Academic literature on the topic 'Molecular motors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular motors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Molecular motors"
Kassem, Salma, Thomas van Leeuwen, Anouk S. Lubbe, Miriam R. Wilson, Ben L. Feringa, and David A. Leigh. "Artificial molecular motors." Chemical Society Reviews 46, no. 9 (2017): 2592–621. http://dx.doi.org/10.1039/c7cs00245a.
Full textSchliwa, Manfred, and Günther Woehlke. "Molecular motors." Nature 422, no. 6933 (April 2003): 759–65. http://dx.doi.org/10.1038/nature01601.
Full textTrybus, Kathleen M., and Vladimir I. Gelfand. "Molecular motors." Molecular Biology of the Cell 24, no. 6 (March 15, 2013): 672. http://dx.doi.org/10.1091/mbc.e12-12-0873.
Full textCross, R. A., and N. J. Carter. "Molecular motors." Current Biology 10, no. 5 (March 2000): R177—R179. http://dx.doi.org/10.1016/s0960-9822(00)00368-7.
Full textKLUMPP, STEFAN, MELANIE J. I. MÜLLER, and REINHARD LIPOWSKY. "COOPERATIVE TRANSPORT BY SMALL TEAMS OF MOLECULAR MOTORS." Biophysical Reviews and Letters 01, no. 04 (October 2006): 353–61. http://dx.doi.org/10.1142/s1793048006000288.
Full textNI, CHEN, and JUN-ZHONG WANG. "STM STUDIES ON MOLECULAR ROTORS AND MOTORS." Surface Review and Letters 25, Supp01 (December 2018): 1841004. http://dx.doi.org/10.1142/s0218625x18410044.
Full textBerger, Florian, Corina Keller, Melanie J. I. Müller, Stefan Klumpp, and Reinhard Lipowsky. "Co-operative transport by molecular motors." Biochemical Society Transactions 39, no. 5 (September 21, 2011): 1211–15. http://dx.doi.org/10.1042/bst0391211.
Full textLin, Tsai-Shun, and Chien-Jung Lo. "2P154 Investigating stators assembly of flagellar motors in Escherichia coli(11. Molecular motor,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S184. http://dx.doi.org/10.2142/biophys.53.s184_4.
Full textSpector, Alexander A. "Effectiveness, Active Energy Produced by Molecular Motors, and Nonlinear Capacitance of the Cochlear Outer Hair Cell." Journal of Biomechanical Engineering 127, no. 3 (January 5, 2005): 391–99. http://dx.doi.org/10.1115/1.1894233.
Full textPooler, Daisy R. S., Anouk S. Lubbe, Stefano Crespi, and Ben L. Feringa. "Designing light-driven rotary molecular motors." Chemical Science 12, no. 45 (2021): 14964–86. http://dx.doi.org/10.1039/d1sc04781g.
Full textDissertations / Theses on the topic "Molecular motors"
Neetz, Manuel. "Collective behavior of molecular motors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-85935.
Full textVilfan, Andrej. "Collective dynamics of molecular motors." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=959980024.
Full textJaster, Nicole. "Ratchet models of molecular motors." Phd thesis, Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2005/90/.
Full textMolekulare Motoren sind Proteine, deren Hauptaufgabe es ist, andere Moleküle zu bewegen. Dazu wandeln sie die bei der ATP-Hydrolyse freiwerdende chemische Energie in mechanische Arbeit um. Die Motoren des Zellskeletts gehören zu den drei Superfamilien Myosin, Kinesin und Dynein. Ihre Schienen sind Filamente des Zellskeletts, Actin und die Microtubuli.
In dieser Arbeit werden stochastische Modelle untersucht, welche dazu dienen, die Fortbewegung dieser linearen molekularen Motoren zu beschreiben. Die Skala, auf der wir die Bewegung betrachten, reicht von einzelnen Schritten eines Motorproteins bis in den Bereich der gerichteten Bewegung entlang eines Filaments. Ein Einzelschritt überbrückt je nach Protein etwa 10 nm und wird in ungefähr 10 ms zurückgelegt. Unsere Modelle umfassen M Zustände oder Konformationen, die der Motor annehmen kann, während er sich entlang einer eindimensionalen Schiene bewegt. An K Orten dieser Schiene sind Übergänge zwischen den Zuständen möglich. Die Geschwindigkeit des Proteins lässt sich in Abhängigkeit von den vertikalen Übergangsraten zwischen den einzelnen Zuständen analytisch bestimmen. Wir berechnen diese Geschwindigkeit für Systeme mit bis zu vier Zuständen und Orten und können weiterhin eine Reihe von Regeln ableiten, die uns einschätzen helfen, wie sich ein beliebiges vorgegebenes System verhalten wird.
Darüber hinaus betrachten wir entkoppelte Subsysteme, also einen oder mehrere Zustände, die keine Verbindung zum übrigen System haben. Mit einer bestimmten Wahrscheinlichkeit kann ein Motor einen Zyklus von Konformationen durchlaufen, mit einer anderen Wahrscheinlichkeit einen davon unabhängigen anderen.
Aktive Elemente werden in realen Transportvorgängen durch Motorproteine nicht auf die Übergänge zwischen den Zuständen beschränkt sein. In verzerrten Netzwerken oder ausgehend von der diskreten Mastergleichung des Systems können auch horizontale Raten spezifiziert werden und müssen weiterhin nicht mehr die Bedingungen der detaillierten Balance erfüllen. Damit ergeben sich eindeutige, komplette Pfade durch das jeweilige Netzwerk und Regeln für die Abhängigkeit des Gesamtstroms von allen Raten des Systems. Außerdem betrachten wir die zeitliche Entwicklung für vorgegebene Anfangsverteilungen.
Bei Enzymreaktionen gibt es die Idee des Hauptpfades, dem diese bevorzugt folgen. Wir bestimmen optimale Pfade und den maximalen Fluss durch vorgegebene Netzwerke.
Um darüber hinaus die Geschwindigkeit des Motors in Abhängigkeit von seinem Treibstoff ATP angeben zu können, betrachten wir mögliche Reaktionskinetiken, die den Zusammenhang zwischen den unbalancierten Übergangsraten und der ATP-Konzentration bestimmen. Je nach Typ der Reaktionskinetik und Anzahl unbalancierter Raten ergeben sich qualitativ unterschiedliche Verläufe der Geschwindigkeitskurven in Abhängigkeit von der ATP-Konzentration.
Die molekularen Wechselwirkungspotentiale, die der Motor entlang seiner Schiene erfährt, sind unbekannt.Wir vergleichen unterschiedliche einfache Potentiale und die Auswirkungen auf die Transportkoeffizienten, die sich durch die Lokalisation der vertikalen Übergänge im Netzwerkmodell im Vergleich zu anderen Ansätzen ergeben.
Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks.
Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli.
Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system.
Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle.
Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the system, it is possible to specify horizontal rates, too, which furthermore no longer have to fulfill the conditions of detailed balance. Doing so, we obtain unique, complete paths through the respective network and rules for the dependence of the total current on all the rates of the system. Besides, we view the time evolutions for given initial distributions.
In enzymatic reactions there is the idea of a main pathway these reactions follow preferably. We determine optimal paths and the maximal flow for given networks.
In order to specify the dependence of the motor's velocity on its fuel ATP, we have a look at possible reaction kinetics determining the connection between unbalanced transitions rates and ATP-concentration. Depending on the type of reaction kinetics and the number of unbalanced rates, we obtain qualitatively different curves connecting the velocity to the ATP-concentration.
The molecular interaction potentials the motor experiences on its way along its track are unknown. We compare different simple potentials and the effects the localization of the vertical rates in the network model has on the transport coefficients in comparison to other models.
Müller, Melanie J. I. "Bidirectional transport by molecular motors." Phd thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/1871/.
Full textIn biologischen Zellen transportieren molekulare Motoren verschiedenste Frachtteilchen entlang von Mikrotubuli-Filamenten. Die Mikrotubuli-Filamente besitzen eine intrinsische Richtung: sie haben ein "Plus-" und ein "Minus-"Ende. Einige molekulare Motoren wie Dynein laufen zum Minus-Ende, während andere wie Kinesin zum Plus-Ende laufen. Zellen haben typischerweise ein isopolares Mikrotubuli-Netzwerk. Dies ist besonders ausgeprägt in neuronalen Axonen oder Pilz-Hyphen. In diesen langen röhrenförmigen Ausstülpungen liegen die Mikrotubuli parallel zur Achse mit dem Minus-Ende zum Zellkörper und dem Plus-Ende zur Zellspitze gerichtet. In einer solchen Röhre führt Transport durch nur einen Motor-Typ zu "Motor-Staus". Kinesin-getriebene Frachten akkumulieren an der Spitze, während Dynein-getriebene Frachten am Zellkörper akkumulieren. Wir identifizieren die relevanten Längenskalen und charakterisieren das Stauverhalten in diesen Röhrengeometrien mit Hilfe von Monte-Carlo-Simulationen und analytischen Rechnungen. Eine mögliche Lösung für das Stauproblem ist der Transport mit einem Team von Plus- und einem Team von Minus-Motoren gleichzeitig, so dass die Fracht sich in beide Richtungen bewegen kann. Dies wird in Zellen tatsächlich beobachtet. Der einfachste Mechanismus für solchen bidirektionalen Transport ist ein "Tauziehen" zwischen den beiden Motor-Teams, das nur mit mechanischer Interaktion funktioniert. Wir entwickeln ein stochastisches Tauzieh-Modell, das wir mit numerischen und analytischen Rechnungen untersuchen. Es ergibt sich ein erstaunlich komplexes Motilitätsverhalten. Wir vergleichen unsere Resultate mit den vorhandenen experimentellen Daten, die wir qualitativ und quantitativ reproduzieren.
Qi, Fei. "Light-driven molecular rotary motors." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/434.
Full textKeller, Peter. "Mathematical modeling of molecular motors." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6304/.
Full textPérez, Carrasco Rubén. "Mechano–chemical study of rotatory molecular motors." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/108039.
Full textLos Motores Moleculares son macromoléculas biológicas que se encargan de hacer las transducciones energéticas necesarias dentro de las células. Este trabajo estudia la transformación de energía de motores moleculares rotatorios reales principalmente la F1-ATPasa, el Motor Flagelar de las Bacterias y el F0. Para estudiar la dinámica del motor se han utilizado ecuaciones de Langevin sobreamortiguadas que recogen la importancia de las fluctuaciones térmicas, así como las fuerzas externas aplicadas al motor (conservativas y disipativas) y el potencial interno del motor que contiene la información físico-química de su comportamiento. Este estudio se ha aplicado a la F1-ATPasa, que se puede estudiar tanto analíticamente, obviando las fluctuaciones térmicas como desde su naturaleza estocástica mediante potenciales intermitentes. En ambos casos, el modelo es capaz de describir la dinámica del motor y su dependencia con los diferentes parámetros controlables experimentalmente: Concentración de ATP, fuerza disipativa y fuerza conservativa. En el mismo sentido se ha diseñado una turbina nanoscópica que recoge los principios básicos de la interacción mecánica entre un flujo de iones y la rotación del motor. En ambos casos, tanto en la turbina como en el F1 se observa que el ruido térmico no afecta mucho a la velocidad del motor y en cambio produce cambios enormes en parámetros energéticos como la potencia o la eficiencia. Concretamente, el escenario clásico en que un máximo de eficiencia se obtiene para la fuerza de calado desaparece obteniendo nuevos regímenes óptimos de trabajo. Adicionalmente, se ha desarrollado un formalismo para simplificar las ecuaciones de Langevin obtenidas (límite de ruido blanco) y se ha diseñado un nuevo algoritmo para integrar ecuaciones de Langevin en las cuales el ruido multiplicativo es discontinuo en el espacio.
Li, Quan. "Integrated motions of light driven molecular motors at macroscopic scale." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF001/document.
Full textNatural molecular motors such as ATP synthase, myosin, kinesin and dynein can convert conformationalchanges, due to chemical energy input, into directed motion for catalysis and transport. Preparing artificial molecular motors and making them work at different scales (from nano to macroscopic scale) have been long-term challenges. Herein we designed and synthesized a light driven rotary molecular motor in highly enantiopure form and in gram scale. This motor is featured by two orthogonal functionalities on its upper and lower part, allowing its further integration into polymeric materials. By performing click reaction under different concentration conditions, either an eight shaped motor-polymer conjugate or a gel containing motors as reticulation units could be obtained. Upon UV irradiation, the polymer chains could be entangled due to the rotation of this motor. For eight shaped polymer, the dimension was changed towards smaller dimension, and the morphology was changed from cycle to collapsed coils (spherical or more elongated). For the gel, due to the twisting of polymer chains induced by the rotation of the motor, it could be contracted significantly (80 %) compared with its original volume. The integration of machines which display motions out of equilibrium at nanoscale to movement in the macroscopic world which is extensively used in natural systems will open very interesting prospects in nanotechnology for further developments
Simoes, Fabio Andre Amaral Lopes. "Cytoskeleton and molecular motors in the causation of motor neuron diseases." Thesis, University of Brighton, 2018. https://research.brighton.ac.uk/en/studentTheses/2629bd8d-bbba-4360-9ba2-d77733e431ad.
Full textKlok, Martin. "Motors for use in molecular nanotechnology." [S.l. : s.n.], 2009.
Find full textBooks on the topic "Molecular motors"
Ann, Sperry O. Molecular Motors. New Jersey: Humana Press, 2007. http://dx.doi.org/10.1385/1597454907.
Full textSperry, Ann O., ed. Molecular Motors. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-490-2.
Full textLavelle, Christophe, ed. Molecular Motors. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8556-2.
Full textGeorge, Banting, Higgins S. J, and Biochemical Society (Great Britain), eds. Molecular motors. London: Portland Press, 2000.
Find full textname, No. Molecular motors. Weinheim: Wiley-VCH, 2003.
Find full text1945-, Schliwa M., ed. Molecular motors. Weinheim: Wiley-VCH, 2003.
Find full textJean-Pierre, Sauvage, and Amendola V, eds. Molecular machines and motors. Berlin: Springer, 2001.
Find full textCredi, Alberto, Serena Silvi, and Margherita Venturi, eds. Molecular Machines and Motors. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08678-1.
Full textSauvage, Jean-Pierre, V. Amendola, R. Ballardini, V. Balzani, A. Credi, L. Fabbrizzi, M. T. Gandolfi, et al., eds. Molecular Machines and Motors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44421-1.
Full textLandick, Robert, Terence Strick, and Jue Wang, eds. RNA Polymerases as Molecular Motors. 2nd ed. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839160561.
Full textBook chapters on the topic "Molecular motors"
Cerofolini, Gianfranco. "Molecular Motors." In Nanoscale Devices, 151–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92732-7_11.
Full textBressloff, Paul C. "Molecular motors." In Interdisciplinary Applied Mathematics, 173–232. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72515-0_4.
Full textKlumpp, Stefan, Corina Keller, Florian Berger, and Reinhard Lipowsky. "Molecular Motors: Cooperative Phenomena of Multiple Molecular Motors." In Multiscale Modeling in Biomechanics and Mechanobiology, 27–61. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6599-6_3.
Full textRapenne, Gwénaël, and Christian Joachim. "Single Rotating Molecule-Machines: Nanovehicles and Molecular Motors." In Molecular Machines and Motors, 253–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2013_510.
Full textLeigh, David A., Urszula Lewandowska, Bartosz Lewandowski, and Miriam R. Wilson. "Synthetic Molecular Walkers." In Molecular Machines and Motors, 111–38. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2014_546.
Full textLoget, Gabriel, and Alexander Kuhn. "Electrochemical Motors." In Discovering the Future of Molecular Sciences, 349–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527673223.ch14.
Full textBressloff, Paul C. "Polymers and Molecular Motors." In Interdisciplinary Applied Mathematics, 159–226. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08488-6_4.
Full textLee, Hyung, and Michael Plamann. "Microtubules and Molecular Motors." In Biology of the Fungal Cell, 225–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-06101-5_11.
Full textSilvi, Serena, and Alberto Credi. "Molecular Motors and Machines." In Nanotechnology for Biology and Medicine, 71–100. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-31296-5_4.
Full textHashidzume, Akihito, Hiroyasu Yamaguchi, and Akira Harada. "Cyclodextrin-Based Molecular Machines." In Molecular Machines and Motors, 71–110. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/128_2014_547.
Full textConference papers on the topic "Molecular motors"
Nam, Woochul, and Bogdan I. Epureanu. "Collective Transport by Multiple Molecular Motors." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71226.
Full textSimmel, Friedrich C., and Bernard Yurke. "DNA molecular motors." In SPIE's 8th Annual International Symposium on Smart Structures and Materials, edited by Anna-Maria R. McGowan. SPIE, 2001. http://dx.doi.org/10.1117/12.429683.
Full textFeringa, Ben L. "Molecular switches and motors." In NOBEL SYMPOSIUM 153: NANOSCALE ENERGY CONVERTERS. AIP, 2013. http://dx.doi.org/10.1063/1.4794713.
Full textLIPOWSKY, REINHARD. "MOVEMENTS OF MOLECULAR MOTORS." In Proceedings of the First Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811301_0005.
Full textvan Delden, Richard A. "Light-Driven Molecular Motors." In ELECTRIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES: XVII International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2004. http://dx.doi.org/10.1063/1.1812136.
Full textAndrews, David L., Luciana C. Dávila Romero, Jamie M. Leeder, and Matt M. Coles. "Optomechanical control of molecular motors." In SPIE NanoScience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2010. http://dx.doi.org/10.1117/12.860641.
Full textHarada, Takahiro. "Phenomenological Energetics for Molecular Motors." In ISIS INTERNATIONAL SYMPOSIUM ON INTERDISCIPLINARY SCIENCE. AIP, 2005. http://dx.doi.org/10.1063/1.1900404.
Full textLipowsky, Reinhard, and Steffen Liepelt. "Molecular motors and stochastic networks." In Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-9.
Full textEnomoto, Akihiro, Michael J. Moore, Tadashi Nakano, and Tatsuya Suda. "Stochastic cargo transport by molecular motors in molecular communication." In ICC 2012 - 2012 IEEE International Conference on Communications. IEEE, 2012. http://dx.doi.org/10.1109/icc.2012.6364950.
Full textCulver, Dean, Bryan Glaz, and Samuel Stanton. "A Dynamic Escape Problem of Molecular Motors." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88612.
Full textReports on the topic "Molecular motors"
Li, Quan. Light-Driven Chiral Molecular Motors for Passive Agile Filters. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada605831.
Full textMontemagno, Carlo. Development of a Generator to Power ATP-Driven Molecular Motors. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/900245.
Full textSchiefelbein, J. Molecular genetics of myosin motors in Arabidopsis. Final report, July 1, 1992--June 30, 1996. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/486111.
Full textSatir, Peter. Motor Molecule Long Term Survival in Motility Devices. Fort Belvoir, VA: Defense Technical Information Center, October 2007. http://dx.doi.org/10.21236/ada473607.
Full textDuke, Joseph R., Robert B. Funchess, and Frank D. Blum. Molecular Motions of the Head Group of SHBS in Lamellar Liquid Crystals. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada243499.
Full textRafaeli, Ada, Wendell Roelofs, and Anat Zada Byers. Identification and gene regulation of the desaturase enzymes involved in sex-pheromone biosynthesis of pest moths infesting grain. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7613880.bard.
Full textRafaeli, Ada, and Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Full textMcElwain, Terry F., Eugene Pipano, Guy H. Palmer, Varda Shkap, Stephn A. Hines, and Wendy C. Brown. Protection of Cattle against Babesiosis: Immunization against Babesia bovis with an Optimized RAP-1/Apical Complex Construct. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573063.bard.
Full textRafaeli, Ada, Russell Jurenka, and Chris Sander. Molecular characterisation of PBAN-receptors: a basis for the development and screening of antagonists against Pheromone biosynthesis in moth pest species. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7695862.bard.
Full textWhitham, Steven A., Amit Gal-On, and Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Full text