Academic literature on the topic 'Molecular Spin Qubits'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular Spin Qubits.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molecular Spin Qubits"

1

Yamamoto, Satoru, Shigeaki Nakazawa, Kenji Sugisaki, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi, and Takeji Takui. "Adiabatic quantum computing with spin qubits hosted by molecules." Physical Chemistry Chemical Physics 17, no. 4 (2015): 2742–49. http://dx.doi.org/10.1039/c4cp04744c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tahan, Charles. "Opinion: Democratizing Spin Qubits." Quantum 5 (November 18, 2021): 584. http://dx.doi.org/10.22331/q-2021-11-18-584.

Full text
Abstract:
I've been building Powerpoint-based quantum computers with electron spins in silicon for 20 years. Unfortunately, real-life-based quantum dot quantum computers are harder to implement. Materials, fabrication, and control challenges still impede progress. The way to accelerate discovery is to make and measure more qubits. Here I discuss separating the qubit realization and testing circuitry from the materials science and on-chip fabrication that will ultimately be necessary. This approach should allow us, in the shorter term, to characterize wafers non-invasively for their qubit-relevant properties, to make small qubit systems on various different materials with little extra cost, and even to test spin-qubit to superconducting cavity entanglement protocols where the best possible cavity quality is preserved. Such a testbed can advance the materials science of semiconductor quantum information devices and enable small quantum computers. This article may also be useful as a light and light-hearted introduction to quantum dot spin qubits.
APA, Harvard, Vancouver, ISO, and other styles
3

Mani, Tomoyasu. "Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing." Chemical Physics Reviews 3, no. 2 (June 2022): 021301. http://dx.doi.org/10.1063/5.0084072.

Full text
Abstract:
Photogenerated spin-correlated radical pairs (SCRPs) in electron donor–bridge–acceptor (D–B–A) molecules can act as molecular qubits and inherently spin qubit pairs. SCRPs can take singlet and triplet spin states, comprising the quantum superposition state. Their synthetic accessibility and well-defined structures, together with their ability to be prepared in an initially pure, entangled spin state and optical addressability, make them one of the promising avenues for advancing quantum information science. Coherence between two spin states and spin selective electron transfer reactions form the foundation of using SCRPs as qubits for sensing. We can exploit the unique sensitivity of the spin dynamics of SCRPs to external magnetic fields for sensing applications including resolution-enhanced imaging, magnetometers, and magnetic switch. Molecular quantum sensors, if realized, can provide new technological developments beyond what is possible with classical counterparts. While the community of spin chemistry has actively investigated magnetic field effects on chemical reactions via SCRPs for several decades, we have not yet fully exploited the synthetic tunability of molecular systems to our advantage. This review offers an introduction to the photogenerated SCRPs-based molecular qubits for quantum sensing, aiming to lay the foundation for researchers new to the field and provide a basic reference for researchers active in the field. We focus on the basic principles necessary to construct molecular qubits based on SCRPs and the examples in quantum sensing explored to date from the perspective of the experimentalist.
APA, Harvard, Vancouver, ISO, and other styles
4

Bahari, Iskandar, Timothy P. Spiller, Shane Dooley, Anthony Hayes, and Francis McCrossan. "Collapse and revival of entanglement between qubits coupled to a spin coherent state." International Journal of Quantum Information 16, no. 02 (March 2018): 1850017. http://dx.doi.org/10.1142/s021974991850017x.

Full text
Abstract:
We extend the study of the Jayne–Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising [Formula: see text] qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.
APA, Harvard, Vancouver, ISO, and other styles
5

Xue, Xiao, Maximilian Russ, Nodar Samkharadze, Brennan Undseth, Amir Sammak, Giordano Scappucci, and Lieven M. K. Vandersypen. "Quantum logic with spin qubits crossing the surface code threshold." Nature 601, no. 7893 (January 19, 2022): 343–47. http://dx.doi.org/10.1038/s41586-021-04273-w.

Full text
Abstract:
AbstractHigh-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code2,3. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are promising for scaling, as they can leverage advanced semiconductor technology4. Here we report a spin-based quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task of calculating molecular ground-state energies using a variational quantum eigensolver algorithm5. Having surpassed the 99% barrier for the two-qubit gate fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to possible applications in the era of noisy intermediate-scale quantum devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Koiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins, and Sankar Das Sarma. "Silicon-based spin and charge quantum computation." Anais da Academia Brasileira de Ciências 77, no. 2 (June 2005): 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.

Full text
Abstract:
Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P+2 substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.
APA, Harvard, Vancouver, ISO, and other styles
7

Levi, Barbara Goss. "Making molecular-spin qubits more robust." Physics Today 69, no. 5 (May 2016): 17–21. http://dx.doi.org/10.1063/pt.3.3157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Affronte, Marco, Filippo Troiani, Alberto Ghirri, Stefano Carretta, Paolo Santini, Valdis Corradini, Raffael Schuecker, Chris Muryn, Grigore Timco, and Richard E. Winpenny. "Molecular routes for spin cluster qubits." Dalton Transactions, no. 23 (2006): 2810. http://dx.doi.org/10.1039/b515731e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Altintas, Azmi Ali, Fatih Ozaydin, Cihan Bayindir, and Veysel Bayrakci. "Prisoners’ Dilemma in a Spatially Separated System Based on Spin–Photon Interactions." Photonics 9, no. 9 (August 30, 2022): 617. http://dx.doi.org/10.3390/photonics9090617.

Full text
Abstract:
Having access to ideal quantum mechanical resources, the prisoners’ dilemma can be ceased Here, we propose a distributed quantum circuit to allow spatially separated prisoners to play the prisoners’ dilemma game. Decomposing the circuit into controlled-Z and single-qubit gates only, we design a corresponding spin–photon-interaction-based physical setup within the reach of current technology. In our setup, spins are considered to be the players’ logical qubits, which can be realized via nitrogen-vacancy centers in diamond or quantum dots coupled to optical cavities, and the game is played via a flying photon realizing logic operations by interacting with the spatially separated optical cavities to which the spin qubits are coupled. We also analyze the effect of the imperfect realization of two-qubit gates on the game, and discuss the revival of the dilemma and the emergence of new Nash equilibria.
APA, Harvard, Vancouver, ISO, and other styles
10

Kurganskii, Ivan V., Evgeniya S. Bazhina, Alexander A. Korlyukov, Konstantin A. Babeshkin, Nikolay N. Efimov, Mikhail A. Kiskin, Sergey L. Veber, Alexey A. Sidorov, Igor L. Eremenko, and Matvey V. Fedin. "Mapping Magnetic Properties and Relaxation in Vanadium(IV) Complexes with Lanthanides by Electron Paramagnetic Resonance." Molecules 24, no. 24 (December 14, 2019): 4582. http://dx.doi.org/10.3390/molecules24244582.

Full text
Abstract:
Vanadium(IV) complexes are actively studied as potential candidates for molecular spin qubits operating at room temperatures. They have longer electron spin decoherence times than many other transition ions, being the key property for applications in quantum information processing. In most cases reported to date, the molecular complexes were optimized through the design for this purpose. In this work, we investigate the relaxation properties of vanadium(IV) ions incorporated in complexes with lanthanides using electron paramagnetic resonance (EPR). In all cases, the VO6 moieties with no nuclear spins in the first coordination sphere are addressed. We develop and implement the approaches for facile diagnostics of relaxation characteristics in individual VO6 moieties of such compounds. Remarkably, the estimated relaxation times are found to be close to those of other vanadium-based qubits obtained previously. In the future, a synergistic combination of qubit-friendly properties of vanadium ions with single-molecule magnetism and luminescence of lanthanides can be pursued to realize new functionalities of such materials.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Molecular Spin Qubits"

1

Brown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.

Full text
Abstract:
Conventional computing faces a huge technical challenge as traditional transistors will soon reach their size limitations. This will halt progress in reaching faster processing speeds and to overcome this problem, require an entirely new approach. Quantum computing (QC) is a natural solution offering a route to miniaturisation by, for example, storing information in electron or nuclear spin states, whilst harnessing the power of quantum physics to perform certain calculations exponentially faster than its classical counterpart. However, QCs face many difficulties, such as, protecting the quantum-bit (qubit) from the environment and its irreversible loss through the process of decoherence. Hybrid systems provide a route to harnessing the benefits of multiple degrees of freedom through the coherent transfer of quantum information between them. In this thesis I show coherent qubit transfer between electron and nuclear spin states in a 15N@C60 molecular system (comprising a nitrogen atom encapsulated in a carbon cage) and a solid state system, using phosphorous donors in silicon (Si:P). The propagation uses a series of resonant mi- crowave and radiofrequency pulses and is shown with a two-way fidelity of around 90% for an arbitrary qubit state. The transfer allows quantum information to be held in the nuclear spin for up to 3 orders of magnitude longer than in the electron spin, producing a 15N@C60 and Si:P ‘quantum memory’ of up to 130 ms and 1.75 s, respectively. I show electron and nuclear spin relaxation (T1), in both systems, is dominated by a two-phonon process resonant with an excited state, with a constant electron/nuclear T1 ratio. The thesis further investigates the decoherence and relaxation properties of metal atoms encapsulated in a carbon cage, termed metallofullerenes, discovering that exceptionally long electron spin decoherence times are possible, such that these can be considered a viable QC candidate.
APA, Harvard, Vancouver, ISO, and other styles
2

