Books on the topic 'Molecular dynamics'

To see the other types of publications on this topic, follow the link: Molecular dynamics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Molecular dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Hoover, William G. Molecular dynamics. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leimkuhler, Ben, and Charles Matthews. Molecular Dynamics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16375-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goodfellow, Julia M., ed. Molecular Dynamics. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11044-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Santamaria, Ruben. Molecular Dynamics. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37042-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

S, Child M., and Royal Society (Great Britain), eds. Molecular Rydberg dynamics. London: Imperial College Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vrakking, Marc J. J., and Franck Lepine, eds. Attosecond Molecular Dynamics. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yonezawa, Fumiko, ed. Molecular Dynamics Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84713-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gatti, Fabien, ed. Molecular Quantum Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45290-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sone, Yoshio, ed. Molecular Gas Dynamics. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4573-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Levine, Raphael D. Molecular reaction dynamics. Cambridge, UK: Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shuichi, Nosé, ed. Molecular dynamics simulations. Kyoto: Progress of theoretical physics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

M, Goodfellow Julia, ed. Molecular dynamics: Applications in molecular biology. Basingstoke, Hampshire: Macmillan, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

M, Goodfellow Julia, ed. Molecular dynamics: Applications in molecular biology. Boca Raton, Fla: CRC Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raymond, Daudel, ed. Structure and dynamics of molecular systems. Dordrecht, Holland: D. Reidel, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Op den Kamp, Jos A. F., ed. Molecular Dynamics of Biomembranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61126-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Laganà, Antonio, and Antonio Riganelli, eds. Reaction and Molecular Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57051-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tedeschi, Henry. Cell physiology: Molecular dynamics. 2nd ed. Dubuque, Iowa: Wm. C. Brown Publishers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Toshio, Yanagida, and Ishii Yoshiharu, eds. Single molecule dynamics in life science. Weinheim: Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Toshio, Yanagida, and Ishii Yoshiharu, eds. Single molecule dynamics in life science. Weinheim: Wiley-VCH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Boon, Jean-Pierre. Molecular hydrodynamics. New York: Dover Publications, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

M, Law Mark, Balint-Kurti Gabriel G, and Collaborative Computational Project No.6., eds. Photodissociation dynamics. Warrington: Collaborative Computational Project on Heavy Particle Dynamics (CCP6), 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Greenspan, Donald. Molecular cavity flow. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

1921-, Orville-Thomas W. J., Ratajczak H, Rao, C. N. R. 1934-, and Indian Academy of Sciences, eds. Topics in molecular interactions. Amsterdam: Elsevier, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

1921-, Orville-Thomas W. J., Ratajczak H, and Rao, C. N. R. 1934-, eds. Topics in molecular interactions. Amsterdam: Elsevier, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Haile, J. M. Molecular dynamics simulation: Elementary methods. New York: Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Valkunas, Leonas, Darius Abramavicius, and Tomáš Mančal. Molecular Excitation Dynamics and Relaxation. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527653652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Levi, Gianluca. Photoinduced Molecular Dynamics in Solution. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28611-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hollas, J. M., and D. Phillips, eds. Jet Spectroscopy and Molecular Dynamics. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1314-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Heinecke, Alexander, Wolfgang Eckhardt, Martin Horsch, and Hans-Joachim Bungartz. Supercomputing for Molecular Dynamics Simulations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17148-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Broeckhove, J., and L. Lathouwers, eds. Time-Dependent Quantum Molecular Dynamics. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2326-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Michael, Hollas J., and Phillips D, eds. Jet spectroscopy and molecular dynamics. London: Blackie Academic & Professional, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kryschi, Carola. Relaxation dynamics in molecular crystals. Berlin: Verlag Köster, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

1955-, Broeckhove Jan, Lathouwers Luc 1951-, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Time-dependent Quantum Molecular Dynamics: Theory and Experiment (1992 : Snowbird, Utah), eds. Time-dependent quantum molecular dynamics. New York: Plenum Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Allen, Michael P., and Dominic J. Tildesley. Molecular dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This chapter introduces the classical equations of motion for a system of molecules, and describes their solution by stable, accurate, time-stepping algorithms. Simple atomic systems, rigid molecules, and flexible molecules with and without constraints, are treated, with examples of program code. Quaternions are introduced as useful parameters for solving the rigid-body equations of motion of molecules. A simple example of a multiple timestep algorithm is given, and there is a brief summary of event-driven (hard-particle) dynamics. Examples of constant-temperature molecular dynamics using stochastic and deterministic methods are presented, and the corresponding constant-pressure molecular dynamics methods for fixed and variable box-shape are described. The molecular dynamics method is extended to the treatment of polarizable systems, and dynamical simulation of the grand canonical ensemble is mentioned.
35

Molecular Dynamics. Berlin/Heidelberg: Springer-Verlag, 1986. http://dx.doi.org/10.1007/bfb0020009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vakhrushev, Alexander, ed. Molecular Dynamics. InTech, 2018. http://dx.doi.org/10.5772/intechopen.70978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hoover, William G. Molecular Dynamics. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Vakhrushev, Alexander. Molecular Dynamics. IntechOpen, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Stefaniu, Amalia, ed. Molecular Docking and Molecular Dynamics. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.77898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Stefaniu, Amalia. Molecular Docking and Molecular Dynamics. IntechOpen, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Allen, Michael P., and Dominic J. Tildesley. Nonequilibrium molecular dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This chapter explains some of the fundamental issues associated with applying perturbations to a molecular dynamics simulation, along with practical details of methods for studying systems out of equilibrium. The main emphasis is on fluid flow and viscosity measurements. Spatially homogeneous perturbations are described to study shear and extensional flow. Non-equilibrium methods are applied to the study of heat flow and the calculation of the thermal conductivity. Issues of thermostatting, and the modelling of surface-fluid interactions for inhomogeneous systems, are discussed. The measurement of free energy changes through non-equilibrium work expressions such as those of Jarzynski and Crooks is also explained.
42

Molecular Dynamics Simulation. Elsevier, 2022. http://dx.doi.org/10.1016/c2017-0-04711-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Fukumura, Hiroshi, Masahiro Irie, Yasuhiro Iwasawa, Hiroshi Masuhara, and Kohei Uosaki, eds. Molecular Nano Dynamics. Wiley, 2009. http://dx.doi.org/10.1002/9783527627820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Child, M. S. Molecular Rydberg Dynamics. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1999. http://dx.doi.org/10.1142/p081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Molecular Dynamics Simulation. MDPI, 2014. http://dx.doi.org/10.3390/books978-3-906980-66-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Child, M. S. Molecular Rydberg Dynamics. World Scientific Publishing Company, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Molecular Nano Dynamics. Wiley-VCH Verlag GmbH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Galli, Guilia, and Francois Gygi. Quantum Molecular Dynamics. Cambridge University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Velinova, Maria. Molecular Dynamics Simulations. Arcler Education Inc, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Levine, Raphael D. Molecular Reaction Dynamics. Cambridge University Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography