Journal articles on the topic 'Molecular machines and motors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Molecular machines and motors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Endow, Sharyn A. "Kinesin motors as molecular machines." BioEssays 25, no. 12 (November 17, 2003): 1212–19. http://dx.doi.org/10.1002/bies.10358.
Full textKistemaker, Jos C. M., Anouk S. Lubbe, and Ben L. Feringa. "Exploring molecular motors." Materials Chemistry Frontiers 5, no. 7 (2021): 2900–2906. http://dx.doi.org/10.1039/d0qm01091j.
Full textKay, Euan R, David A Leigh, and Francesco Zerbetto. "Synthetic Molecular Motors and Mechanical Machines." Angewandte Chemie International Edition 46, no. 1-2 (January 2007): 72–191. http://dx.doi.org/10.1002/anie.200504313.
Full textKay, Euan R., and David A. Leigh. "Beyond switches: Rotaxane- and catenane-based synthetic molecular motors." Pure and Applied Chemistry 80, no. 1 (January 1, 2008): 17–29. http://dx.doi.org/10.1351/pac200880010017.
Full textCredi, Alberto, and Margherita Venturi. "Molecular machines operated by light." Open Chemistry 6, no. 3 (September 1, 2008): 325–39. http://dx.doi.org/10.2478/s11532-008-0033-4.
Full textDunn, K. E., M. C. Leake, A. J. M. Wollman, M. A. Trefzer, S. Johnson, and A. M. Tyrrell. "An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor." Royal Society Open Science 4, no. 3 (March 2017): 160767. http://dx.doi.org/10.1098/rsos.160767.
Full textSiletti, Kimberly. "Roop Mallik: From machines to molecular motors." Journal of Cell Biology 216, no. 4 (March 27, 2017): 852–53. http://dx.doi.org/10.1083/jcb.201703074.
Full textTafoya, Sara, and Carlos Bustamante. "Molecular switch-like regulation in motor proteins." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1749 (May 7, 2018): 20170181. http://dx.doi.org/10.1098/rstb.2017.0181.
Full textLi, Dongbo, Walter F. Paxton, Ray H. Baughman, Tony Jun Huang, J. Fraser Stoddart, and Paul S. Weiss. "Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles." MRS Bulletin 34, no. 9 (September 2009): 671–81. http://dx.doi.org/10.1557/mrs2009.179.
Full textBeeby, Morgan. "The bacterial flagellar motor and the evolution of molecular machines." Biochemist 40, no. 2 (April 1, 2018): 4–9. http://dx.doi.org/10.1042/bio04002004.
Full textNovotný, Filip, Hong Wang, and Martin Pumera. "Nanorobots: Machines Squeezed between Molecular Motors and Micromotors." Chem 6, no. 4 (April 2020): 867–84. http://dx.doi.org/10.1016/j.chempr.2019.12.028.
Full textNovotný, Filip, Hong Wang, and Martin Pumera. "Nanorobots: Machines Squeezed between Molecular Motors and Micromotors." Chem 6, no. 4 (April 2020): 1032. http://dx.doi.org/10.1016/j.chempr.2020.02.007.
Full textHawthorne, M. Frederick, Bhaskar M. Ramachandran, Robert D. Kennedy, and Carolyn B. Knobler. "Approaches to rotary molecular motors." Pure and Applied Chemistry 78, no. 7 (January 1, 2006): 1299–304. http://dx.doi.org/10.1351/pac200678071299.
Full textKolomeisky, Anatoly B. "Motor proteins and molecular motors: how to operate machines at the nanoscale." Journal of Physics: Condensed Matter 25, no. 46 (October 7, 2013): 463101. http://dx.doi.org/10.1088/0953-8984/25/46/463101.
Full textRossmann, Florian M., and Morgan Beeby. "Insights into the evolution of bacterial flagellar motors from high-throughput in situ electron cryotomography and subtomogram averaging." Acta Crystallographica Section D Structural Biology 74, no. 6 (June 1, 2018): 585–94. http://dx.doi.org/10.1107/s2059798318007945.
Full textCredi, Alberto, and Belén Ferrer. "Rotaxane-based molecular machines operated by photoinduced electron transfer." Pure and Applied Chemistry 77, no. 6 (January 1, 2005): 1051–57. http://dx.doi.org/10.1351/pac200577061051.
Full textYanagida, Toshio, Mitsuhiro Iwaki, and Yoshiharu Ishii. "Single molecule measurements and molecular motors." Philosophical Transactions of the Royal Society B: Biological Sciences 363, no. 1500 (March 13, 2008): 2123–34. http://dx.doi.org/10.1098/rstb.2008.2265.
Full textBalzani, Vincenzo. "Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines." Pure and Applied Chemistry 80, no. 8 (January 1, 2008): 1631–50. http://dx.doi.org/10.1351/pac200880081631.
Full textHIRATSUKA, Yuichi, and Taro Q. P. UYEDA. "Assembly of Protein Molecular Motors for Nano-Bio-Machines." Seibutsu Butsuri 45, no. 3 (2005): 134–39. http://dx.doi.org/10.2142/biophys.45.134.
Full textNewton, D. "Our molecular nature the body's motors, machines and messages." Biochemical Education 25, no. 2 (April 1997): 114. http://dx.doi.org/10.1016/s0307-4412(97)88301-x.
Full textPfeifer, Lukas, Nong V. Hoang, Maximilian Scherübl, Maxim S. Pshenichnikov, and Ben L. Feringa. "Powering rotary molecular motors with low-intensity near-infrared light." Science Advances 6, no. 44 (October 2020): eabb6165. http://dx.doi.org/10.1126/sciadv.abb6165.
Full textCairns, Bradley R. "Chromatin remodeling machines: similar motors, ulterior motives." Trends in Biochemical Sciences 23, no. 1 (January 1998): 20–25. http://dx.doi.org/10.1016/s0968-0004(97)01160-2.
Full textLopes, Tiago Drummond, Adroaldo Raizer, and Wilson Valente Júnior. "The Use of Digital Twins in Finite Element for the Study of Induction Motors Faults." Sensors 21, no. 23 (November 25, 2021): 7833. http://dx.doi.org/10.3390/s21237833.
Full textCredi, Alberto. "Artificial Molecular Motors Powered by Light." Australian Journal of Chemistry 59, no. 3 (2006): 157. http://dx.doi.org/10.1071/ch06025.
Full textDietrich-Buchecker, C. O., M. C. Jimenez-Molero, V. Sartor, and J. P. Sauvage. "Rotaxanes and catenanes as prototypes of molecular machines and motors." Pure and Applied Chemistry 75, no. 10 (January 1, 2003): 1383–93. http://dx.doi.org/10.1351/pac200375101383.
Full textHiratsuka, Yuichi, Takashi Kamei, Noboru Yumoto, and Taro Q. P. Uyeda. "Three approaches to assembling nano-bio-machines using molecular motors." NanoBiotechnology 2, no. 3-4 (September 2006): 101–15. http://dx.doi.org/10.1007/bf02697265.
Full textColasson, Beno�t Xavier, Christiane Dietrich-Buchecker, Maria Consuelo Jimenez-Molero, and Jean-Pierre Sauvage. "Towards molecular machines and motors based on transition metal complexes." Journal of Physical Organic Chemistry 15, no. 8 (2002): 476–83. http://dx.doi.org/10.1002/poc.481.
Full textRibetto, Federico D., Sebastián E. Deghi, Hernán L. Calvo, and Raúl A. Bustos-Marún. "A dynamical model for Brownian molecular motors driven by inelastic electron tunneling." Journal of Chemical Physics 157, no. 16 (October 28, 2022): 164102. http://dx.doi.org/10.1063/5.0113504.
Full textPriya, Anshu, Dharambir Singh, and Nisha. "Role of Molecular Motors in Endosomal Dynamics: A review." Journal of Agriculture Research and Technology 47, no. 03 (2022): 348–52. http://dx.doi.org/10.56228/jart.2022.47316.
Full textRoke, Diederik, Sander J. Wezenberg, and Ben L. Feringa. "Molecular rotary motors: Unidirectional motion around double bonds." Proceedings of the National Academy of Sciences 115, no. 38 (April 30, 2018): 9423–31. http://dx.doi.org/10.1073/pnas.1712784115.
Full textService, Robert F. "Tiny labmade motors are poised to do useful work." Science 376, no. 6590 (April 15, 2022): 233. http://dx.doi.org/10.1126/science.abq4278.
Full textNI, CHEN, and JUN-ZHONG WANG. "STM STUDIES ON MOLECULAR ROTORS AND MOTORS." Surface Review and Letters 25, Supp01 (December 2018): 1841004. http://dx.doi.org/10.1142/s0218625x18410044.
Full textLIPOWSKY, REINHARD, and ANGELO VALLERIANI. "Editorial: "ACTIVE BIOMIMETIC SYSTEMS: FORCE GENERATION AND CARGO TRANSPORT BY MOLECULAR MACHINES"." Biophysical Reviews and Letters 04, no. 01n02 (April 2009): 1–4. http://dx.doi.org/10.1142/s1793048009000892.
Full textAstumian, R. D. "Optical vs. chemical driving for molecular machines." Faraday Discussions 195 (2016): 583–97. http://dx.doi.org/10.1039/c6fd00140h.
Full textRodriguez-Franco, V., M. Mañosas, and F. Ritort. "Controlled transport by molecular machines: exploring biological motors and their physics." Europhysics News 55, no. 2 (2024): 20–23. http://dx.doi.org/10.1051/epn/2024208.
Full textEthington, Marirose T. "Our Molecular Nature: The Body's Motors, Machines and Messages.David S. Goodsell." Quarterly Review of Biology 72, no. 3 (September 1997): 316–17. http://dx.doi.org/10.1086/419870.
Full textDavey, Megan J., David Jeruzalmi, John Kuriyan, and Mike O'Donnell. "Motors and switches: AAA+ machines within the replisome." Nature Reviews Molecular Cell Biology 3, no. 11 (November 2002): 826–35. http://dx.doi.org/10.1038/nrm949.
Full textAstumian, R. D. "How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016." Chemical Science 8, no. 2 (2017): 840–45. http://dx.doi.org/10.1039/c6sc04806d.
Full textWagoner, Jason A., and Ken A. Dill. "Opposing Pressures of Speed and Efficiency Guide the Evolution of Molecular Machines." Molecular Biology and Evolution 36, no. 12 (August 20, 2019): 2813–22. http://dx.doi.org/10.1093/molbev/msz190.
Full textColasson, Benoit Xavier, Christiane Dietrich-Buchecker, Maria Consuelo Jimenez-Molero, and Jean-Pierre Sauvage. "ChemInform Abstract: Towards Molecular Machines and Motors Based on Transition Metal Complexes." ChemInform 33, no. 51 (May 18, 2010): no. http://dx.doi.org/10.1002/chin.200251267.
Full textSauvage, Jean-Pierre. "ChemInform Abstract: Rotaxanes and Catenanes in Motion: Towards Molecular Machines and Motors." ChemInform 30, no. 21 (June 15, 2010): no. http://dx.doi.org/10.1002/chin.199921290.
Full textOkazaki, Kei-ichi, and Gerhard Hummer. "Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase." Proceedings of the National Academy of Sciences 112, no. 34 (August 10, 2015): 10720–25. http://dx.doi.org/10.1073/pnas.1500691112.
Full textKafeel, Ayaz, Sumair Aziz, Muhammad Awais, Muhammad Attique Khan, Kamran Afaq, Sahar Ahmed Idris, Hammam Alshazly, and Samih M. Mostafa. "An Expert System for Rotating Machine Fault Detection Using Vibration Signal Analysis." Sensors 21, no. 22 (November 15, 2021): 7587. http://dx.doi.org/10.3390/s21227587.
Full textGoychuk, Igor. "Molecular machines operating on the nanoscale: from classical to quantum." Beilstein Journal of Nanotechnology 7 (March 3, 2016): 328–50. http://dx.doi.org/10.3762/bjnano.7.31.
Full textLavelle, Christophe, Elise Praly, David Bensimon, Eric Le Cam, and Vincent Croquette. "Nucleosome-remodelling machines and other molecular motors observed at the single-molecule level." FEBS Journal 278, no. 19 (September 8, 2011): 3596–607. http://dx.doi.org/10.1111/j.1742-4658.2011.08280.x.
Full textSauvage, Jean-Pierre. "Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors." Accounts of Chemical Research 31, no. 10 (October 1998): 611–19. http://dx.doi.org/10.1021/ar960263r.
Full textRapenne, Gw�na�l. "Synthesis of technomimetic molecules: towards rotation control in single-molecular machines and motors." Organic & Biomolecular Chemistry 3, no. 7 (2005): 1165. http://dx.doi.org/10.1039/b419282f.
Full textHarris, Jared D., Mark J. Moran, and Ivan Aprahamian. "New molecular switch architectures." Proceedings of the National Academy of Sciences 115, no. 38 (July 16, 2018): 9414–22. http://dx.doi.org/10.1073/pnas.1714499115.
Full textAriga, Katsuhiko. "Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines." Micromachines 15, no. 2 (February 17, 2024): 282. http://dx.doi.org/10.3390/mi15020282.
Full textDeguchi, Takahiro, Malina K. Iwanski, Eva-Maria Schentarra, Christopher Heidebrecht, Lisa Schmidt, Jennifer Heck, Tobias Weihs, et al. "Direct observation of motor protein stepping in living cells using MINFLUX." Science 379, no. 6636 (March 10, 2023): 1010–15. http://dx.doi.org/10.1126/science.ade2676.
Full text