Hakimi, Shirin. "Theory and Modeling of Electrical Control of Chiral Qubit in Spin-Frustrated Molecular Triangle." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-84587.

Full text
Abstract:
Spin-frustrated molecular triangles have four low-lying energy states, so called chiral states, which can be employed as the unit of information, qubit, in a quantum computer. The fact that the chiral states are characterized by two quantum numbers chirality and spin allows the control of the magnetization of the molecule by an electric field due to the spin-electric interaction. Unlike a magnetic field, electric fields can be applied spatially and temporally on the scale of single molecules, as an electric impulse by using a scanning tunneling microscope (STM) tip. In this thesis, I report on, i. Theoretical description of spin-frustrated molecular triangles based on sym-metry group theory, ii. Modeling of the system by using an extended Hubbard Hamiltonian includ-ing spin-orbit coupling and an external magnetic field. iii. Modeling of the spin-electric interaction for a spin-frustrated molecular tri-angle. iv. Studying the chiral states by performing numerical calculations based on exact diagonalization of the Hubbard Hamiltonian. v. Investigating the electrical control of the chiral qubits through numerical calculation.
APA, Harvard, Vancouver, ISO, and other styles
3

BENCI, STEFANO. "Enhancing the performance of potential molecular Qubits: insight into the phonons involved in the spin-lattice relaxation." Doctoral thesis, 2021. http://hdl.handle.net/2158/1234475.

Full text
Abstract:
The development of quantum mechanics led to the birth of the quantum computing, a new frontier of the computer science which exploits quantum phenomena such as the quantum states superposition and the entanglement to perform computation. The basic element of a quantum computer is the Qubit, a two-level quantum system that can be addressed whether in 0 or 1 , but also in a coherent superposition of these two states. Among the great variety of potential Qubit systems, molecular electron spins show interesting features as the great tunability of the electronic and magnetic properties as well as the possibility to interact with other Qubits by adopting an ad-hoc synthetic strategy. Despite these positive features, they suffer from relatively short coherence time, Tm, namely the time during which the quantum information stored inside the Qubit is maintained. The aim of this PhD work is the optimization of the molecular Qubits performances through the research of the key “elements” to enhance the spin-lattice relaxation time, T1, that sets the upper limit of Tm. The study has been focused on Vanadium(IV) coordination compounds whose magnetic properties are due to the single unpaired electron, resulting in a S= 1/2 spin value. This element shows a weak spin-orbit coupling and, consequently, a small spin-phonon coupling, that makes it particularly suitable for the purpose. Two classes of complexes have been taken into account: vanadyl-based molecules, which show the VO2+ metal centre in a square pyramidal coordination geometry, and V(IV)-based ones in which the metal centre is octahedrally coordinated. Several ligands have been used in order to test different structural effects on the spin relaxation. In this study we utilized different experimental techniques to investigate different aspects of the issue. We jointed standard magnetic techniques, as alternate-current (AC) susceptometry, continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopy, and TeraHertz time-domain spectroscopy (THz-TDS) for the characterization of the phonons of the complexes in the crystal phase. Moreover, a deeper investigation of the spin-lattice relaxation mechanisms required a more exotic technique, that is time-resolved THz-pump EPR-probe (TR-THz-EPR) measurements, which exploits the free electron laser radiation as THz source at the Novosibirsk Free Electron Laser (NovoFEL) facility. The whole work has been supported by theoretical calculations that has been fundamental in the rationalization of several experimental results. The manuscript is organized in several parts and each of them includes different chapters. Part I provides a general introduction about Qubits and, in particular, those based on molecular electronic spins. In part II, many theoretical concepts that I consider to be essential in the comprehension of this work are discussed, such as the theory of the spin relaxation and the spin-phonon interaction, with a short mention to the spin-orbit coupling. In part III, the techniques based on custom setups, as THz-TDS setups and the NovoFEL equipment, as well as the samples preparation, are examined. Part IV, which represents the main one, is devoted to the results obtained during the PhD. It is divided in two chapters, according to the two main topics: the former contains the outcomes obtained by the combination of magnetic techniques and THz-TD spectroscopy, arranged according to the publications; while the latter includes the investigation of THz-induced effects on the spin dynamics, performed at NovoFEL. In part V, that is the last one, a summary of this work helps in getting an overall view of it.
APA, Harvard, Vancouver, ISO, and other styles
4

Tesi, Lorenzo. "Multitechnique investigation for rational design of molecular spin qubits." Doctoral thesis, 2019. http://hdl.handle.net/2158/1150777.

Full text
Abstract:
The investigation of the relaxation times of a series of vanadium(IV)-based molecular spin qubits in order to find a correlation to their structural properties. The magnetic system and the lattice structure have been studied by using a multitechnique investigation based on EPR, ac susceptometry, THz spectroscopy and 4D-Inelastic Neutron Scattering. New techniques have been proposed, such as Muon Spin Relaxation spectroscopy, and first preliminary results have been achieved by investigating Dy-based SMMs. A small part of the work is devoted to the characterization of a cobalt(II)-based SMM and 1D spin helices based on lanthanides by using Cantilever Torque Magnetometry.
APA, Harvard, Vancouver, ISO, and other styles
5

Santanni, Fabio. "Molecular approaches for the optimization of electron spin-based quantum bits and quantum logic gates." Doctoral thesis, 2022. http://hdl.handle.net/2158/1262928.

Full text
Abstract:
This work highlights the different possibilities given by a rational chemical approach to obtain molecular-based quantum bits and quantum logic gates as an appealing and alternative platform for implementing quantum computation. This work resumes the three years of the author's work on this subject, mainly presenting and focusing on experimental results obtained for some new potential hydrogen-free molecular qubits, multi-qubit structures, and state-of-the-art EPR-based (Electron Paramagnetic Resonance) experiments on an archetypical vanadyl-based qubit.
APA, Harvard, Vancouver, ISO, and other styles
6

CIMATTI, IRENE. "Magnetic molecules on surfaces: assembling Single Molecule Magnets and molecules with long spin coherence." Doctoral thesis, 2017. http://hdl.handle.net/2158/1085620.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Molecular Spin Qubits"

1

Santini, Paolo, Stefano Carretta, and Giuseppe Amoretti. "Magnetic Molecules as Spin Qubits." In Molecular Magnetic Materials, 103–29. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527694228.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakazawa, Shigeaki, Shinsuke Nishida, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi, Yasushi Morita, Kenji Sugisaki, et al. "Molecular Spin Qubits: Molecular Optimization of Synthetic Spin Qubits, Molecular Spin AQC and Ensemble Spin Manipulation Technology." In Principles and Methods of Quantum Information Technologies, 605–24. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55756-2_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clemente-Juan, Juan M., Eugenio Coronado, and Alejandro Gaita-Ariño. "Mononuclear Lanthanide Complexes: Use of the Crystal Field Theory to Design Single-Ion Magnets and Spin Qubits." In Lanthanides and Actinides in Molecular Magnetism, 27–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baldoví, J. J., S. Cardona-Serra, A. Gaita-Ariño, and E. Coronado. "Design of Magnetic Polyoxometalates for Molecular Spintronics and as Spin Qubits." In Advances in Inorganic Chemistry, 213–49. Elsevier, 2017. http://dx.doi.org/10.1016/bs.adioch.2016.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Molecular Spin Qubits"

1

Sato, Kazuo, Shigeki Nakazawa, Robabeh D. Rahimi, Shinsuke Nishida, Tomoaki Ise, Daisuke Shimoi, Kazuo Toyota, et al. "QUANTUM COMPUTING USING PULSE-BASED ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR): MOLECULAR SPIN-QUBITS." In Molecular Realizations of Quantum Computing 2007. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812838681_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Das, S., S. Faez, and A. S. Sørensen. "Quantum information with optical photons in hybrid molecule-superconducting qubit system." In SPIE Photonics Europe, edited by Benjamin J. Eggleton, Alexander L. Gaeta, Neil G. R. Broderick, Alexander V. Sergienko, Arno Rauschenbeutel, and Thomas Durt. SPIE, 2014. http://dx.doi.org/10.1117/12.2057790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography