Academic literature on the topic 'Molecular modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molecular modeling"

1

Gupta, Himanshu, and Aarti Sharma. "Molecular modeling." Journal of Pharmacy And Bioallied Sciences 1, no. 1 (2009): 16. http://dx.doi.org/10.4103/0975-7406.62681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kollman, P. "Molecular Modeling." Annual Review of Physical Chemistry 38, no. 1 (October 1987): 303–16. http://dx.doi.org/10.1146/annurev.pc.38.100187.001511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holmes, Jon L. "Molecular Modeling." Journal of Chemical Education 76, no. 6 (June 1999): 871. http://dx.doi.org/10.1021/ed076p871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Broughton, Howard B. "Molecular modeling." Current Opinion in Chemical Biology 1, no. 3 (October 1997): 392–98. http://dx.doi.org/10.1016/s1367-5931(97)80079-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bharat Kumar S. Ankalagi, Nagaraj Gangadhar Hanshul, Ramprasad H., Sudeep Shetty, Tejaswi M.N., Dr. Sindhu Sree M., Dr. Pavithra G, and Dr. T.C.Manjunath. "Molecular Modeling." international journal of engineering technology and management sciences 7, no. 3 (2023): 454–58. http://dx.doi.org/10.46647/ijetms.2023.v07i03.60.

Full text
Abstract:
In this paper, the modelling of molecule is presented. Chemistry, as the central science, utilizes models in virtually every aspect of the discipline. Integral to the progress of chemistry has been its ability to draw from physics, mathematics, statistics, and computer science to develop new sub disciplines, such as computational chemistry. As computing hardware has become faster and more accessible, so to have techniques to perform modelling and simulations of molecular systems. Software systems today assist researchers in the study of molecular systems and provide mechanisms for deriving a rigorous and consistent explanation for the chemical or biological behaviour observed or help the researcher to develop a model for predictions. Molecular modelling is a field that encompasses a wide range of theoretical and computational methods used to represent the structure and behavior of molecules, ions, and particles. These models can be classified based on their length and time scales, ranging from electronic-level models to continuous-level models. One of the main applications of molecular modelling is in drug discovery, where it can be used to predict the activity and behavior of molecules in the body, aiding in the design of new drugs. Additionally, molecular modelling plays a crucial role in materials science, where it can be used to design new materials with specific properties, such as strength, flexibility, and conductivity. With advances in computing hardware and software, molecular modelling has become an increasingly powerful tool in the fields of chemistry, physics, biology, and materials science, allowing researchers to gain a deeper understanding of the behavior of molecules and particles at the molecular level. The work done & presented in this paper is the result of the mini-project work that has been done by the first sem engineering students of the college and as such there is little novelty in it and the references are being taken from various sources from the internet, the paper is being written by the students to test their writing skills in the starting of their engineering career and also to test the presentation skills during their mini-project presentation. The work done & presented in this paper is the report of the assignment / alternate assessment tool as a part and parcel of the academic assignment of the first year subject on nanotechnology & IoT.
APA, Harvard, Vancouver, ISO, and other styles
6

Jülicher, Frank, Armand Ajdari, and Jacques Prost. "Modeling molecular motors." Reviews of Modern Physics 69, no. 4 (October 1, 1997): 1269–82. http://dx.doi.org/10.1103/revmodphys.69.1269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stewart, Sharon D. "Computer generated molecular modeling." SIMULATION 47, no. 1 (July 1986): 18–23. http://dx.doi.org/10.1177/003754978604700104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hastings, Michael. "Modeling the Molecular Calendar." Journal of Biological Rhythms 16, no. 2 (April 2001): 117–23. http://dx.doi.org/10.1177/074873001129001818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gabriel, Jerome L., and J. Kenneth Hoober. "Molecular modeling of phytochrome." Journal of Theoretical Biology 151, no. 4 (August 1991): 541–56. http://dx.doi.org/10.1016/s0022-5193(05)80369-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duca, J. S., and A. J. Hopfinger. "Molecular modeling of polymers." Computational and Theoretical Polymer Science 9, no. 3-4 (December 1999): 227–44. http://dx.doi.org/10.1016/s1089-3156(99)00009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Molecular modeling"

1

Dean, Delphine Marguerite Denise 1978. "Molecular electromechanics : modeling electrostatic forces between GAG molecules." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86649.

Full text
Abstract:
Thesis (M.Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
Includes bibliographical references (p. 81-83).
by Delphine Marguerite Denise Dean.
M.Eng.and S.B.
APA, Harvard, Vancouver, ISO, and other styles
2

Dahlberg, Martin. "Molecular Modeling of Cardiolipin /." Stockholm : Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-37613.

Full text
Abstract:
Diss. (sammanfattning) Stockholm : Stockholms universitet, 2010.
At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Submitted. Härtill 4 uppsatser.
APA, Harvard, Vancouver, ISO, and other styles
3

Lovrić, Josip. "Molecular modeling of aerosols." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10080/document.

Full text
Abstract:
Cette thèse est une étude, au niveau moléculaire, par des méthodes de simulation numérique, des propriétés des aérosols organiques, notamment des aérosols marins, et de leur interaction avec des espèces présentes dans l’atmosphère. L’organisation de la matière organique au sein de ces aérosols joue un rôle fondamental pour leurs propriétés optiques, chimiques et leur rôle comme noyau de condensation pour les nuages.Dans une première partie, on présente contexte atmosphérique et les méthodes de dynamique moléculaire classique et les méthodes mixtes quantique/classique utilisées pour simuler ces aérosols. Ensuite, on décrit l’application de ces méthodes à trois cas.Tout d’abord, on a étudié, par dynamique moléculaire classique (logiciel Gromacs), l’organisation, notamment l’orientation, de molécules d’acide palmitique absorbées sur une surface de sel (NaCl) en fonction du taux de couverture en acide gras et de la température. On présente aussi une étude détaillée de l’influence de l’humidité sur l’organisation de ce film organique à la surface du sel, mettant en évidence l’existence d’îlots d’acide gras monocouches structurés. Dans une seconde étude, la réactivité de NO2 avec cet aérosol marin est traitée par une approche mixte quantique/classique (logiciel CP2K), avec prise en compte de l’impact de l’humidité sur cette réactivité.Enfin, la dernière étude concerne une étude par dynamique moléculaire de phases condensées organiques (n-butanol) et de leur interaction avec des molécules d’eau. Cette étude théorique, complémentaire d’expériences de jets moléculaires, a pour but de mieux comprendre le rôle fondamental que jouent ces interactions pour les propriétés des aérosols et des nuages
In this thesis numerical methods are used to study the properties, described at the molecular level, of organic aerosols, especially marine aerosols, and their interaction with species in the atmosphere. The organisation of the organic matter in these aerosols plays a key role for their optical, chemical properties, and their ability to act as a cloud condensation nuclei.The first part reviews atmospheric context and the methods (classical molecular dynamics and hybrid quantum/classical approaches) used in this thesis. Then applications to three cases are detailed.Firstly, the organization, more particularly the orientation, of palmitic acid molecules adsorbed on a salt (NaCl) surface as a function of the fatty acid coverage and temperature has been studied using classical molecular dynamics (Gromacs package). The impact of the humidity on the structuration of this organic coating has been described in details, showing the existence of structured fatty acid island-like monolayers on NaCl surface.In a second study, the reactivity of NO2 with these heterogeneous marine aerosols has been investigated by a hybrid quantum/classical method (CP2K package), with taking into account the effect of the humidity.The last study is a classical molecular dynamics of n-butanol crystal, water accommodation at these surfaces and simulation of water jet collision with n-butanol surface. These simulations, complementary to experiments, were performed to better understand the fundamental role of the water-organic matter interaction on the properties of the aerosols and clouds
APA, Harvard, Vancouver, ISO, and other styles
4

Swann, Andrew Thomas. "Characterization of polymer-supported homogeneous catalysts by molecular modeling." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26702.

Full text
Abstract:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Ludovice, Pete; Committee Member: Grover, Martha; Committee Member: Jones, Christopher; Committee Member: Realff, Matthew; Committee Member: Sherrill, David. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
5

Sheremata, Jeff M. "Molecular modeling of heavy oil." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ60497.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keller, Peter. "Mathematical modeling of molecular motors." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6304/.

Full text
Abstract:
Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transport molecules and derive properties like the maximal run length and time. Furthermore we introduce permuted balance, which is a more flexible extension of the ordinary reversibility and introduce the notion of Time Duality, which compares certain passage times pathwise. We give a number of sufficient conditions for Time Duality based on the geometry of the transition graph. Both notions are closely related to properties of the killed Quasi-Random-Walk.
APA, Harvard, Vancouver, ISO, and other styles
7

FábIán, Balázs. "Molecular Modeling of Interfacial Phenomena." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD041.

Full text
Abstract:
Les outils de simulation numérique permettent désormais l'analyse des interfaces à l'échelle moléculaire, tant du point de vue de leur structure que de leur comportement dynamique. Ainsi, dans mon travail de thèse, j'ai développé le logiciel PYTIM qui comprend les procédures les plus populaires d’analyse inter faciale à l'échelle moléculaire, fournissant une base solide pour les travaux de recherche sur les surfaces et interfaces.En utilisant ces méthodes, j’ai étudié le comportement dynamique des molécules situées aux interfaces de différents systèmes d'intérêt biologiques et atmosphériques. Ce faisant, j’ai étudié la corrélation entre la dynamique des molécules à la surface et les interactions intermoléculaires correspondantes.De plus, j’ai travaillé sur le calcul des profils de pression dans les systèmes simulés. Dans ce cas, définir localement une quantité macroscopique, la pression, à l’échelle microscopique représente un obstacle considérable. Nous avons cependant montré que les profils de pression peuvent être calculés dans des systèmes comprenant des charges ponctuelles via le contour de Harasima avec la méthode de sommation d’Ewald (PME). Par ailleurs, j'ai montré comment les contraintes rigides souvent utilisées dans les simulations introduisent un couplage entre les degrés de liberté translationnels (positions) et les degrés de liberté de rotation. La conséquence de ce couplage est que le tenseur d’énergie cinétique n'est plus constant même dans des systèmes en équilibre, ce qui peut introduire une différence significative dans le calcul de la tension de surface.Les méthodes développées au cours de mon travail de thèse ont permis de calculer, pour différents systèmes, la distribution de la tension superficielle près de l’interface, la relation entre la pression spinodale et le minimum du profil de pression latérale. Elles ont également permis de mieux comprendre les liens entre pression et mécanisme d’action des molécules anesthésiques,fournissant ainsi des bases moléculaires à l'hypothèse de Cantor.Enfin, j’ai étudié également l'équilibre gaz/solide en caractérisant, à l’aide de simulation de Monte Carlo dans l'ensemble grand canonique, le piégeage de molécules d'ammoniac dans un clathrate, sous conditions de pression et de température caractéristiques d'environnements extraterrestres
The tools of numerical simulation enable the analysis of interfaces at themolecular scale, both in terms of their structure and their dynamic behavior.Thus, in my thesis work, I developed the PYTIM software that includes the mostpopular procedures for interfacial analysis at the molecular level, providing asolid foundation for research work on surfaces and interfaces.Using these methods, I investigated the dynamic behavior of molecules at theinterfaces of different biological and atmospheric systems of interest. Indoing so, I studied the correlation between the dynamics of molecules on thesurface and the corresponding intermolecular interactions. In addition, Iworked on the calculation of pressure profiles in simulated systems. Inparticular, the localization of an inherently non-local quantity, the pressure,represents a considerable technical difficulty. I have shown that the pressureprofiles can be calculated in systems containing point charges via the Harasimacontour with mesh Ewald methods (PME). Moreover, I showed how the rigidconstraints often used in simulations introduce a coupling between thetranslational degrees of freedom and the rotational degrees of freedom. Theconsequence of this coupling is that the kinetic energy tensor is no longerconstant, even in equilibrium systems, which -- if neglected -- can introducesignificant errors in the calculation of the surface tension.The methods developed during my thesis work provided means to study variousproblems, such as the distribution of the surface tension near the interface,the relation between the spinodal pressure and the minimum of the lateralpressure profile. They also enabled the investigation of the possible linksbetween the lateral pressure profiles and the mechanism of action of anestheticmolecules, thus providing a molecular basis for the hypothesis ofCantor.Finally, I also studied gas/solid equilibrium characterizing, by Monte Carlosimulation in the grand canonical ensemble, the trapping of ammonia moleculesin a clathrate under conditions of pressure and temperature representative ofextraterrestrial environments
APA, Harvard, Vancouver, ISO, and other styles
8

Debrah, Duke A. "Molecular Modeling of Dirhodium Complexes." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2426.

Full text
Abstract:
Dirhodium complexes such as carboxylates and carboxylamidates are very efficient metal catalysts used in the synthesis of pharmaceuticals and agrochemicals. Recent experimental work has indicated that there are significant differences in the isomeric ratios obtained among the possible products when synthesizing these complexes. The relative stabilities of the Rh2(NPhCOCH3)4 tolunitrile complexes, Rh2(NPhCOCH3)4(NCC6H4CH3)2, were determined at the HF/LANL2DZ ECP, 6-31G and DFT/B3LYP/LANL2DZ ECP, 6-31G levels of theory using NWChem 6.3. The LANL2DZ ECP (effective core potential) basis set was used for the rhodium atoms and 6-31G basis set was used for all other atoms. Specifically, the o-tolunitrile, m-tolunitrile, and p-tolunitrile complexes of the 2,2-trans and the 4,0- isomers of Rh2(NPhCOCH3)4 were compared.
APA, Harvard, Vancouver, ISO, and other styles
9

Vela, Llausí Sergi. "Computational Modeling of Molecular Magnetic Materials." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/285357.

Full text
Abstract:
Molecular materials have raised much interest in the last decades in the quest for new multifunctional devices. Among the multiple properties that those materials may present, one of the most typical is magnetism, which arises from the presence of unpaired electrons in the molecules that constitute the three-dimensional crystal. Magnetism has a macroscopic observable, the magnetic susceptibility (Ji), which is usually rationalized in terms of a set of JAB magnetic interactions between pairs of molecules. However, any experimental technique allows for such direct correspondence and, thus, the experimental interpretation of the magnetic properties usually requires further analysis from the point of view of computational chemistry. Consequently, the present PhD thesis is a contribution to the computational modeling of molecule-based magnetic materials. Specifically, we describe how the tools of computational chemistry may be used in order to study those materials from different perspectives. With this aim in mind, we have applied computational chemistry techniques to rationalize the magnetic properties of several systems of interest, ranging from metal-organic compounds, based on Cu(II), to pure organic radicals based on the DTA and Benzotriazinyl building blocks, and including compounds based on the metal-radical synthetic approach, and also spin crossover materials based on Fe(II). Along the thesis we have demonstrated that computational chemistry is a helpful discipline, capable to aid in the interpretation of experimental results and in the prediction of interesting properties, especially when working in close collaboration with experimentalists. In particular, the First Principles Bottom-Up (FPBU) procedure, extensively developed in our group, is a useful tool to rationalize the magnetic properties of any molecular magnetic material. To this purpose, the magnetic topology (i.e. the network of JAB within the crystal) is the key element. Regarding the magnetic topology, we have also demonstrated that it can be more intricate and complex than expected, and that it cannot be directly inferred from the coordination pattern of the molecule-based material. Therefore, the experimental assignation of the magnetic topology, by means of a fitting procedure, must be taken with caution. About the JAB values, we have proved that they depend on temperature, and that this dependence may be especially important when working with organic radicals. On this class of materials, we have analyzed how the JAB values evolve with time, and seen that this evolution may involve huge fluctuations of their magnitude as a consequence of the thermal motion at finite temperatures. Interestingly, we demonstrate herein that, when the JAB values depend non-linearly with the thermal vibrations of a material, the standard static perspective of magnetism is not valid to fully understand their magnetic properties, and that it is then required to adopt a dynamic perspective. Regarding the computational modeling of JAB values, we have seen that the combination of UB3LYP and the Broken-Symmetry approach yields JAB values, when transformed into the macroscopic observables, are in good agreement with experiment. In fact, we have demonstrated that, in order to predict the strength of a given JAB value, small distortions in the crystal structure can induce large variations, which may be much more important than the intrinsic error associated with the theoretical method employed. We have also observed that the counterions and diamagnetic ligands may have an important effect in defining the magnetic properties of a system. Overall, we have demonstrated that the magnetic topology and, thus, the macroscopic magnetic properties of a given material, cannot be understood without the proper knowledge of their crystal structure.
Els materials moleculars han despertat molt d'interès en les últimes dècades degut a la seva possible aplicació en nous dispositius multifuncionals. Entre les diferents propietats que aquests materials poden presentar, una de les més típiques és el magnetisme, el qual sorgeix de la presència d’electrons desaparellats en les molècules que constitueixen el cristall tridimensional. El magnetisme té un observable macroscòpic, la susceptibilitat magnètica (Ji), que sol ser racionalitzada en termes microscòpics mitjançant el conjunt d'interaccions magnètiques JAB entre determinats parells de molècules. No obstant això, cap tècnica experimental permet aquesta correspondència directa i, per tant, la interpretació experimental de les propietats magnètiques sol requerir d’un posterior anàlisi des del punt de vista de la química computacional. La present tesi doctoral pretén doncs contribuir en el camp del magnetisme molecular i, més concretament, en com es poden utilitzar les eines de la química computacional per a modelitzar materials magnètics moleculars des de diferents perspectives. Amb aquest objectiu en ment, s’han racionalitzat les propietats magnètiques de diversos sistemes d'interès, que van des de compostos metal•lorgànics basats en ions de Cu(II) o de Co(II), radicals orgànics purs, compostos basats en l’estratègia sintètica de “metall-radical”, i finalment també materials de spin crossover basats en Fe(II). Al llarg de la tesi s'ha demostrat que la química computacional és una disciplina útil, capaç d'ajudar a la interpretació dels resultats experimentals i en la predicció de propietats interessants, especialment quan es treballa en estreta col•laboració amb els experimentadors. En particular, el procediment de primers principis Bottom-Up (FPBU, per les seves sigles en anglès), desenvolupat àmpliament en el nostre grup, és una eina útil per racionalitzar les propietats magnètiques de qualsevol material magnètic molecular. Per a aquest propòsit, la topologia magnètica (és a dir, la xarxa de JAB dins del cristall) és l'element clau. A més, hem analitzat diversos factors que afecten aquesta topologia magnètica, com els contraions, els radicals diamagnètics o l’efecte de la temperatura, mitjançant el la seva manifestació en les vibracions del cristall i en la contracció (expansió) que pateix al refredar-se (escalfar-se).
APA, Harvard, Vancouver, ISO, and other styles
10

Callander, Derrick Bernard. "Molecular Modeling of Polymer Free Volume." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7454.

Full text
Abstract:
Free volume and free volume distribution have long been used to explain differences in the gas transport properties of polymeric materials. However, only a few experimental techniques allow a comprehensive evaluation of polymeric void space. Through the use of computer simulations, the free volume was characterized of two polyester systems used for beverage packaging and polynorbornene, a unique polymer with possible applications in both microelectronic fabrication and membrane separations. Delaunay Tessellation was used to calculate the fractional free volume (FFV) of both polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) molecular models. It was hypothesized that differences in the FFV distributions could be used to explain the higher experimental O2 solubility in PEN relative to PET. The analysis showed that there was no statistical difference between the FFV distributions for O2 sized penetrants. Clustering analysis was performed based upon the tetrahedra formed by Delaunay Tessellation to examine the connectivity of free volume pockets. These results show that there is a statistically larger number of small (containing less than 10 tetrahedra/cluster and between 20-30 and #506;3 in volume) clusters in PEN. It is this difference in small clusters which provides for the 30% higher O2 solubility in PEN. The free volume of a representative high molecular weight amorphous model of Hexafluroalcohol Subsituted Polynorbornene (HFA-PNB) was also characterized in to examine the shape of the free volume cavities and to draw correlations with the mean lifetime of ortho-positronium (o-Ps) from Positron Annihilation Lifetime Spectroscopy (PALS). Delaunay Tessellation and clustering analysis indicated that the free volume clusters in high molecular weight HFA-PNB are slightly non-spherical. Correcting lifetimes for the somewhat non-spherical shape of these free volume clusters was insufficient to reproduce experimentally measured positron annihilation lifetimes because the clusters contained many tortuous connections within the clusters. Inclusion of this connectivity information does produce a more accurate estimate of the measured life times. This indicates that the o-Ps does sample many tetrahedra in these static clusters, but does not freely sample every section of these clusters.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Molecular modeling"

1

Comba, Peter, and Trevor W. Hambley, eds. Molecular Modeling. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1995. http://dx.doi.org/10.1002/9783527615292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumosinski, Thomas F., and Michael N. Liebman, eds. Molecular Modeling. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Comba, Peter. Molecular modeling. Weinheim: VCH, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soriano, David. Introduction to molecular modeling. [Huntington], NY: Nova Science Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jensen, Jan H. Molecular modeling basics. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jensen, Jan H. Molecular modeling basics. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1943-, Fletterick Robert J., Zoller Mark, and Cold Spring Harbor Laboratory, eds. Computer graphics and molecular modeling. New York: Cold Spring Harbor Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kukol, Andreas. Molecular modeling of proteins. Totowa, NJ: Humana Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Comba, Peter, ed. Modeling of Molecular Properties. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schlick, Tamar. Molecular Modeling and Simulation. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-22464-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Molecular modeling"

1

Badrinarayan, Preethi, Chinmayee Choudhury, and G. Narahari Sastry. "Molecular Modeling." In Systems and Synthetic Biology, 93–128. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9514-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Klebe, Gerhard. "Molecular Modeling." In Drug Design, 315–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-17907-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liebman, Michael N. "Molecular Modeling." In ACS Symposium Series, 1–16. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0576.ch001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, T. Durai Ananda. "Molecular Modeling." In Drug Design: A Conceptual Overview, 163–88. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003298755-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Casadesús, Ricard. "Molecular Modeling." In Encyclopedia of Sciences and Religions, 1344–46. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Praprotnik, Matej, and Luigi Delle Site. "Multiscale Molecular Modeling." In Methods in Molecular Biology, 567–83. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-017-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soustelle, Michel. "Molecular Partition Functions." In Phase Modeling Tools, 131–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119178453.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sutcliffe, Brian T. "Molecular Shape." In Fundamental Principles of Molecular Modeling, 11–39. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0212-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dey, Indrakshi. "Molecular Communication." In Propagation Modeling for Wireless Communications, 177–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003213017-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bois, Frederic Y., and Céline Brochot. "Modeling Pharmacokinetics." In Methods in Molecular Biology, 37–62. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3609-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Molecular modeling"

1

Chaer Nascimento, Marco Antonio. "Molecular Modeling." In Meeting on Molecular Modeling. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814534840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hill, S. C., M. D. Barnes, W. B. Whitten, and J. M. Ramsey. "Modeling Fluorescence Collection from Single Molecules in Liquid Microspheres." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwd.7.

Full text
Abstract:
Optimization of molecular detection efficiencies is of central importance in analytical applications involving single molecule detection.1 In addition to limitations imposed on the fraction of molecules which can be detected by the average signal-to-noise ratio, experimental factors such as excitation inhomogeneity and molecular diffusion conspire to further limit "molecular detectability." Recent single molecule detection experiments in microdroplets suggest that such experimental limitations can be significantly reduced primarily because the molecule cannot diffuse away from the excitation volume. However, unlike fluorescence detection from bulk streams where the fluorescence intensity is isotropic in space, the large refractive index change at the surface of microdroplets implies that the fluorescence intensity collected by a lens will be strongly dependent on the position of the molecule within the droplet. In addition, the same refractive index discontinuity at the droplet surface produces a complicated excitation intensity distribution within the droplet as a result of interference between refracted and totally-internally-reflected rays. Thus, issues such as whether molecules near the surface of the sphere can "hide" from the detector as a result of total internal reflection of emission near the droplet surface, or poor excitation efficiency due to the molecule being located in a "shadow" region of the droplet will have a potential effect on molecular detection efficiencies. These questions are nontrivial to address in a quantitative way. Here we discuss development of numerical tools for modeling the fluorescence collected from a single molecule within a microdroplet as a function of position, orientation, and detection geometry based on the semiclassical electrodynamics formalism developed by Chew2 for light scattering in dielectric microspheres. In addition we also examine effects of excitation inhomogeneity within the sphere, molecular diffusion, and transition rate modification in order to obtain a realistic model of molecular detection efficiencies in microdroplets.
APA, Harvard, Vancouver, ISO, and other styles
3

Ress, D. A. "Fuzzy molecular modeling." In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296). IEEE, 1999. http://dx.doi.org/10.1109/ipmm.1999.791550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mareschal, Michel, Andrei Popruga, Joaquín Marro, Pedro L. Garrido, and Pablo I. Hurtado. "Molecular ordering at an interface by molecular dynamics." In MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Groll, Rodion. "Mathematical Modeling of Binary Nano Scale Diffusion of Molecular Gas Suspensions in Liquid Media." In ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2007. http://dx.doi.org/10.1115/icnmm2007-30092.

Full text
Abstract:
A model describing the suspension diffusion process of gas molecules in liquid media is presented in this paper. This process is not yet solved by a satisfactory model for micro-scale applications at this time. The new model allows the simulation of diffusion processes in continuous media considering the molecular mass flux in a suspension/carrier phase mixture. Modelling the diffusion of gas suspensions in liquid media the saturation mass ratio is reached near the liquid/gas surface very quickly. The increase of gas concentration in the liquid domain depends on the elapsed time and the physical properties of gas and liquid media. The molecular gas velocity is described by a Maxwell probability density function. Based on this spectral method macroscopic physical values are modelled to describe time-dependent global concentration changes. Modelling the gas species diffusion the molecular convection is considered. Modelling the mass flux of the molecular gas suspension characteristic time scales are developed describing the completion level of the saturation progress based on non-dimensional formulations of the molecular convection equation. The present model is implemented in a CFD code and validated by a family of parametric simulation results depending on the saturation mass ratio of the suspended gas phase. This simulation result array shows the dependency of saturation time and saturation mass ratio of the suspended gas molecules. Based on this relation macroscopic diffusion processes in micromixers and microchannels are described with this model and without an extra solution of molecule trajectories or spectral fields of molecule velocity.
APA, Harvard, Vancouver, ISO, and other styles
6

Paredes V., Ricardo. "Molecular dynamics simulation of thermophoresis on fractal particles." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mareschal, Michel. "Non-equilibrium molecular dynamics simulations: Techniques and applications." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Groll, Rodion. "Computational Modeling of Molecular Gas Convection With a c2-z2 Model." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62008.

Full text
Abstract:
Modelling micro channel flows momentum and heat diffusion / convection are recent parameters modelling the molecule velocity distribution. Macroscopic models describe velocity and energy / enthalpie with integrals of mass increments. Using microscopic models motion and forces of a molecular flow have to be computed by models of physical properties, whose are described by statistical power moments of the molecule velocity. Therefore dilute flows have to be investigated in small channels with a mean free path length of molecules higher than the channel width of the the micro channel itself (λ0 ≥ H0). Modelling this process by a continuous flow the boundary conditions have to be modified (e.g. [9]). Instead of a simple Dirichlet boundary condition with a neglecting velocity directly at the channel wall, given slip models define a slip velocity of the ducted fluid depending on the shear stress at the wall. The present model uses the statistical approximation of the molecule velocity distribution to simulate the behaviour of this discrete flow with a weighted averaged molecule velocity ξ˜i, its standard deviation σ and the characterisic molecule collision rate z. The number density n of molecules N per volume V near one position is used for the weighting factor averaging method describing the mean molecule velocity. The present model is validated computing Poiseuille and Couette flows with different Knudsen numbers. Showing the advantages of the present model the simulation results are compared with simulation results of the wall-distance depending diffusivity model of Lockerby and Reese [5] and BGK results of a Lattice-Boltzmann simulation.
APA, Harvard, Vancouver, ISO, and other styles
9

Ferrin, Thomas, Conrad Huang, Gregory Couch, Eric Pettersen, and Robert Langridge. "The MidasPlus molecular modeling system." In the SIGCHI conference. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/142750.142915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brieda, Lubos. "Molecular contamination modeling with CTSP." In 30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD 30. Author(s), 2016. http://dx.doi.org/10.1063/1.4967691.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Molecular modeling"

1

Meyer, Edmund. Modeling Molten Molecular Mixtures. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vishnyakov, Aleksey M., and Alexander V. Neimark. Molecular Modeling of Nafion Permselective Membranes. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada431689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ward, Keith B. Antiviral Drugs: Molecular Modeling and QSAR. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada256419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaqfeh, E. S., P. Moln, S. Lele, Y. Dubief, and C. Dimitropoulos. Direct Numerical Simulation of Turbulent Drag Reduction: Molecular Modeling Molecular Optimization and Modeling without Consititutive Equations. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada421417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jerzy Bernholc. Integrated Multiscale Modeling of Molecular Computing Devices. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1004483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peter A. Monson. Molecular Modeling of Solid Fluid Phase Behavior. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/937081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gregory Beylkin. Integrated Multiscale Modeling of Molecular Computing Devices. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1036976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weinan E. Integrated Multiscale Modeling of Molecular Computing Devices. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1037453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cooper, Connor, Zhongyu Mou, and Jerry Parks. Molecular Modeling to Increase Kraft Pulp Yield. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/2229239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mercer, Brian Scott. Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1254392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography