Academic literature on the topic 'Molecular Energy - Dynamical Correlation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular Energy - Dynamical Correlation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molecular Energy - Dynamical Correlation"

1

Feng, Hai-Ran, Xiang-Jia Meng, Peng Li, and Yu-Jun Zheng. "Dynamical correlation between quantum entanglement and intramolecular energy in molecular vibrations: An algebraic approach." Chinese Physics B 23, no. 7 (2014): 073301. http://dx.doi.org/10.1088/1674-1056/23/7/073301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HWA, RUDOLPH C. "GEOMETRICAL AND DYNAMICAL MULTIPLICITY FLUCTUATIONS IN HIGH-ENERGY NUCLEAR COLLISIONS." International Journal of Modern Physics A 04, no. 02 (1989): 481–92. http://dx.doi.org/10.1142/s0217751x89000248.

Full text
Abstract:
General properties of multiplicity fluctuation in high-energy nuclear collisions are considered. Quantities that can directly be related to the geometrical and dynamical sources of the fluctuation are identified. Formalism for treating impact-parameter selection is discussed. The connection with correlation is described. Recent data indicate the absence of any significant collective behavior in the current experiments at the SPS. The observable that can reveal the onset of such behavior is suggested.
APA, Harvard, Vancouver, ISO, and other styles
3

MAKRI, NANCY, AKIRA NAKAYAMA, and NICHOLAS J. WRIGHT. "FORWARD-BACKWARD SEMICLASSICAL SIMULATION OF DYNAMICAL PROCESSES IN LIQUIDS." Journal of Theoretical and Computational Chemistry 03, no. 03 (2004): 391–417. http://dx.doi.org/10.1142/s0219633604001112.

Full text
Abstract:
Forward-backward semiclassical dynamics (FBSD) provides a practical methodology for including quantum mechanical effects in classical trajectory simulations of polyatomic systems. FBSD expressions for time-dependent expectation values or correlation functions take the form of phase space integrals with respect to trajectory initial conditions, weighted by the coherent state transform of a corrected density operator. Quantization through a discretized path integral representation of the Boltzmann operator ensures a proper treatment of zero point energy effects and of imaginary components in finite-temperature correlation functions, and extension to systems obeying Bose statistics is possible. Accelerated convergence is achieved via Monte Carlo or molecular dynamics sampling techniques and through the construction of improved imaginary time propagators. The accuracy of the methodology is demonstrated on several model systems, including models of Bose and Fermi particles. Applications to liquid argon, neon and para-hydrogen are presented.
APA, Harvard, Vancouver, ISO, and other styles
4

PAPA, M., and G. GIULIANI. "DYNAMICAL CORRELATIONS AND THE SYMMETRY INTERACTION." International Journal of Modern Physics E 17, no. 10 (2008): 2320–25. http://dx.doi.org/10.1142/s0218301308011549.

Full text
Abstract:
It is shown how many-body correlations involving the symmetry potential naturally arise in the molecular dynamics CoMD-II model. The effect of these correlations on the collision dynamics at the Fermi energies is briefly discussed. The comparison with predictions based on the density functional as obtained through EOS static calculations is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Qiang, and Xi-Wen Hou. "Entropy, energy, and entanglement of localized states in bent triatomic molecules." International Journal of Modern Physics B 31, no. 12 (2017): 1750088. http://dx.doi.org/10.1142/s0217979217500886.

Full text
Abstract:
The dynamics of quantum entropy, energy, and entanglement is studied for various initial states in an important spectroscopic Hamiltonian of bent triatomic molecules H2O, D2O, and H2S. The total quantum correlation is quantified in terms of the mutual information and the entanglement by the concurrence borrowed from the theory of quantum information. The Pauli entropy and the intramolecular energy usually used in the theory of molecules are calculated to establish a possible relationship between both theories. Sections of two quantities among these four quantities are introduced to visualize such relationship. Analytic and numerical simulations demonstrate that if an initial state is taken to be the stretch- or the bend-vibrationally localized state, the mutual information, the Pauli entropy, and the concurrence are dominant-positively correlated while they are dominantly anti-correlated with the interacting energy among three anharmonic vibrational modes. In particular, such correlation is more distinct for the localized state with high excitations in the bending mode. The nice quasi-periodicity of those quantities in D2O molecule reveals that this molecule prepared in the localized state in the stretching or the bending mode can be more appreciated for molecular quantum computation. However, the dynamical correlations of those quantities behave irregularly for the dislocalized states. Moreover, the hierarchy of the mutual information and the Pauli entropy is explicitly proved. Quantum entropy and energy in every vibrational mode are investigated. Thereby, the relation between bipartite and tripartite entanglements is discussed as well. Those are useful for the understanding of quantum correlations in high-dimensional states in polyatomic molecules from quantum information and intramolecular dynamics.
APA, Harvard, Vancouver, ISO, and other styles
6

Finn, Molly K., Remy Indebetouw, Kelsey E. Johnson, et al. "Structural and Dynamical Analysis of the Quiescent Molecular Ridge in the Large Magellanic Cloud." Astronomical Journal 164, no. 2 (2022): 64. http://dx.doi.org/10.3847/1538-3881/ac7aa1.

Full text
Abstract:
Abstract We present a comparison of low-J 13CO and CS observations of four different regions in the LMC—the quiescent Molecular Ridge, 30 Doradus, N159, and N113, all at a resolution of ∼3 pc. The regions 30 Dor, N159, and N113 are actively forming massive stars, while the Molecular Ridge is forming almost no massive stars, despite its large reservoir of molecular gas and proximity to N159 and 30 Dor. We segment the emission from each region into hierarchical structures using dendrograms and analyze the sizes, masses, and line widths of these structures. We find that the Ridge has significantly lower kinetic energy at a given size scale and also lower surface densities than the other regions, resulting in higher virial parameters. This suggests that the Ridge is not forming massive stars as actively as the other regions because it has less dense gas and not because collapse is suppressed by excess kinetic energy. We also find that these physical conditions and energy balance vary significantly within the Ridge and that this variation appears only weakly correlated with distance from sites of massive-star formation such as R136 in 30 Dor, which is ∼1 kpc away. These variations also show only a weak correlation with local star formation activity within the clouds.
APA, Harvard, Vancouver, ISO, and other styles
7

Bonačič-Koutecký, Vlasta, Detlef Reichardt, Jiří Pittner, Piercarlo Fantucci, and Jaroslav Koutecký. "Ab initio Molecular Dynamics for Determination of Structures of Alkali Metal Clusters and Their Temperatures Behavior; An Example of Li9+." Collection of Czechoslovak Chemical Communications 63, no. 9 (1998): 1431–46. http://dx.doi.org/10.1135/cccc19981431.

Full text
Abstract:
It will be shown that an ab initio molecular dynamics procedure based on gradient corrected density functionals for exchange and correlation and using a Gaussian atomic basis (AIMD-GDF) implemented for parallel processing represents a suitable tool for detailed and accurate investigation of structural and dynamical properties of small systems. Gradients of the Born-Oppenheimer ground state energy, obtained by iterative solution of the Kohn-Sham equations, are used to calculate the forces acting on atoms at each instantaneous configuration along trajectories generated by solving classical equations of motion. Dynamics of different isomers of the Li9+ cluster have been investigated as a function of excess energy. It is shown that different isomers, even those similar in energy, can exhibit different structural and dynamical behavior. The analysis of the simulations leads to the conclusion that structures with a central atom, in particular the centered antiprism of Li9+ exhibit concerted mobility of the peripheral atoms at relatively low excess energy. In contrast, compact tetrahedral type structures show much more rigid behavior at low excess energy. However, the former ones need larger excess of internal energy to undergo isomerizations to geometrically different structures than the latter ones. At the time scale of our simulations we found that for the intermediate excess energies it is "easier" to carry the cluster in the basin of the lowest energy isomer than in the reverse direction. It has been found that the liquid-like behavior in small Li clusters becomes apparent at relatively high temperature in spite of large mobility of their atoms.
APA, Harvard, Vancouver, ISO, and other styles
8

Kiselev, S. M. "Azimuthal multiparticle correlations in high-energy heavy-ion collisions in the molecular-dynamical model." Physics Letters B 216, no. 3-4 (1989): 262–66. http://dx.doi.org/10.1016/0370-2693(89)91112-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Comes, F. J. "Vector Correlations in Molecular Photofragmentations." Laser Chemistry 11, no. 3-4 (1991): 151–56. http://dx.doi.org/10.1155/lc.11.151.

Full text
Abstract:
Photofragmentation spectroscopy—the study of “half collisions” with polarized light of subdoppler line width—opens a window to look into the structure of molecules. The energy partitioning among the particular degrees of freedom of the products of the fragmentation reaction is described by the scalar properties, the direction and magnitude of a particular type of motion is described by the vector properties. The measurement of the scalar and vector properties allows a pictorial view of the intermediate state. The forces which make the fragments fly apart or rotate and vibrate can be “seen” from the line shapes. Information on the unstable intermediate state is gained from the stable fragments long after the dissociation of the parent molecule. In particular, information on the “lifetime” of the intermediate on a femtosecond time scale can be obtained.A number of molecules, mainly three and four atomic, have been studied by this technique. Hydrogen peroxide has shown up as a textbook example. A complete analysis was possible including not only correlation of different types of fragment motion but also a correlation of the two coincident particles formed from the same parent molecule. The experimental results are in full agreement with recent calculations of the dynamics of the fragmentation on newly obtained potential energy surfaces. Hydrogen peroxide shows a strong dependence of its potential energy on the dihedral angle in the two electronic states amenable to laser excitation. This experiment further demonstrates that an analysis is also possible if two states are excited simultaneously.Another good example is the fragmentation of hydrazoic acid for which also coincident pair correlation has been treated. Here again the results agree excellently with a qualitative picture which can be drawn from recently calculated ab initio potential energy surfaces. The HN3 example is much more complicated than the former one due to its higher structured upper potential energy surface. Strong rotational excitation is observed in the N2 fragment leaving the NH fragment rotationally cold.The treatment of vector correlations in molecular photofragmentation is a powerful tool for the study of the dynamics of molecular dissociation reactions.
APA, Harvard, Vancouver, ISO, and other styles
10

ZHANG, JINGBO, QICHUN FENG, LEI HUO, and WEINING ZHANG. "TWO-PARTICLE CORRELATION IN HEAVY-ION COLLISIONS AT CSR ENERGY." International Journal of Modern Physics E 16, no. 07n08 (2007): 2200–2204. http://dx.doi.org/10.1142/s0218301307007684.

Full text
Abstract:
The predictions of the two-particle correlation by using the relativistic quantum molecular dynamics model are presented for the heavy-ion reactions at HIRFL-CSR energy. The two-proton correlation function with the final state interaction is calculated with the Lednicky code for the U + U collisions at beam energy 520 A MeV. Applying the imaging technique, the relationship between the freeze-out spatial distributions and the results of correlation femtoscopy is investigated. We find that one can reliably reconstruct the source functions from the two-particle correlation functions with ignoring the degree of space-momentum correlations at this energy. The results are useful to the designing the hadron detector at CSR.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography