropy.Then, we studied for a given metal ion the effect of geometry on its magnetic anisotropy. In the case of a trigonal bipyramidal geometry (C3v symmetry), we showed that Co(II) has an Ising type anisotropy (easy axis of magnetization) and thus a blocking of magnetization that leads to an opening of a hysteresis cycle at low temperature. This type of complexes can be used for storing data albeit at low temperature.In the second part of the work, we studied the magnetic properties of binuclear complexes. A binuclear Co(II) complex bridged by two Cl- has a weak ferromagnetic coupling and a blocking of its magnetization.Finally, another aspect of this work was to design binuclear complexes, where two anisotropic ions having each one an easy axis of magnetization, are weakly antiferromagnetically coupled. To do this, we have studied compounds with cryptand ligands where the geometry around the Co (II) is trigonal bipyramid. We found that with a Cl- or Br- bridging ligand, the exchange interaction is much more important than the local anisotropy of Co(II) ions leading to a magnetic behavior where the ions lose their local character. This work opens up prospects for synthesizing the same type of complex but with larger bridges to decrease the intensity of the antiferromagnetic coupling
Datta, Subhadeep. "Propriétés de transport électronique de nanotubes de carbone remplis de particules magnétiques." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENY008.
Full textCarbon Nanotubes at low temperature behave as Quantum Dots for which charging processes become quantized, giving rise to Coulomb Blockade depending upon the coupling to the leads. Any small change in the electrostatic environment (tuned by the gate electrode) can induce shift of the stability diagram (so called Coulomb Diamonds) of the device, leading to conductivity variation of the Quantum Dot. A carbon nanotube can therefore be a very accurate electrometer. For example, if a magnetic system is electronically coupled to a nanotube, its electron conduction may be influenced by the spin state of the magnetic system (magneto- Coulomb effect). In this thesis, we report on the electrical transport measurements of such hybrid systems where a carbon nanotube is filled with magnetic nanoparticles such as Iron(Fe). We find that low-temperature (~40mK) current-voltage measurements of such devices can show a hysteretic behaviour in conductance with sharp jumps at certain magnetic fields. We explain the results in terms of the magneto-Coulomb effect where the spin flip of the iron island at non-zero magnetic field causes an effective charge variation in the Nanotube due to the Zeeman energy. Our studies are a step forward towards the study of the magnetic anisotropy of individual nanoparticles. We believe our findings have important implications for sensitive magnetic detectors to study the magnetization reversal of individual magnetic nanoparticle or molecule, even weakly coupled to a carbon nanotube