Journal articles on the topic 'Molecular Spin Qubits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Molecular Spin Qubits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yamamoto, Satoru, Shigeaki Nakazawa, Kenji Sugisaki, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi, and Takeji Takui. "Adiabatic quantum computing with spin qubits hosted by molecules." Physical Chemistry Chemical Physics 17, no. 4 (2015): 2742–49. http://dx.doi.org/10.1039/c4cp04744c.
Full textTahan, Charles. "Opinion: Democratizing Spin Qubits." Quantum 5 (November 18, 2021): 584. http://dx.doi.org/10.22331/q-2021-11-18-584.
Full textMani, Tomoyasu. "Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing." Chemical Physics Reviews 3, no. 2 (June 2022): 021301. http://dx.doi.org/10.1063/5.0084072.
Full textBahari, Iskandar, Timothy P. Spiller, Shane Dooley, Anthony Hayes, and Francis McCrossan. "Collapse and revival of entanglement between qubits coupled to a spin coherent state." International Journal of Quantum Information 16, no. 02 (March 2018): 1850017. http://dx.doi.org/10.1142/s021974991850017x.
Full textXue, Xiao, Maximilian Russ, Nodar Samkharadze, Brennan Undseth, Amir Sammak, Giordano Scappucci, and Lieven M. K. Vandersypen. "Quantum logic with spin qubits crossing the surface code threshold." Nature 601, no. 7893 (January 19, 2022): 343–47. http://dx.doi.org/10.1038/s41586-021-04273-w.
Full textKoiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins, and Sankar Das Sarma. "Silicon-based spin and charge quantum computation." Anais da Academia Brasileira de Ciências 77, no. 2 (June 2005): 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.
Full textLevi, Barbara Goss. "Making molecular-spin qubits more robust." Physics Today 69, no. 5 (May 2016): 17–21. http://dx.doi.org/10.1063/pt.3.3157.
Full textAffronte, Marco, Filippo Troiani, Alberto Ghirri, Stefano Carretta, Paolo Santini, Valdis Corradini, Raffael Schuecker, Chris Muryn, Grigore Timco, and Richard E. Winpenny. "Molecular routes for spin cluster qubits." Dalton Transactions, no. 23 (2006): 2810. http://dx.doi.org/10.1039/b515731e.
Full textAltintas, Azmi Ali, Fatih Ozaydin, Cihan Bayindir, and Veysel Bayrakci. "Prisoners’ Dilemma in a Spatially Separated System Based on Spin–Photon Interactions." Photonics 9, no. 9 (August 30, 2022): 617. http://dx.doi.org/10.3390/photonics9090617.
Full textKurganskii, Ivan V., Evgeniya S. Bazhina, Alexander A. Korlyukov, Konstantin A. Babeshkin, Nikolay N. Efimov, Mikhail A. Kiskin, Sergey L. Veber, Alexey A. Sidorov, Igor L. Eremenko, and Matvey V. Fedin. "Mapping Magnetic Properties and Relaxation in Vanadium(IV) Complexes with Lanthanides by Electron Paramagnetic Resonance." Molecules 24, no. 24 (December 14, 2019): 4582. http://dx.doi.org/10.3390/molecules24244582.
Full textAravena, Daniel, and Eliseo Ruiz. "Spin dynamics in single-molecule magnets and molecular qubits." Dalton Transactions 49, no. 29 (2020): 9916–28. http://dx.doi.org/10.1039/d0dt01414a.
Full textWasielewski, Michael R. "Light-driven spin chemistry for quantum information science." Physics Today 76, no. 3 (March 1, 2023): 28–34. http://dx.doi.org/10.1063/pt.3.5196.
Full textKintzel, Benjamin, Michael Böhme, Junjie Liu, Anja Burkhardt, Jakub Mrozek, Axel Buchholz, Arzhang Ardavan, and Winfried Plass. "Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex." Chemical Communications 54, no. 92 (2018): 12934–37. http://dx.doi.org/10.1039/c8cc06741d.
Full textLunghi, Alessandro, and Stefano Sanvito. "Electronic spin-spin decoherence contribution in molecular qubits by quantum unitary spin dynamics." Journal of Magnetism and Magnetic Materials 487 (October 2019): 165325. http://dx.doi.org/10.1016/j.jmmm.2019.165325.
Full textPicó-Cortés, Jordi, and Gloria Platero. "Dynamical second-order noise sweetspots in resonantly driven spin qubits." Quantum 5 (December 23, 2021): 607. http://dx.doi.org/10.22331/q-2021-12-23-607.
Full textBaldoví, José J., Lorena E. Rosaleny, Vasanth Ramachandran, Jonathan Christian, Naresh S. Dalal, Juan M. Clemente-Juan, Peng Yang, Ulrich Kortz, Alejandro Gaita-Ariño, and Eugenio Coronado. "Molecular spin qubits based on lanthanide ions encapsulated in cubic polyoxopalladates: design criteria to enhance quantum coherence." Inorganic Chemistry Frontiers 2, no. 10 (2015): 893–97. http://dx.doi.org/10.1039/c5qi00142k.
Full textSproules, Stephen. "Electronic structure study of divanadium complexes with rigid covalent coordination: potential molecular qubits with slow spin relaxation." Dalton Transactions 50, no. 14 (2021): 4778–82. http://dx.doi.org/10.1039/d1dt00709b.
Full textBonizzoni, C., A. Ghirri, K. Bader, J. van Slageren, M. Perfetti, L. Sorace, Y. Lan, O. Fuhr, M. Ruben, and M. Affronte. "Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits." Dalton Transactions 45, no. 42 (2016): 16596–603. http://dx.doi.org/10.1039/c6dt01953f.
Full textYousefjani, Rozhin, and Abolfazl Bayat. "Parallel entangling gate operations and two-way quantum communication in spin chains." Quantum 5 (May 26, 2021): 460. http://dx.doi.org/10.22331/q-2021-05-26-460.
Full textBenci, Tesi, Atzori, Sessoli, and Torre. "Spin Dynamics and Phonons, Insights into Potential Molecular Qubits." Proceedings 26, no. 1 (September 5, 2019): 46. http://dx.doi.org/10.3390/proceedings2019026046.
Full textLunghi, Alessandro, and Stefano Sanvito. "How do phonons relax molecular spins?" Science Advances 5, no. 9 (September 2019): eaax7163. http://dx.doi.org/10.1126/sciadv.aax7163.
Full textCardona-Serra, S., and A. Gaita-Ariño. "Vanadyl dithiolate single molecule transistors: the next spintronic frontier?" Dalton Transactions 47, no. 16 (2018): 5533–37. http://dx.doi.org/10.1039/c8dt00139a.
Full textBader, K., S. H. Schlindwein, D. Gudat, and J. van Slageren. "Molecular qubits based on potentially nuclear-spin-free nickel ions." Physical Chemistry Chemical Physics 19, no. 3 (2017): 2525–29. http://dx.doi.org/10.1039/c6cp08161d.
Full textNajafian, Kaveh, Ziv Meir, and Stefan Willitsch. "From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N2+." Physical Chemistry Chemical Physics 22, no. 40 (2020): 23083–98. http://dx.doi.org/10.1039/d0cp03906c.
Full textRobert, Jérôme, Nathalie Parizel, Philippe Turek, and Athanassios K. Boudalis. "Relevance of Dzyaloshinskii–Moriya spectral broadenings in promoting spin decoherence: a comparative pulsed-EPR study of two structurally related iron(iii) and chromium(iii) spin-triangle molecular qubits." Physical Chemistry Chemical Physics 21, no. 35 (2019): 19575–84. http://dx.doi.org/10.1039/c9cp03422f.
Full textEscalera-Moreno, Luis, José J. Baldoví, Alejandro Gaita-Ariño, and Eugenio Coronado. "Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective." Chemical Science 9, no. 13 (2018): 3265–75. http://dx.doi.org/10.1039/c7sc05464e.
Full textSantanni, Fabio, Andrea Albino, Matteo Atzori, Davide Ranieri, Enrico Salvadori, Mario Chiesa, Alessandro Lunghi, et al. "Probing Vibrational Symmetry Effects and Nuclear Spin Economy Principles in Molecular Spin Qubits." Inorganic Chemistry 60, no. 1 (December 11, 2020): 140–51. http://dx.doi.org/10.1021/acs.inorgchem.0c02573.
Full textSimoni, Mario, Giovanni Amedeo Cirillo, Giovanna Turvani, Mariagrazia Graziano, and Maurizio Zamboni. "Towards Compact Modeling of Noisy Quantum Computers: A Molecular-Spin-Qubit Case of Study." ACM Journal on Emerging Technologies in Computing Systems 18, no. 1 (January 31, 2022): 1–26. http://dx.doi.org/10.1145/3474223.
Full textTimco, Grigore, Simone Marocchi, Elena Garlatti, Claire Barker, Morten Albring, Valerio Bellini, Franca Manghi, et al. "Heterodimers of heterometallic rings." Dalton Transactions 45, no. 42 (2016): 16610–15. http://dx.doi.org/10.1039/c6dt01941b.
Full textMayländer, Maximilian, Su Chen, Emmaline R. Lorenzo, Michael R. Wasielewski, and Sabine Richert. "Exploring Photogenerated Molecular Quartet States as Spin Qubits and Qudits." Journal of the American Chemical Society 143, no. 18 (April 30, 2021): 7050–58. http://dx.doi.org/10.1021/jacs.1c01620.
Full textTimco, Grigore A., Stefano Carretta, Filippo Troiani, Floriana Tuna, Robin J. Pritchard, Christopher A. Muryn, Eric J. L. McInnes, et al. "Engineering the coupling between molecular spin qubits by coordination chemistry." Nature Nanotechnology 4, no. 3 (February 1, 2009): 173–78. http://dx.doi.org/10.1038/nnano.2008.404.
Full textShiddiq, Muhandis, Dorsa Komijani, Yan Duan, Alejandro Gaita-Ariño, Eugenio Coronado, and Stephen Hill. "Enhancing coherence in molecular spin qubits via atomic clock transitions." Nature 531, no. 7594 (March 2016): 348–51. http://dx.doi.org/10.1038/nature16984.
Full textYu, Chung-Jui, Stephen von Kugelgen, Matthew D. Krzyaniak, Woojung Ji, William R. Dichtel, Michael R. Wasielewski, and Danna E. Freedman. "Spin and Phonon Design in Modular Arrays of Molecular Qubits." Chemistry of Materials 32, no. 23 (November 22, 2020): 10200–10206. http://dx.doi.org/10.1021/acs.chemmater.0c03718.
Full textAtzori, Matteo, Stefano Benci, Elena Morra, Lorenzo Tesi, Mario Chiesa, Renato Torre, Lorenzo Sorace, and Roberta Sessoli. "Structural Effects on the Spin Dynamics of Potential Molecular Qubits." Inorganic Chemistry 57, no. 2 (December 27, 2017): 731–40. http://dx.doi.org/10.1021/acs.inorgchem.7b02616.
Full textMusfeldt, Janice L., Zhenxian Liu, Diego López-Alcalá, Yan Duan, Alejandro Gaita-Ariño, José J. Baldoví, and Eugenio Coronado. "Vibronic Relaxation Pathways in Molecular Spin Qubit Na9[Ho(W5O18)2]·35H2O under Pressure." Magnetochemistry 9, no. 2 (February 9, 2023): 53. http://dx.doi.org/10.3390/magnetochemistry9020053.
Full textHuo, Jian-Li, and Shun-Jin Wang. "Quantum logic gates for spin cluster qubits." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 12 (June 1, 2010): 125503. http://dx.doi.org/10.1088/0953-4075/43/12/125503.
Full textYan, Xiruo, Sebastian Gitt, Becky Lin, Donald Witt, Mahssa Abdolahi, Abdelrahman Afifi, Adan Azem, et al. "Silicon photonic quantum computing with spin qubits." APL Photonics 6, no. 7 (July 1, 2021): 070901. http://dx.doi.org/10.1063/5.0049372.
Full textFreedman, Michael H., Matthew B. Hastings, and Modjtaba Shokrian Zini. "Symmetry Protected Quantum Computation." Quantum 5 (September 28, 2021): 554. http://dx.doi.org/10.22331/q-2021-09-28-554.
Full textPorfyrakis, Kyriakos. "(Invited) N@C60 and N@C70 for Quantum Information Processing: Beyond Qubits." ECS Meeting Abstracts MA2022-01, no. 11 (July 7, 2022): 817. http://dx.doi.org/10.1149/ma2022-0111817mtgabs.
Full textStarikova, А. А., M. G. Chegerev, A. G. Starikov, and V. I. Minkin. "Dinuclear cobalt and iron complexes with azomethine derivative of 1,10-phenanthroline: quantum chemical study." Доклады Академии наук 487, no. 1 (July 19, 2019): 36–40. http://dx.doi.org/10.31857/s0869-5652487136-40.
Full textCimatti, I., L. Bondì, G. Serrano, L. Malavolti, B. Cortigiani, E. Velez-Fort, D. Betto, et al. "Vanadyl phthalocyanines on graphene/SiC(0001): toward a hybrid architecture for molecular spin qubits." Nanoscale Horizons 4, no. 5 (2019): 1202–10. http://dx.doi.org/10.1039/c9nh00023b.
Full textChiesa, A., F. Petiziol, E. Macaluso, S. Wimberger, P. Santini, and S. Carretta. "Embedded quantum-error correction and controlled-phase gate for molecular spin qubits." AIP Advances 11, no. 2 (February 1, 2021): 025134. http://dx.doi.org/10.1063/9.0000166.
Full textBader, K., M. Winkler, and J. van Slageren. "Tuning of molecular qubits: very long coherence and spin–lattice relaxation times." Chemical Communications 52, no. 18 (2016): 3623–26. http://dx.doi.org/10.1039/c6cc00300a.
Full textChen, Jia, Cong Hu, John F. Stanton, Stephen Hill, Hai-Ping Cheng, and Xiao-Guang Zhang. "Decoherence in Molecular Electron Spin Qubits: Insights from Quantum Many-Body Simulations." Journal of Physical Chemistry Letters 11, no. 6 (February 25, 2020): 2074–78. http://dx.doi.org/10.1021/acs.jpclett.0c00193.
Full textGiménez-Santamarina, Silvia, Salvador Cardona-Serra, Juan M. Clemente-Juan, Alejandro Gaita-Ariño, and Eugenio Coronado. "Exploiting clock transitions for the chemical design of resilient molecular spin qubits." Chemical Science 11, no. 39 (2020): 10718–28. http://dx.doi.org/10.1039/d0sc01187h.
Full textArdavan, Arzhang, Alice M. Bowen, Antonio Fernandez, Alistair J. Fielding, Danielle Kaminski, Fabrizio Moro, Christopher A. Muryn, et al. "Engineering coherent interactions in molecular nanomagnet dimers." npj Quantum Information 1, no. 1 (December 8, 2015). http://dx.doi.org/10.1038/npjqi.2015.12.
Full textYoneda, J., W. Huang, M. Feng, C. H. Yang, K. W. Chan, T. Tanttu, W. Gilbert, et al. "Coherent spin qubit transport in silicon." Nature Communications 12, no. 1 (July 5, 2021). http://dx.doi.org/10.1038/s41467-021-24371-7.
Full textNoiri, Akito, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, and Seigo Tarucha. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors." Nature Communications 13, no. 1 (September 30, 2022). http://dx.doi.org/10.1038/s41467-022-33453-z.
Full textPiot, N., B. Brun, V. Schmitt, S. Zihlmann, V. P. Michal, A. Apra, J. C. Abadillo-Uriel, et al. "A single hole spin with enhanced coherence in natural silicon." Nature Nanotechnology, September 22, 2022. http://dx.doi.org/10.1038/s41565-022-01196-z.
Full textLandig, A. J., J. V. Koski, P. Scarlino, C. Müller, J. C. Abadillo-Uriel, B. Kratochwil, C. Reichl, et al. "Virtual-photon-mediated spin-qubit–transmon coupling." Nature Communications 10, no. 1 (November 6, 2019). http://dx.doi.org/10.1038/s41467-019-13000-z.
Full text