Dissertations / Theses on the topic 'Molecular qubits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Molecular qubits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Plant, Simon Richard. "Molecular engineering with endohedral fullerenes : towards solid-state molecular qubits." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:84f12a03-5b1d-4e04-82d5-5b28ca92e56c.
Full textDhungana, Daya Sagar. "Growth of InAs and Bi1-xSBx nanowires on silicon for nanoelectronics and topological qubits by molecular beam epitaxy." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30150/document.
Full textInAs and Bi1-xSbx nanowires with their distinct material properites hold promises for nanoelec- tronics and quantum computing. While the high electron mobility of InAs is interesting for na- noelectronics applications, the 3D topological insulator behaviour of Bi1-xSbx can be used for the realization of Majorana Fermions based qubit devices. In both the cases improving the quality of the nanoscale material is mandatory and is the primary goal of the thesis, where we study CMOS compatible InAs nanowire integration on Silicon and where we develop a new nanoscale topological insulator. For a full CMOS compatiblity, the growth of InAs on Silicon requires to be self-catalyzed, fully vertical and uniform without crossing the thermal budge of 450 °C. These CMOS standards, combined with the high lattice mismatch of InAs with Silicon, prevented the integration of InAs nanowires for nanoelectronics devices. In this thesis, two new surface preparations of the Silicon were studied involving in-situ Hydrogen gas and in-situ Hydrogen plasma treatments and leading to the growth of fully vertical and self-catalyzed InAs nanowires compatible with the CMOS limitations. The different growth mechanisms resulting from these surface preparations are discussed in detail and a switch from Vapor-Solid (VS) to Vapor- Liquid-Solid (VLS) mechanism is reported. Very high aspect ratio InAs nanowires are obtained in VLS condition: upto 50 nm in diameter and 3 microns in length. On the other hand, Bi1-xSbx is the first experimentally confirmed 3D topololgical insulator. In this new material, the presence of robust 2D conducting states, surrounding the 3D insulating bulk can be engineered to host Majorana fermions used as Qubits. However, the compostion of Bi1-xSbx should be in the range of 0.08 to 0.24 for the material to behave as a topological insula- tor. We report growth of defect free and composition controlled Bi1-xSbx nanowires on Si for the first time. Different nanoscale morphologies are obtained including nanowires, nanoribbons and nanoflakes. Their diameter can be 20 nm thick for more than 10 microns in length, making them ideal candidates for quantum devices. The key role of the Bi flux, the Sb flux and the growth tem- perature on the density, the composition and the geometry of nanoscale structures is investigated and discussed in detail
Brown, Richard Matthew. "Coherent transfer between electron and nuclear spin qubits and their decoherence properties." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:21e043b7-3b72-44d7-8095-74308a6827dd.
Full textRolon, Soto Juan Enrique. "Coherent Exciton Phenomena in Quantum Dot Molecules." Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1314742055.
Full textAmoza, Dávila Martín. "Anisotropía Magnética en Imanes Moleculares y Qubits con Complejos Metálicos de Espín ½." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667860.
Full textThis thesis presents a series of theoretical studies based on electronic structure methods to analyze the magnetic anisotropy and other related properties of magnetic complexes with total spin S = ½. The first three chapters are devoted to transition metal complexes while the fourth one addresses lanthanides systems, specifically YbIII. The first chapter determines a relationship between the d orbitals occupation and the coordination geometry of S = ½ transition metal complexes with their magnetic anisotropy, through its g-tensor. This connection is possible due to the relationship between the g-tensor and the splitting of the d manyfold. These energies were obtained using NEVPT2/AILFT calculation on [MIILn] models, screening for different MII metals, coordination numbers (n) and geometries, and ligand nature (L = NH3 or Cl-). The second chapter is a study carried out in collaboration with Dr. Gaita Ariño’s group from the molecular Science Institute of Valencia (ICMol) analyzing the spin-phonon coupling in three VIV qubits: [VOPc], [VO(dmit)2]2- y [V(dmit)3]2-, being Pc = Phthalocyanine and dmit = 1,3-dithiole-2-thione-4,5-dithiolate. In order to analyze the spin-phonon coupling we examined the variation of the magnetic anisotropy using NEVPT2/AILFT calculations for each vibrational mode. The spin-phonon coupling constants obtained for the vibrational modes in the three complexes were used to rationalize their different decoherence times. The third chapter, the last one dedicated to transition metal complexes, compiles a series of collaborations with experimental groups. In these studies, using the same methods as in the previous chapters, we analyzed the electronic structure and magnetic properties of the compounds, explaining experimental results through theoretical calculations. Also, we fitted the spin relaxation times considering the all possible spin relaxation mechanisms. Finally, the fourth chapter explores the magnetic anisotropy and electronic structure of YbIII compounds on the basis of theoretical calculations in a series of [Yb(H2O)n]3+ y [Yb(OH)3(H2O)n-3] model using ideal geometries corresponding to coordination numbers between 2 and 10. These calculations explain the properties of the YbIII single-molecule
Hakimi, Shirin. "Theory and Modeling of Electrical Control of Chiral Qubit in Spin-Frustrated Molecular Triangle." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-84587.
Full textTuorila, J. (Jani). "Spectroscopy of artificial atoms and molecules." Doctoral thesis, Oulun yliopisto, 2010. http://urn.fi/urn:isbn:9789514262135.
Full textNavickas, Tomas. "Towards high-fidelity microwave driven multi-qubit gates on microfabricated surface ion traps." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/79060/.
Full textLeslie, Nathaniel. "Maximal LELM Distinguishability of Qubit and Qutrit Bell States using Projective and Non-Projective Measurements." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/108.
Full textKrajňák, Tomáš. "Depozice velkých organických molekul v UHV." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402579.
Full textBENCI, STEFANO. "Enhancing the performance of potential molecular Qubits: insight into the phonons involved in the spin-lattice relaxation." Doctoral thesis, 2021. http://hdl.handle.net/2158/1234475.
Full textTesi, Lorenzo. "Multitechnique investigation for rational design of molecular spin qubits." Doctoral thesis, 2019. http://hdl.handle.net/2158/1150777.
Full textSantanni, Fabio. "Molecular approaches for the optimization of electron spin-based quantum bits and quantum logic gates." Doctoral thesis, 2022. http://hdl.handle.net/2158/1262928.
Full textCIMATTI, IRENE. "Magnetic molecules on surfaces: assembling Single Molecule Magnets and molecules with long spin coherence." Doctoral thesis, 2017. http://hdl.handle.net/2158/1085620.
Full textChang, C. W., and 張哲維. "Study of Control Input/Output Schemes for Qubit in Quantum-Dot-Molecule Registers." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/56864847357905314386.
Full text國立高雄應用科技大學
電子與資訊工程研究所碩士班
96
This work presents the theory of exciton coupling to photons and LO phonons in quantum-dot molecules (QDMs). Resonant-round trips of the exciton between the ground (bright) and excited (dark or bright) states, mediated by the LO-phonon, alter the decay time and yield the Rabi oscillation. Novel schemes for a qubit reading/writing in an exciton-based quantum-dot-molecule (QDM) register are proposed. A bit of quantum information is coded into the superposition (molecule) states of the QDM, based on field-controllable combinations of these states. Population-dependent Rabi oscillation in QDMs provides a detectable signature for readout of quantum information that is stored in the register. Moreover, the field-convertibly optical transition rate of the molecule states promises the QDM system to be a field-controlled optical-gain switch or a field-controlled single-photon source.