Journal articles on the topic 'Molecular qubit'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Molecular qubit.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
CAO, WEN-ZHEN, LI-JIE TIAN, HUI-JUAN JIANG, and CHONG LI. "SINGLE QUBIT MANIPULATION IN HETERONUCLEAR DIATOMIC MOLECULAR SYSTEM." International Journal of Quantum Information 06, no. 06 (December 2008): 1223–30. http://dx.doi.org/10.1142/s0219749908004390.
Full textGidney, Craig, Michael Newman, and Matt McEwen. "Benchmarking the Planar Honeycomb Code." Quantum 6 (September 21, 2022): 813. http://dx.doi.org/10.22331/q-2022-09-21-813.
Full textXue, Xiao, Maximilian Russ, Nodar Samkharadze, Brennan Undseth, Amir Sammak, Giordano Scappucci, and Lieven M. K. Vandersypen. "Quantum logic with spin qubits crossing the surface code threshold." Nature 601, no. 7893 (January 19, 2022): 343–47. http://dx.doi.org/10.1038/s41586-021-04273-w.
Full textYirka, Justin, and Yiğit Subaşı. "Qubit-efficient entanglement spectroscopy using qubit resets." Quantum 5 (September 2, 2021): 535. http://dx.doi.org/10.22331/q-2021-09-02-535.
Full textYamamoto, Satoru, Shigeaki Nakazawa, Kenji Sugisaki, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi, and Takeji Takui. "Adiabatic quantum computing with spin qubits hosted by molecules." Physical Chemistry Chemical Physics 17, no. 4 (2015): 2742–49. http://dx.doi.org/10.1039/c4cp04744c.
Full textMoreno-Pineda, Eufemio, Clément Godfrin, Franck Balestro, Wolfgang Wernsdorfer, and Mario Ruben. "Molecular spin qudits for quantum algorithms." Chemical Society Reviews 47, no. 2 (2018): 501–13. http://dx.doi.org/10.1039/c5cs00933b.
Full textTahan, Charles. "Opinion: Democratizing Spin Qubits." Quantum 5 (November 18, 2021): 584. http://dx.doi.org/10.22331/q-2021-11-18-584.
Full textJohnson, Alexander I., Fhokrul Islam, C. M. Canali, and Mark R. Pederson. "A multiferroic molecular magnetic qubit." Journal of Chemical Physics 151, no. 17 (November 7, 2019): 174105. http://dx.doi.org/10.1063/1.5127956.
Full textLao, Lingling, Alexander Korotkov, Zhang Jiang, Wojciech Mruczkiewicz, Thomas E. O'Brien, and Dan E. Browne. "Software mitigation of coherent two-qubit gate errors." Quantum Science and Technology 7, no. 2 (March 15, 2022): 025021. http://dx.doi.org/10.1088/2058-9565/ac57f1.
Full textAbu-Nada, Ali. "Quantum computing simulation of the hydrogen molecular ground-state energies with limited resources." Open Physics 19, no. 1 (January 1, 2021): 628–33. http://dx.doi.org/10.1515/phys-2021-0071.
Full textSimoni, Mario, Giovanni Amedeo Cirillo, Giovanna Turvani, Mariagrazia Graziano, and Maurizio Zamboni. "Towards Compact Modeling of Noisy Quantum Computers: A Molecular-Spin-Qubit Case of Study." ACM Journal on Emerging Technologies in Computing Systems 18, no. 1 (January 31, 2022): 1–26. http://dx.doi.org/10.1145/3474223.
Full textChernega, Vladimir N., and Vladimir I. Man’ko. "Qubit portrait of qudit states and Bell inequalities." Journal of Russian Laser Research 28, no. 2 (March 2007): 103–24. http://dx.doi.org/10.1007/s10946-007-0005-8.
Full textGroszkowski, Peter, and Jens Koch. "Scqubits: a Python package for superconducting qubits." Quantum 5 (November 17, 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Full textHoriuchi, Noriaki. "Flying qubit carrying a spin qubit." Nature Photonics 7, no. 4 (March 27, 2013): 336. http://dx.doi.org/10.1038/nphoton.2013.78.
Full textDrahi, David, Demid V. Sychev, Khurram K. Pirov, Ekaterina A. Sazhina, Valeriy A. Novikov, Ian A. Walmsley, and A. I. Lvovsky. "Entangled resource for interfacing single- and dual-rail optical qubits." Quantum 5 (March 23, 2021): 416. http://dx.doi.org/10.22331/q-2021-03-23-416.
Full textPaini, Marco, Amir Kalev, Dan Padilha, and Brendan Ruck. "Estimating expectation values using approximate quantum states." Quantum 5 (March 16, 2021): 413. http://dx.doi.org/10.22331/q-2021-03-16-413.
Full textLabib, Farrokh. "Stabilizer rank and higher-order Fourier analysis." Quantum 6 (February 9, 2022): 645. http://dx.doi.org/10.22331/q-2022-02-09-645.
Full textHastings, Matthew B., and Jeongwan Haah. "Dynamically Generated Logical Qubits." Quantum 5 (October 19, 2021): 564. http://dx.doi.org/10.22331/q-2021-10-19-564.
Full textBravyi, Sergey, Ruslan Shaydulin, Shaohan Hu, and Dmitri Maslov. "Clifford Circuit Optimization with Templates and Symbolic Pauli Gates." Quantum 5 (November 16, 2021): 580. http://dx.doi.org/10.22331/q-2021-11-16-580.
Full textMcKemmish, Laura K., David J. Kedziora, Graham R. White, Noel S. Hush, and Jeffrey R. Reimers. "Frequency-based Quantum Computers from a Chemist's Perspective." Australian Journal of Chemistry 65, no. 5 (2012): 512. http://dx.doi.org/10.1071/ch12053.
Full textPal, Amit Kumar, and Indrani Bose. "Entanglement in a molecular three-qubit system." Journal of Physics: Condensed Matter 22, no. 1 (December 2, 2009): 016004. http://dx.doi.org/10.1088/0953-8984/22/1/016004.
Full textPicó-Cortés, Jordi, and Gloria Platero. "Dynamical second-order noise sweetspots in resonantly driven spin qubits." Quantum 5 (December 23, 2021): 607. http://dx.doi.org/10.22331/q-2021-12-23-607.
Full textPlachta, Stephen Z. D., Markus Hiekkamäki, Abuzer Yakaryılmaz, and Robert Fickler. "Quantum advantage using high-dimensional twisted photons as quantum finite automata." Quantum 6 (June 30, 2022): 752. http://dx.doi.org/10.22331/q-2022-06-30-752.
Full textHussain, Riaz, Giuseppe Allodi, Alessandro Chiesa, Elena Garlatti, Dmitri Mitcov, Andreas Konstantatos, Kasper S. Pedersen, Roberto De Renzi, Stergios Piligkos, and Stefano Carretta. "Coherent Manipulation of a Molecular Ln-Based Nuclear Qudit Coupled to an Electron Qubit." Journal of the American Chemical Society 140, no. 31 (July 24, 2018): 9814–18. http://dx.doi.org/10.1021/jacs.8b05934.
Full textMusfeldt, Janice L., Zhenxian Liu, Diego López-Alcalá, Yan Duan, Alejandro Gaita-Ariño, José J. Baldoví, and Eugenio Coronado. "Vibronic Relaxation Pathways in Molecular Spin Qubit Na9[Ho(W5O18)2]·35H2O under Pressure." Magnetochemistry 9, no. 2 (February 9, 2023): 53. http://dx.doi.org/10.3390/magnetochemistry9020053.
Full textKoiller, Belita, Xuedong Hu, Rodrigo B. Capaz, Adriano S. Martins, and Sankar Das Sarma. "Silicon-based spin and charge quantum computation." Anais da Academia Brasileira de Ciências 77, no. 2 (June 2005): 201–22. http://dx.doi.org/10.1590/s0001-37652005000200002.
Full textAltintas, Azmi Ali, Fatih Ozaydin, Cihan Bayindir, and Veysel Bayrakci. "Prisoners’ Dilemma in a Spatially Separated System Based on Spin–Photon Interactions." Photonics 9, no. 9 (August 30, 2022): 617. http://dx.doi.org/10.3390/photonics9090617.
Full textHilaire, Paul, Edwin Barnes, and Sophia E. Economou. "Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits." Quantum 5 (February 15, 2021): 397. http://dx.doi.org/10.22331/q-2021-02-15-397.
Full textSabín, Carlos. "Digital Quantum Simulation of Linear and Nonlinear Optical Elements." Quantum Reports 2, no. 1 (March 4, 2020): 208–20. http://dx.doi.org/10.3390/quantum2010013.
Full textGrzesiak, Nikodem, Andrii Maksymov, Pradeep Niroula, and Yunseong Nam. "Efficient quantum programming using EASE gates on a trapped-ion quantum computer." Quantum 6 (January 27, 2022): 634. http://dx.doi.org/10.22331/q-2022-01-27-634.
Full textLowe, Angus, Matija Medvidović, Anthony Hayes, Lee J. O'Riordan, Thomas R. Bromley, Juan Miguel Arrazola, and Nathan Killoran. "Fast quantum circuit cutting with randomized measurements." Quantum 7 (March 2, 2023): 934. http://dx.doi.org/10.22331/q-2023-03-02-934.
Full textUllah, Aman, José J. Baldoví, Alejandro Gaita-Ariño, and Eugenio Coronado. "Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets." Dalton Transactions 50, no. 32 (2021): 11071–76. http://dx.doi.org/10.1039/d1dt01832a.
Full textJing-Min, Hou, Tian Li-Jun, and Ge Mo-Lin. "Two-Qubit Quantum Logic Gate in Molecular Magnets." Chinese Physics Letters 22, no. 9 (August 25, 2005): 2147–50. http://dx.doi.org/10.1088/0256-307x/22/9/002.
Full textPorfyrakis, Kyriakos. "(Invited) N@C60 and N@C70 for Quantum Information Processing: Beyond Qubits." ECS Meeting Abstracts MA2022-01, no. 11 (July 7, 2022): 817. http://dx.doi.org/10.1149/ma2022-0111817mtgabs.
Full textHuerga, Daniel. "Variational Quantum Simulation of Valence-Bond Solids." Quantum 6 (December 13, 2022): 874. http://dx.doi.org/10.22331/q-2022-12-13-874.
Full textIssah, Ibrahim, Mohsin Habib, and Humeyra Caglayan. "Long-range qubit entanglement via rolled-up zero-index waveguide." Nanophotonics 10, no. 18 (November 17, 2021): 4579–89. http://dx.doi.org/10.1515/nanoph-2021-0453.
Full textMani, Tomoyasu. "Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing." Chemical Physics Reviews 3, no. 2 (June 2022): 021301. http://dx.doi.org/10.1063/5.0084072.
Full textWang, Qingfeng, Ming Li, Christopher Monroe, and Yunseong Nam. "Resource-Optimized Fermionic Local-Hamiltonian Simulation on a Quantum Computer for Quantum Chemistry." Quantum 5 (July 26, 2021): 509. http://dx.doi.org/10.22331/q-2021-07-26-509.
Full textYousefjani, Rozhin, and Abolfazl Bayat. "Parallel entangling gate operations and two-way quantum communication in spin chains." Quantum 5 (May 26, 2021): 460. http://dx.doi.org/10.22331/q-2021-05-26-460.
Full textArdavan, Arzhang, Alice M. Bowen, Antonio Fernandez, Alistair J. Fielding, Danielle Kaminski, Fabrizio Moro, Christopher A. Muryn, et al. "Engineering coherent interactions in molecular nanomagnet dimers." npj Quantum Information 1, no. 1 (December 8, 2015). http://dx.doi.org/10.1038/npjqi.2015.12.
Full textVepsäläinen, Antti, Roni Winik, Amir H. Karamlou, Jochen Braumüller, Agustin Di Paolo, Youngkyu Sung, Bharath Kannan, et al. "Improving qubit coherence using closed-loop feedback." Nature Communications 13, no. 1 (April 11, 2022). http://dx.doi.org/10.1038/s41467-022-29287-4.
Full textNoiri, Akito, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Amir Sammak, Giordano Scappucci, and Seigo Tarucha. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors." Nature Communications 13, no. 1 (September 30, 2022). http://dx.doi.org/10.1038/s41467-022-33453-z.
Full textLandig, A. J., J. V. Koski, P. Scarlino, C. Müller, J. C. Abadillo-Uriel, B. Kratochwil, C. Reichl, et al. "Virtual-photon-mediated spin-qubit–transmon coupling." Nature Communications 10, no. 1 (November 6, 2019). http://dx.doi.org/10.1038/s41467-019-13000-z.
Full textChicco, Simone, Alessandro Chiesa, Giuseppe Allodi, Elena Garlatti, Matteo Atzori, Lorenzo Sorace, Roberto De Renzi, Roberta Sessoli, and Stefano Carretta. "Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear qudit with an electronic ancilla." Chemical Science, 2021. http://dx.doi.org/10.1039/d1sc01358k.
Full textJurcevic, Petar, and Luke C. G. Govia. "Effective qubit dephasing induced by spectator-qubit relaxation." Quantum Science and Technology, August 25, 2022. http://dx.doi.org/10.1088/2058-9565/ac8cad.
Full textYoneda, J., W. Huang, M. Feng, C. H. Yang, K. W. Chan, T. Tanttu, W. Gilbert, et al. "Coherent spin qubit transport in silicon." Nature Communications 12, no. 1 (July 5, 2021). http://dx.doi.org/10.1038/s41467-021-24371-7.
Full textHyyppä, Eric, Suman Kundu, Chun Fai Chan, András Gunyhó, Juho Hotari, David Janzso, Kristinn Juliusson, et al. "Unimon qubit." Nature Communications 13, no. 1 (November 12, 2022). http://dx.doi.org/10.1038/s41467-022-34614-w.
Full textPlace, Alexander P. M., Lila V. H. Rodgers, Pranav Mundada, Basil M. Smitham, Mattias Fitzpatrick, Zhaoqi Leng, Anjali Premkumar, et al. "New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds." Nature Communications 12, no. 1 (March 19, 2021). http://dx.doi.org/10.1038/s41467-021-22030-5.
Full textErhard, Alexander, Joel J. Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A. Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer Blatt. "Characterizing large-scale quantum computers via cycle benchmarking." Nature Communications 10, no. 1 (November 25, 2019). http://dx.doi.org/10.1038/s41467-019-13068-7.
Full textTsai, Jeng-Yuan, Jinbo Pan, Hsin Lin, Arun Bansil, and Qimin Yan. "Antisite defect qubits in monolayer transition metal dichalcogenides." Nature Communications 13, no. 1 (January 25, 2022). http://dx.doi.org/10.1038/s41467-022-28133-x.
Full text