Academic literature on the topic 'MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)"

1

Blair, Enrique, and Craig Lent. "Clock Topologies for Molecular Quantum-Dot Cellular Automata." Journal of Low Power Electronics and Applications 8, no. 3 (September 8, 2018): 31. http://dx.doi.org/10.3390/jlpea8030031.

Full text
Abstract:
Quantum-dot cellular automata (QCA) is a low-power, non-von-Neumann, general-purpose paradigm for classical computing using transistor-free logic. Here, classical bits are encoded on the charge configuration of individual computing primitives known as “cells.” A cell is a system of quantum dots with a few mobile charges. Device switching occurs through quantum mechanical inter-dot charge tunneling, and devices are interconnected via the electrostatic field. QCA devices are implemented using arrays of QCA cells. A molecular implementation of QCA may support THz-scale clocking or better at room temperature. Molecular QCA may be clocked using an applied electric field, known as a clocking field. A time-varying clocking field may be established using an array of conductors. The clocking field determines the flow of data and calculations. Various arrangements of clocking conductors are laid out, and the resulting electric field is simulated. It is shown that that control of molecular QCA can enable feedback loops, memories, planar circuit crossings, and versatile circuit grids that support feedback and memory, as well as data flow in any of the ordinal grid directions. Logic, interconnect and memory now become indistinguishable, and the von Neumann bottleneck is avoided.
APA, Harvard, Vancouver, ISO, and other styles
2

Porod, Wolfgang. "Quantum-Dot Devices and Quantum-Dot Cellular Automata." International Journal of Bifurcation and Chaos 07, no. 10 (October 1997): 2199–218. http://dx.doi.org/10.1142/s0218127497001606.

Full text
Abstract:
We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. Boolean logic functions may be implemented in specific arrays of cells representing binary information, the so-called Quantum-Dot Cellular Automata (QCA). Cells may also be viewed as carrying analog information and we outline a network-theoretic description of such Quantum-Dot Nonlinear Networks (Q-CNN). In addition, we discuss possible realizations of these structures in a variety of semiconductor systems (including GaAs/AlGaAs, Si/SiGe, and Si/SiO 2), rings of metallic tunnel junctions, and candidates for molecular implementations.
APA, Harvard, Vancouver, ISO, and other styles
3

Hänninen, Ismo, and Jarmo Takala. "Binary multipliers on quantum-dot cellular automata." Facta universitatis - series: Electronics and Energetics 20, no. 3 (2007): 541–60. http://dx.doi.org/10.2298/fuee0703541h.

Full text
Abstract:
This article describes the design of ultra-low-power multipliers on quantum dot cellular automata (QCA) nanotechnology, promising very dense circuits and high operating frequencies, using a single homogeneous layer of the basic cells. We construct structures without the earlier noise problems, verified by the QCA Designer coherence vector simulation. Our results show that the wiring overhead of the arithmetic circuits grows quadratically with the operand word length, and our pipelined array multiplier has linearly better performance-area efficiency than the previously proposed serial-parallel structure. Power analysis at the fundamental Landauer's limit shows, that the operating frequencies will indeed be bound by the energy dissipated in information erasure: under irreversible operation, the limits for the clock rates on molecular QCA are much lower, than the switching speeds of the technology.
APA, Harvard, Vancouver, ISO, and other styles
4

Cong, Peizhong, and Enrique P. Blair. "Clocked molecular quantum-dot cellular automata circuits tolerate unwanted external electric fields." Journal of Applied Physics 131, no. 23 (June 21, 2022): 234304. http://dx.doi.org/10.1063/5.0090171.

Full text
Abstract:
Quantum-dot cellular automata (QCA) may provide low-power, general-purpose computing in the post-CMOS era. A molecular implementation of QCA features nanometer-scale devices and may support [Formula: see text]THz switching speeds at room-temperature. Here, we explore the ability of molecular QCA circuits to tolerate unwanted applied electric fields, which may come from a variety of sources. One likely source of strong unwanted electric fields may be electrodes recently proposed for the write-in of classical bits to molecular QCA input circuits. Previous models have shown that the input circuits are sensitive to the applied field, and a coupled QCA wire can successfully transfer the input bit to downstream circuits despite strong applied fields. However, the ability of other QCA circuits to tolerate an applied field has not yet been demonstrated. Here, we study the robustness of various QCA circuits by calculating their ground state responses in the presence of an applied field. To do this, a circuit is built from several QCA molecules, each described as a two-state system. A circuit Hamiltonian is formed and diagonalized. All pairwise interactions between cells are considered, along with all correlations. An examination of the ground state shows that these QCA circuits may indeed tolerate strong unwanted electric fields. We also show that circuit immunity to the dominant unwanted field component may be obtained by choosing the orientation of constituent molecules. This suggests that relatively large electrodes used for bit write-in to molecular QCA need not disrupt the operation of nearby QCA circuits. The circuits may tolerate significant electric fields from other sources as well.
APA, Harvard, Vancouver, ISO, and other styles
5

Pintus, Alberto M., Andrea Gabrieli, Federico G. Pazzona, Giovanni Pireddu, and Pierfranco Demontis. "Molecular QCA embedding in microporous materials." Physical Chemistry Chemical Physics 21, no. 15 (2019): 7879–84. http://dx.doi.org/10.1039/c9cp00832b.

Full text
Abstract:
We propose an environment for information encoding and transmission via a nanoconfined molecular Quantum Dot Cellular Automata (QCA) wire, composed of a single row of head-to-tail interacting 2-dots molecular switches.
APA, Harvard, Vancouver, ISO, and other styles
6

POROD, WOLFGANG. "QUANTUM-DOT CELLULAR AUTOMATA DEVICES AND ARCHITECTURES." International Journal of High Speed Electronics and Systems 09, no. 01 (March 1998): 37–63. http://dx.doi.org/10.1142/s012915649800004x.

Full text
Abstract:
We discuss novel nanoelectronic architecture paradigms based on cells composed of coupled quantum-dots. These ideas of a transistor-less approach represent a radical departure from conventional technology. We utilize a strategy which exploits the physical interactions between quantum-dots arranged in suitably designed cellular arrays. Boolean logic functions may be implemented in specific arrays of cells representing binary information, the so-called Quantum-Dot Cellular Automata (QCA). Cells may also be viewed as carrying analog information and we outline a network-theoretic description of such Quantum-Dot Nonlinear Networks (Q–CNN). In addition, we discuss possible realizations of these structures in a variety of semiconductor systems (including GaAs/AlGaAs, Si/SiGe, and Si/SiO 2), rings of metallic tunnel junctions, and candidates for molecular implementations.
APA, Harvard, Vancouver, ISO, and other styles
7

Sen, Bibhash, Ayush Rajoria, and Biplab K. Sikdar. "Design of Efficient Full Adder in Quantum-Dot Cellular Automata." Scientific World Journal 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/250802.

Full text
Abstract:
Further downscaling of CMOS technology becomes challenging as it faces limitation of feature size reduction. Quantum-dot cellular automata (QCA), a potential alternative to CMOS, promises efficient digital design at nanoscale. Investigations on the reduction of QCA primitives (majority gates and inverters) for various adders are limited, and very few designs exist for reference. As a result, design of adders under QCA framework is gaining its importance in recent research. This work targets developing multi-layered full adder architecture in QCA framework based on five-input majority gate proposed here. A minimum clock zone (2 clock) with high compaction (0.01 μm2) for a full adder around QCA is achieved. Further, the usefulness of such design is established with the synthesis of high-level logic. Experimental results illustrate the significant improvements in design level in terms of circuit area, cell count, and clock compared to that of conventional design approaches.
APA, Harvard, Vancouver, ISO, and other styles
8

Dey, Debarati, Pradipta Roy, and Debashis De. "Design and Electronic Characterization of Bio-Molecular QCA: A First Principle Approach." Journal of Nano Research 49 (September 2017): 202–14. http://dx.doi.org/10.4028/www.scientific.net/jnanor.49.202.

Full text
Abstract:
Molecular Quantum-dot Cellular Automata is the most promising and challenging technology nowadays for its high operating frequency, extremely high device density and non-cryogenic working temperature. In this paper, we report a First Principle approach based on analytical model of 3-dot Bio Molecular Quantum-dot Cellular Automata. The device is 19.62Å long and this bio molecular Quantum dot Cell has been made with two Adenine Nucleotide bio-molecules along with one Carbazole and one Thiol group. This whole molecular structure is supported onto Gold substrate. In this paper, two Adenine Nucleotides act as two quantum dots and Carbazole acts as another dot. These 3-Quantum-dots are mounted in a tree like structure supported with Thiol group. This model has been demonstrated with Extended Hückel Theory based semi-empirical method. The quantum ballistic transmission and HOMO-LUMO plot support the polarization state change. This state changing ability has been observed for this molecular device. Therefore, this property has been investigated and reported in this paper. HOMO-LUMO plot shows the two logic states along with null state for this 3-dots system. This phenomenon illustrates how the charge transfers take place. Two polarization states along with one additional null state have been obtained for this bio molecular nano device. This molecular device has been operated with 1000THz frequency. This nanoscale design approach will initiate one step towards the modeling of high frequency bio molecular Quantum dot Cell at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
9

Liza, Nishattasnim, Dylan Murphey, Peizhong Cong, David W. Beggs, Yuihui Lu, and Enrique P. Blair. "Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata." Nanotechnology 33, no. 11 (December 21, 2021): 115201. http://dx.doi.org/10.1088/1361-6528/ac40c0.

Full text
Abstract:
Abstract Mixed-valence compounds may provide molecular devices for an energy-efficient, low-power, general-purpose computing paradigm known as quantum-dot cellular automata (QCA). Multiple redox centers on mixed-valence molecules provide a system of coupled quantum dots. The configuration of mobile charge on a double-quantum-dot (DQD) molecule encodes a bit of classical information robust at room temperature. When arranged in non-homogeneous patterns (circuits) on a substrate, local Coulomb coupling between molecules enables information processing. While single-electron transistors and single-electron boxes could provide low-temperature solutions for reading the state of a ∼1 nm scale molecule, we propose a room-temperature read-out scheme. Here, DQD molecules are designed with slightly dissimilar quantum dots. Ab initio calculations show that the binary device states of an asymmetric molecule have distinct Raman spectra. Additionally, the dots are similar enough that mobile charge is not trapped on either dot, allowing device switching driven by the charge configuration of a neighbor molecule. A technique such as tip-enhanced Raman spectroscopy could be used to detect the state of a circuit comprised of several QCA molecules.
APA, Harvard, Vancouver, ISO, and other styles
10

Ardesi, Yuri, Giuliana Beretta, Marco Vacca, Gianluca Piccinini, and Mariagrazia Graziano. "Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits." Electronics 11, no. 2 (January 16, 2022): 276. http://dx.doi.org/10.3390/electronics11020276.

Full text
Abstract:
The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics. Indeed, the electrostatic molecular characteristics play a relevant role in the interaction and consequently influence the functioning of the circuits. In this work, by considering three reference molecular species, namely neutral, oxidized, and zwitterionic, we analyze the fundamental devices, aiming to clarify how molecule physics impacts architectural behavior. We thus examine through energy analysis the fundamental cell-to-cell interactions involved in the layouts. Additionally, we simulate a set of circuits using two available simulators: SCERPA and QCADesigner. In fact, ignoring the molecular characteristics and assuming the molecules copying the QCA behavior lead to controversial molecular circuit proposals. This work demonstrates the importance of considering the molecular type during the design process, thus declaring the simulators working scope and facilitating the assessment of molecular FCN as a possible candidate for future digital electronics.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)"

1

WANG, RUIYU. "ANALYSIS AND MODULATION OF MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA) DEVICES." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2677716.

Full text
Abstract:
Field-Coupled nanocomputing (FCN) paradigms offer fundamentally new approaches for digital computing without involving current transistors. Such paradigms perform computations using local field interactions between nanoscale building blocks which are organized with purposes. Among several FCN paradigms currently under active investigation, the Molecular Quantum-dot Cellular Automata (MQCA) is found to be the most promising and its unique features make it attractive as a candidate for post-CMOS nanocomputing. MQCA is based on electrostatic interactions among quantum cells with nanometer scale eliminating the need of charge transportation, hence its energy consumption is significantly decreased. Meanwhile it also possesses the potential of high throughput if efficient pipelining of information propagation is introduced. This could be realized adopting external clock signals which precisely control the adiabatic switching and direction of data flow in MQCA circuits. In this work, in order to model MQCA as electronic devices and analyze its information propagation with clock taken into account, an effective algorithm based on ab-initio simulations and modelling of molecular interactions has been applied in presence of a proposed clock mechanism for MQCA, including the binary wire, the wire bus and the majority voter. The quantitative results generated depict compelling clocked information propagation phenomena of MQCA devices and most importantly, provide crucial feedback for future MQCA experimental implementations
APA, Harvard, Vancouver, ISO, and other styles
2

PULIMENO, AZZURRA. "Molecular Quantum-dot Cellular Automata (QCA): Characterization of the bis-ferrocene molecule as a QCA device." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2507365.

Full text
Abstract:
Quantum-dot cellular automata is an emerging technology for digital computation that follows the More than Moore trends and aims to the simultaneous reduction of both device size and power consumption. In particular, the basic QCA device is a cell made of dots and in which a bunch of free charges are allowed to move without leaving the cell itself. Depending on which dots the free charges occupy inside the cell (called also charge localization inside the cell) the binary information could be encoded and the interaction between nearby cells is performed by the electrostatic interaction. This means that no current flows between QCA devices, thus strongly reducing the power dissipation. Regarding the physical implementation of the QCA technology, different solutions were proposed in literature (semiconductor, metallic, magnetic and molecular) and in some cases (metallic and magnetic) a prototype or more advanced circuits were developed. Among all the implementations proposed, molecular QCA is the most promising, since high operating frequencies (THz) and non cryogenic work temperature (room temperature) could be achieved due to the nanometer size of a molecular system. However, a molecular prototype still does not exist and in literature only preliminary attempts to demonstrate the molecular QCA feasibility were carried out. The main difficulties to achieve a molecular prototype arise from the lack of control in the fabrication processes at the molecular scale and the current resolution of the electronic instruments to read the state of a single molecular QCA cell. The work of this thesis focused on the characterization from an electronic point of view of a molecule synthesized ad hoc for QCA computing and called bis-ferrocene. The molecule was synthesized by a group of the chemical department of the University of Bologna, in collaboration with the ST Microelectronics company. This work aimed to evaluate the bis-ferrocene properties as QCA device both at the equilibrium and in presence of a bias system. In addition, the interaction between nearby molecules was evaluated and the simulation of the simplest QCA circuit, a molecular wire, was performed. The methodology adopted to carry on this analysis come from the needs to model the bis-ferrocene molecule by means of some figures of merit that could be measured by electronic instrumentations. This is because in literature all the candidate molecules proposed for QCA were characterized using chemical quantities derived from mathematical approximations (energy levels and molecular orbitals). Moreover, all the steps of this work were performed with the aim to set-up an experimental demonstration of the QCA functionalities focusing on a bis-ferrocene wire. For this reasons, the choice of the bias system, the QCA circuit and the definition of a new methodology come from the experimental scheme studied in this work. In particular, the scheme proposed here focused on the experimental evaluation of the three main mechanism involved during QCA computation: how to force the two logic states at the input (write-in system), the interaction between molecules (information propagation) and, finally, the study of system able to recognize the charge localization inside the cell (read-out stage). In addition, given the results obtained during parallel experimental activities, a fault tolerance evaluation of the bis-ferrocene wire in presence of real fabrication defects was performed.
APA, Harvard, Vancouver, ISO, and other styles
3

Santana, Bonilla Alejandro, Rafael Gutierrez, Sandonas Leonardo Medrano, Daijiro Nozaki, Alessandro Paolo Bramanti, and Gianaurelio Cuniberti. "Structural distortions in molecular-based quantum cellular automata: a minimal model based study." Royal Society of Chemistry, 2014. https://tud.qucosa.de/id/qucosa%3A36371.

Full text
Abstract:
Molecular-based quantum cellular automata (m-QCA), as an extension of quantum-dot QCAs, offer a novel alternative in which binary information can be encoded in the molecular charge configuration of a cell and propagated via nearest-neighbor Coulombic cell–cell interactions. Appropriate functionality of m-QCAs involves a complex relationship between quantum mechanical effects, such as electron transfer processes within the molecular building blocks, and electrostatic interactions between cells. The influence of structural distortions of single m-QCA are addressed in this paper within a minimal model using an diabatic-to-adiabatic transformation. We show that even small changes of the classical square geometry between driver and target cells, such as those induced by distance variations or shape distortions, can make cells respond to interactions in a far less symmetric fashion, modifying and potentially impairing the expected computational behavior of the m-QCA.
APA, Harvard, Vancouver, ISO, and other styles
4

Srivastava, Saket. "Probabilistic modeling of quantum-dot cellular automata." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Singhal, Rahul. "Logic Realization Using Regular Structures in Quantum-Dot Cellular Automata (QCA)." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/196.

Full text
Abstract:
Semiconductor industry seems to approach a wall where physical geometry and power density issues could possibly render the device fabrication infeasible. Quantum-dot Cellular Automata (QCA) is a new nanotechnology that claims to offer the potential of manufacturing even denser integrated circuits, which can operate at high frequencies and low power consumption. In QCA technology, the signal propagation occurs as a result of electrostatic interaction among the electrons as opposed to flow to the electrons in a wire. The basic building block of QCA technology is a QCA cell which encodes binary information with the relative position of electrons in it. A QCA cell can be used either as a wire or as logic. In QCA, the directionality of the signal flow is controlled by phase-shifted electric field generated on a separate layer than QCA cell layer. This process is called clocking of QCA circuits. The logic realization using regular structures such as PLAs have played a significant role in the semiconductor field due to their manufacturability, behavioral predictability and the ease of logic mapping. Along with these benefits, regular structures in QCA's would allow for uniform QCA clocking structure. The clocking structure is important because the pioneers of QCA technology propose it to be fabricated in CMOS technology. This thesis presents a detailed design implementation and a comparative analysis of logic realization using regular structures, namely Shannon-Lattices and PLAs for QCAs. A software tool was developed as a part of this research, which automatically generates complete QCA-Shannon-Lattice and QCA-PLA layouts for single-output Boolean functions based on an input macro-cell library. The equations for latency and throughput for the new QCA-PLA and QCA-Shannon-Lattice design implementations were also formulated. The correctness of the equations was verified by performing simulations of the tool-generate layouts with QCADesigner. A brief design trade-off analysis between the tool-generated regular structure implementation and the unstructured custom layout in QCA is presented for the full-adder circuit.
APA, Harvard, Vancouver, ISO, and other styles
6

Venkataramani, Praveen. "Sequential quantum dot cellular automata design and analysis using Dynamic Bayesian Networks." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anduwan, Gabriel A. Y. "The thermal effect and fault tolerance on nanoscale devices : the quantum dot cellular automata (QCA)." Virtual Press, 2007. http://liblink.bsu.edu/uhtbin/catkey/1369913.

Full text
Abstract:
The defects and fault tolerance study is essential in the QCA devices in order to know its characteristics. Knowing the characteristics, one can understand the flow of information in a QCA system with and without manufacturing and operational defects. The manufacturing defects could be at device level or cell level. At the device level, the cell could be rotated, displaced vertically or horizontally, the cell could be missing or the size of the cell could be different. At the cell level, there could be a missing dot, dot could be displaced from its position or the size of the dots could be different. The operational defects are due to its surrounding, such as temperature or stray charge. Each of these defects and fault tolerances can be studies in detail in order to find the optimum working conditions where the information can be safely transmitted to the appropriate locations in the device.The theoretical studies have shown that at absolute temperature and without any defect, the QCA devices are operational. But it is almost impossible to manufacture a perfect or defect free device, and also it is impractical to think about operating a system at absolute zero temperature environment.Therefore, it is important to investigate the fault tolerant properties with defects and higher temperatures to see how far the QCA device can operate safely. Many studies have been done to investigate the fault tolerant properties in QCA devices. However, these studies have not completely exhausted the study of defects and temperature effects. In this study, the dot displacement and missing dots with temperature effects are investigated for the basic QCA devices and a Full Adder. In order to study fault tolerant properties, the existing theoretical model and computer simulation programs have been expanded and used. The defect characteristics have been simulated using normal distribution.
Department of Physics and Astronomy
APA, Harvard, Vancouver, ISO, and other styles
8

Raviraj, Tejas. "Design, Implementation, and Test of Next Generation FPGAs Using Quantum-Dot Cellular Automata Technology." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302291185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Karim, Faizal. "Clocking electrode design and phase analysis for molecular quantum-dot cellular automata based circuits." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31504.

Full text
Abstract:
Molecular quantum-dot cellular automaton (QCA) offers an alternative paradigm for computing at the nano-scale. Such Q C A circuits require an external clock, which can be generated using a network of submerged electrodes, to synchronize information flow, and provide the required power to drive the computation. In this thesis, the effect of electrode separation and applied potential on the likelihood of different Q C A cell states of molecular cells located above and in between two adjacent electrodes is analysed. Using this analysis, estimates of operational ranges are developed for the placement, applied potential, and relative phase between adjacent clocking electrodes to ensure that only those states that are used in the computation, are energetically favourable. Conclusions on the trade-off between cell size and applied clocking potential are drawn and the temperature dependency on the operation of fundamental Q C A building blocks is considered. Lastly, the impact of random phase shifts on the underlying clocking network is investigated and a set of universal Q C A building blocks is classified into distinct groups based on their sensitivity to these random phase shifts.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
10

Jin, Zengxiao. "Fabrication and measurement of molecular quantum cellular automata (QCA) device." 2006. http://etd.nd.edu/ETD-db/theses/available/etd-06292006-143025/.

Full text
Abstract:
Thesis (M.S.E.E.)--University of Notre Dame, 2006.
Thesis directed by Gregory L. Snider for the Department of Electrical Engineering. "June 2006." Includes bibliographical references (leaves 64-65).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)"

1

Kumar, Naresh. Memory Design Using Quantum Dot Cellular Automata (QCA) Technology. Saarbrücken: LAP LAMBERT Academic Publishing, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)"

1

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "QCA Background." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 9–31. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "Array Dividers in QCA." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 97–106. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "Clocking Schemes for QCA." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 139–45. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sharma, Vijay Kumar. "Quantum-Dot Cellular Automata (QCA) Nanotechnology for Next-Generation Systems." In Nanoelectronics for Next-Generation Integrated Circuits, 57–80. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003155751-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "Design of Reversible Gates in QCA." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 47–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "Designs of Adder Circuit in QCA." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 63–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Surya, Sri Sai, A. Arun Kumar Gudivada, and Durgesh Nandan. "Systematic Review on Full-Subtractor Using Quantum-Dot Cellular Automata (QCA)." In Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, 619–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7234-0_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "Design of Arithmetic Logic Unit in QCA." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 107–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sasamal, Trailokya Nath, Ashutosh Kumar Singh, and Anand Mohan. "Design of Registers and Memory in QCA." In Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective, 119–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1823-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Repe, Madhavi R., and Manisha Waje. "Evaluation of Digital Circuit Methodologies in Nanotechnology Using QCA - Quantum Dot Cellular Automata." In Lecture Notes in Electrical Engineering, 603–8. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7985-8_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)"

1

Antonelli, Dominic A., Danny Z. Chen, Timothy J. Dysart, Xiaobo S. Hu, Andrew B. Kahng, Peter M. Kogge, Richard C. Murphy, and Michael T. Niemier. "Quantum-Dot Cellular Automata (QCA) circuit partitioning." In the 41st annual conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/996566.996671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lent, Craig S. "Molecular quantum-dot cellular automata." In 2006 IEEE Workshop on Signal Processing Systems Design and Implementation. IEEE, 2006. http://dx.doi.org/10.1109/sips.2006.352542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chakrabarty, Ratna, Sreyashi Dutta, Maitreyee Roy Malakar, Sagar Singha Roy Pallabi Mukherjee, and Rajib Ganguly. "Nano-Calculator using Quantum Dot Cellular Automata (QCA)." In 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech). IEEE, 2017. http://dx.doi.org/10.1109/iementech.2017.8076967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lent, Craig S., Sarah E. Frost, and Peter M. Kogge. "Reversible computation with quantum-dot cellular automata (QCA)." In the 2nd conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1062261.1062327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee Ai Lim, Azrul Ghazali, Sarah Chan Tji Yan, and Chau Chien Fat. "Sequential circuit design using Quantum-dot Cellular Automata (QCA)." In 2012 IEEE International Conference on Circuits and Systems (ICCAS). IEEE, 2012. http://dx.doi.org/10.1109/iccircuitsandsystems.2012.6408320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Repe, Madhavi, and Sanjay Koli. "Design Methods in Nanotechnology Using Quantum Dot Cellular Automata (QCA)." In 2022 International Conference on Intelligent Technologies (CONIT). IEEE, 2022. http://dx.doi.org/10.1109/conit55038.2022.9848011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gassoumi, Ismail, Lamjed Touil, and Bouraoui Ouni. "Design of Efficient Quantum-Dot Cellular Automata (QCA) MAC Unit." In 2018 30th International Conference on Microelectronics (ICM). IEEE, 2018. http://dx.doi.org/10.1109/icm.2018.8704115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choi, Minsu, Myungsu Choi, Zachary Patitz, and Nohpill Park. "Efficient and Robust Delay-Insensitive QCA (Quantum-Dot Cellular Automata) Design." In 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. IEEE, 2006. http://dx.doi.org/10.1109/dft.2006.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vilela Neto, Omar Paranaiba, Marco Aurélio C. Pacheco, Carlos R. Hall Barbosa, and Leone P. Masiero. "Simulador de Quantum-Dot Cellular Automata (QCA) Utilizando Redes de Hopfield." In 7. Congresso Brasileiro de Redes Neurais. SBRN, 2016. http://dx.doi.org/10.21528/cbrn2005-090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khanday, F. A., N. A. Kant, Z. A. Bangi, and N. A. Shah. "A novel universal (FNZ) gate in quantum dot cellular automata (QCA)." In 2013 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, 2013. http://dx.doi.org/10.1109/mspct.2013.6782130.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "MOLECULAR QUANTUM-DOT CELLULAR AUTOMATA (QCA)"

1

Singhal, Rahul. Logic Realization Using Regular Structures in Quantum-Dot Cellular Automata (QCA). Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography