Journal articles on the topic 'Molecular weight distribution'

To see the other types of publications on this topic, follow the link: Molecular weight distribution.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Molecular weight distribution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tobita, Hidetaka, Yoshiyasu Yamamoto, and Kenji Ito. "Molecular weight distribution in random crosslinking of polymers: Modality of the molecular weight distribution." Macromolecular Theory and Simulations 3, no. 6 (November 1994): 1033–49. http://dx.doi.org/10.1002/mats.1994.040030607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mahabadi, H. Kh, and L. Alexandru. "Molecular weight – viscosity relationships for a broad molecular weight distribution polymer." Canadian Journal of Chemistry 63, no. 1 (January 1, 1985): 221–22. http://dx.doi.org/10.1139/v85-035.

Full text
Abstract:
A novel and simple method is described for evaluation of molecular weight – viscosity relationships for a polymer where only broad molecular weight distribution samples are available. The method demands measurement of the intrinsic viscosity and GPC chromatograms of several samples. Results of applying the procedure to bisphenol A – Diethyleneglycol (50:50) copolycarbonate are presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Ansari, Mahmoud, Yong W. Inn, Ashish M. Sukhadia, Paul J. DesLauriers, and Savvas G. Hatzikiriakos. "Wall slip of HDPEs: Molecular weight and molecular weight distribution effects." Journal of Rheology 57, no. 3 (May 2013): 927–48. http://dx.doi.org/10.1122/1.4801758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Göbelt, Bernd. "Molecular weight distribution in living polymerization." Progress in Organic Coatings 55, no. 2 (February 2006): 189–93. http://dx.doi.org/10.1016/j.porgcoat.2005.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Siochi, E. J., and T. C. Ward. "ABSOLUTE MOLECULAR WEIGHT DISTRIBUTION OF NITROCELLULOSE." Journal of Macromolecular Science, Part C: Polymer Reviews 29, no. 4 (November 1989): 561–657. http://dx.doi.org/10.1080/07366578908050890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ewart, John A. D. "Calculated molecular weight distribution for glutenin." Journal of the Science of Food and Agriculture 38, no. 3 (1987): 277–89. http://dx.doi.org/10.1002/jsfa.2740380312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ouano, Augustus C., and Philip L. Mercier. "The molecular weight distribution of polypropylene." Journal of Polymer Science Part C: Polymer Symposia 21, no. 1 (March 8, 2007): 309–15. http://dx.doi.org/10.1002/polc.5070210127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pepperl, G. "Molecular weight distribution of commercial PVC." Journal of Vinyl and Additive Technology 6, no. 2 (June 2000): 88–92. http://dx.doi.org/10.1002/vnl.10229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tobita, Hidetaka, Yuko Takada, and Mamoru Nomura. "Molecular Weight Distribution in Emulsion Polymerization." Macromolecules 27, no. 14 (July 1994): 3804–11. http://dx.doi.org/10.1021/ma00092a020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Southan, M., and F. MacRitchie. "Molecular Weight Distribution of Wheat Proteins." Cereal Chemistry Journal 76, no. 6 (November 1999): 827–36. http://dx.doi.org/10.1094/cchem.1999.76.6.827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Champagne, Philippe J., Emmanuel Manolakis, and Marten Ternan. "Molecular weight distribution of Athabasca bitumen." Fuel 64, no. 3 (March 1985): 423–25. http://dx.doi.org/10.1016/0016-2361(85)90438-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

TAKANO, Atsushi. "Which is the Highest Molecular-Weight Polymer Having Narrow Molecular Weight Distribution." Kobunshi 47, no. 12 (1998): 904–5. http://dx.doi.org/10.1295/kobunshi.47.904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tuminello, W. H. "Molecular weight and molecular weight distribution from dynamic measurements of polymer melts." Polymer Engineering and Science 26, no. 19 (October 1986): 1339–47. http://dx.doi.org/10.1002/pen.760261909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Todd, William G., Victor L. Olenius, and Jean A. Merrick-Mack. "Prediction of Polyethylene Molecular Weight and Molecular Weight Distribution Using Capillary Rheometer." Journal of Plastic Film & Sheeting 24, no. 3-4 (July 2008): 181–92. http://dx.doi.org/10.1177/8756087908096625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kong, H. J., X. M. Ding, M. M. Qiao, Y. Wu, and M. H. Yu. "Molecular weight and distribution of ultra-high molecular weight poly (p-phenyleneterephalamide)." IOP Conference Series: Materials Science and Engineering 213 (June 2017): 012044. http://dx.doi.org/10.1088/1757-899x/213/1/012044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Monteiro, Michael J. "Fitting molecular weight distributions using a log-normal distribution model." European Polymer Journal 65 (April 2015): 197–201. http://dx.doi.org/10.1016/j.eurpolymj.2015.01.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shiga, S., and Y. Sato. "Characterization of Polymers by GPC-LALLS. III. Branching Structure of EPDM." Rubber Chemistry and Technology 60, no. 1 (March 1, 1987): 1–13. http://dx.doi.org/10.5254/1.3536118.

Full text
Abstract:
Abstract Gamma ray-irradiated EPM's, as the model polymers of branched EPDM, are investigated using the relationship g′=gb, where g′ is the ratio of intrinsic viscosities of the branched and the linear molecules of equal molecular weight, [η]br/[η]l, and g, the ratio of the mean square radii of gyration of the two, 〈s2〉br/〈s2〉l. The molecular weight distributions measured by GPC-LALLS coincide well with theoretical curves of tetrafunctionally and statistically branched polymers obtained by the ideal degradation and crosslinking of the raw EPM, which was assumed to have the most probable molecular weight distribution, and the b-value is then determined to be 1.1. EPDM samples, polymerized with a soluble vanadium compound—alkyl aluminum halide type catalyst in a continuous well-stirred pilot-reactor, are characterizedas to the number of branching points per molecule for various molecular weights by using the b-value. The higher the molecular weight, the smaller the distance between neighboring crosslinking points. The reason is discussed. The unsaturated bond of dicyclopentadiene crosslinks more readily in the manufacturing process than 5-ethylidene-2-norbornene. The largest high molecular weight portion and the broadest molecular weight distribution are observed in the EPDM with the maximum dicyclopentadiene content.
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Young Sil, and Kwan Han Yoon. "Determination of Molecular Weight and Molecular Weight Distribution of Polypropylene Using Rheological Properties." Polymer Korea 38, no. 6 (November 25, 2014): 735–43. http://dx.doi.org/10.7317/pk.2014.38.6.735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Crowley, Timothy J., and Kyu Yong Choi. "Calculation of Molecular Weight Distribution from Molecular Weight Moments in Free Radical Polymerization." Industrial & Engineering Chemistry Research 36, no. 5 (May 1997): 1419–23. http://dx.doi.org/10.1021/ie960623e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rochas, Cyrille, and Marc Lahaye. "Average molecular weight and molecular weight distribution of agarose and agarose-type polysaccharides." Carbohydrate Polymers 10, no. 4 (January 1989): 289–98. http://dx.doi.org/10.1016/0144-8617(89)90068-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Horta, Arturo, and M. Alejandra Pastoriza. "The Molecular Weight Distribution of Polymer Samples." Journal of Chemical Education 84, no. 7 (July 2007): 1217. http://dx.doi.org/10.1021/ed084p1217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nakahama, Seiichi. "Functional polymers with narrow molecular weight distribution." Kobunshi 35, no. 3 (1986): 256–59. http://dx.doi.org/10.1295/kobunshi.35.256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Starkweather, Howard W., and Mark C. Han. "Molecular weight distribution of emulsion-polymerized polyethylene." Journal of Polymer Science Part A: Polymer Chemistry 30, no. 13 (December 1992): 2709–13. http://dx.doi.org/10.1002/pola.1992.080301306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tobita, Hidetaka. "Fundamental Molecular Weight Distribution of RAFT Polymers." Macromolecular Reaction Engineering 2, no. 5 (July 21, 2008): 371–81. http://dx.doi.org/10.1002/mren.200800020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Krishnaswamy, Rajendra K., David C. Rohlfing, Ashish M. Sukhadia, and Kevin R. Slusarz. "Extrusion of broad-molecular-weight-distribution polyethylenes." Polymer Engineering and Science 44, no. 12 (2004): 2266–73. http://dx.doi.org/10.1002/pen.20254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Echevarría, Antonio, José R. Leiza, José C. De La Cal, and José M. Asua. "Molecular-weight distribution control in emulsion polymerization." AIChE Journal 44, no. 7 (July 1998): 1667–79. http://dx.doi.org/10.1002/aic.690440718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lyngaae-Jørgensen, J. "Molecular weight distribution of poly(vinyl chloride)." Journal of Polymer Science Part C: Polymer Symposia 33, no. 1 (March 8, 2007): 39–54. http://dx.doi.org/10.1002/polc.5070330105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tobita, Hidetaka. "Molecular weight distribution in nonlinear emulsion polymerization." Journal of Polymer Science Part B: Polymer Physics 35, no. 10 (July 30, 1997): 1515–32. http://dx.doi.org/10.1002/(sici)1099-0488(19970730)35:10<1515::aid-polb5>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Starkweather, Howard W., and Souheng Wu. "Molecular weight distribution in polymers of tetrafluoroethylene." Polymer 30, no. 9 (September 1989): 1669–74. http://dx.doi.org/10.1016/0032-3861(89)90328-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Friedrich, Christian, Richard J. Loy, and Robert S. Anderssen. "Relaxation time spectrum molecular weight distribution relationships." Rheologica Acta 48, no. 2 (October 30, 2008): 151–62. http://dx.doi.org/10.1007/s00397-008-0314-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Romankevich, O. V., V. M. Irklei, and I. A. Lyashok. "Molecular-weight distribution of cellulose after ripening." Fibre Chemistry 32, no. 2 (March 2000): 100–104. http://dx.doi.org/10.1007/bf02361086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tobita, Hidetaka. "Molecular Weight Distribution of Living Radical Polymers." Macromolecular Theory and Simulations 15, no. 1 (January 16, 2006): 12–22. http://dx.doi.org/10.1002/mats.200500066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tobita, Hidetaka. "Molecular Weight Distribution of Living Radical Polymers." Macromolecular Theory and Simulations 15, no. 1 (January 16, 2006): 23–31. http://dx.doi.org/10.1002/mats.200500067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ryu, Jinsook, Kyuhyun Im, Wonjae Yu, Jaiwook Park, Taihyun Chang, Kwanyoung Lee, and Namsun Choi. "Molecular Weight Distribution of Branched Polystyrene: Propagation of Poisson Distribution." Macromolecules 37, no. 23 (November 2004): 8805–7. http://dx.doi.org/10.1021/ma049064a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lobos, Z. J., and H. Tang. "Rheological Determination of Molecular Weight and Molecular-Weight Distribution for Commercial-Type Butyl Elastomers." Rubber Chemistry and Technology 62, no. 4 (September 1, 1989): 623–34. http://dx.doi.org/10.5254/1.3536264.

Full text
Abstract:
Abstract 1. There exists a linear correlation between rheological parameters (crossover frequency and crossover modulus) and structural parameters (Mw, and MWD) for commercial-type butyl elastomers. 2. There appears to be potential value in utilizing rheological testing for quality control for commercial-type butyl elastomers. 3. Further work is required to resolve testing problems (air entrapment and sample trimming) which affect the precision of the rheological measurements.
APA, Harvard, Vancouver, ISO, and other styles
36

Naga, Naofumi, and Kooji Mizunuma. "Molecular weight and molecular weight distribution of polyethene obtained withrac-Me2Si(Ind)2ZrCl2/methylaluminoxane." Macromolecular Chemistry and Physics 199, no. 1 (January 1, 1998): 113–18. http://dx.doi.org/10.1002/(sici)1521-3935(19980101)199:1<113::aid-macp113>3.0.co;2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Abedi, S., M. Hosseinzadeh, M. A. Kazemzadeh, and M. Daftari-Besheli. "Effect of polymerization time on the molecular weight and molecular weight distribution of polypropylene." Journal of Applied Polymer Science 100, no. 1 (2006): 368–71. http://dx.doi.org/10.1002/app.23123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Krenceski, Mary A., and Julian F. Johnson. "Shear, tack, and peel of polyisobutylene: Effect of molecular weight and molecular weight distribution." Polymer Engineering and Science 29, no. 1 (January 1989): 36–43. http://dx.doi.org/10.1002/pen.760290108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zanetti, F., E. Murano, and S. Paoletti. "Determination of Molecular Weight and Molecular Weight Distribution of Agar Fractions Extracted fromGracilaria dura." Planta Medica 58, S 1 (December 1992): 696. http://dx.doi.org/10.1055/s-2006-961718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mohd Noor, Mohd Azmil, Tuan Noor Maznee Tuan Ismail, Vahid Sendijarevic, Christi M. Schiffman, Ibrahim Sendijarevic, Razmah Ghazali, and Zainab Idris. "Molecular Weight Distribution of Low Molecular Weight Polyols Derived from Fatty Acid Methyl Esters." Journal of the American Oil Chemists' Society 94, no. 3 (January 17, 2017): 387–95. http://dx.doi.org/10.1007/s11746-017-2950-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Han, Taek Kyu, Hong Ki Choi, Dong Wook Jeung, Young Soo Ko, and Seong Ihl Woo. "Control of molecular weight and molecular weight distribution in ethylene polymerization with metallocene catalysts." Macromolecular Chemistry and Physics 196, no. 8 (August 1995): 2637–47. http://dx.doi.org/10.1002/macp.1995.021960816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Llorens, J., E. Rudé, and R. M. Marcos. "Prediction of Polymer Molecular Weight Distribution from Rheology: Polydimethylsiloxane Blends." Materials Science Forum 480-481 (March 2005): 281–86. http://dx.doi.org/10.4028/www.scientific.net/msf.480-481.281.

Full text
Abstract:
We apply a model that connects rheological properties of linear polymer blends with their molecular weight distributions (MWDs). The model is based on the assumption that the relaxation time, ti, of a chain depends on an average molecular weight, M, which determines the effect of the environment where the molecule reptates, and its own molecular weight according to ti = (kE / 0 N G )·M 3.4 - b·Mi b where kE is the constant of proportionality between zero shear viscosity, ho, and weight average molecular weight, Mw, in unimodal polydisperse systems and 0 N G is the plateau modulus. We deduce that the MWD is related to the relaxation spectrum as H(t) = ( 0 N G /b)·M·W(M). Therefore, the MWD is obtained from the relaxation spectrum, which is deduced from the dynamic moduli, G’(w) and G’’(w), constrained by the plateau modulus, the zero shear viscosity and the steady state compliance, 0 e J . The maximum entropy method has been used to solve the integral equation that provides the relaxation spectra from experimental dynamic moduli. The model has been tested in polydimethylsiloxane blends with weight average molecular weight ranging from 94 to 630 kDa and polydispersity from 1.5 to 3.3. Good agreement is found between experimental and calculated MWDs.
APA, Harvard, Vancouver, ISO, and other styles
43

Eysturskarð, Jonhard, Ingvild J. Haug, Ann-Sissel Ulset, and Kurt I. Draget. "Mechanical properties of mammalian and fish gelatins based on their weight average molecular weight and molecular weight distribution." Food Hydrocolloids 23, no. 8 (December 2009): 2315–21. http://dx.doi.org/10.1016/j.foodhyd.2009.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zeng, Dong-Mei, Jue-Jing Pan, Qun Wang, Xin-Fang Liu, Hui Wang, and Ke-Qin Zhang. "Controlling silk fibroin microspheres via molecular weight distribution." Materials Science and Engineering: C 50 (May 2015): 226–33. http://dx.doi.org/10.1016/j.msec.2015.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tobita, Hidetaka, and Mamoru Nomura. "Molecular weight distribution in non-linear emulsion polymerization." Colloids and Surfaces A: Physicochemical and Engineering Aspects 153, no. 1-3 (August 1999): 119–22. http://dx.doi.org/10.1016/s0927-7757(98)00431-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Farkas, Eszter, Zsolt G. Meszena, and Anthony F. Johnson. "Molecular Weight Distribution Design with Living Polymerization Reactions." Industrial & Engineering Chemistry Research 43, no. 23 (November 2004): 7356–60. http://dx.doi.org/10.1021/ie034329f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tobita, Hidetaka. "Molecular weight distribution in free-radical crosslinking copolymerization." Macromolecules 26, no. 4 (July 1993): 836–41. http://dx.doi.org/10.1021/ma00056a039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ohya, Norimasa, Junko Takizawa, Seiichi Kawahara, and Yasuyuki Tanaka. "Molecular weight distribution of polyisoprene from Lactarius volemus." Phytochemistry 48, no. 5 (July 1998): 781–86. http://dx.doi.org/10.1016/s0031-9422(97)00829-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lim, F. J., and W. R. Schowalter. "Wall Slip of Narrow Molecular Weight Distribution Polybutadienes." Journal of Rheology 33, no. 8 (November 1989): 1359–82. http://dx.doi.org/10.1122/1.550073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Siochi, Emilie J., Thomas C. Ward, Max A. Haney, and Bill Mahn. "The absolute molecular weight distribution of hydroxypropylated lignins." Macromolecules 23, no. 5 (September 1990): 1420–29. http://dx.doi.org/10.1021/ma00207a029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography