Academic literature on the topic 'Molecular Dynamics- Fluids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular Dynamics- Fluids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Molecular Dynamics- Fluids"
Loya, Adil, Antash Najib, Fahad Aziz, Asif Khan, Guogang Ren, and Kun Luo. "Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids." Beilstein Journal of Nanotechnology 13 (July 7, 2022): 620–28. http://dx.doi.org/10.3762/bjnano.13.54.
Full textToxvaerd, S. "Fragmentation of fluids by molecular dynamics." Physical Review E 58, no. 1 (July 1, 1998): 704–12. http://dx.doi.org/10.1103/physreve.58.704.
Full textColonna, Piero, and Paolo Silva. "Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations." Journal of Fluids Engineering 125, no. 3 (May 1, 2003): 414–27. http://dx.doi.org/10.1115/1.1567306.
Full textPerez, Felipe, and Deepak Devegowda. "A Molecular Dynamics Study of Primary Production from Shale Organic Pores." SPE Journal 25, no. 05 (May 22, 2020): 2521–33. http://dx.doi.org/10.2118/201198-pa.
Full textBarski, Marek, Małgorzata Chwał, and Piotr Kędziora. "Molecular Dynamics in Simulation of Magneto-Rheological Fluids Behavior." Key Engineering Materials 542 (February 2013): 11–27. http://dx.doi.org/10.4028/www.scientific.net/kem.542.11.
Full textHawlitzky, M., J. Horbach, and K. Binder. "Simulations of Glassforming Network Fluids: Classical Molecular Dynamics versus Car-Parrinello Molecular Dynamics." Physics Procedia 6 (2010): 7–11. http://dx.doi.org/10.1016/j.phpro.2010.09.021.
Full textToro-Labbé, Alejándro, Rolf Lustig, and William A. Steele. "Specific heats for simple molecular fluids from molecular dynamics simulations." Molecular Physics 67, no. 6 (August 20, 1989): 1385–99. http://dx.doi.org/10.1080/00268978900101881.
Full textDas, Sanjit K., Mukul M. Sharma, and Robert S. Schechter. "Solvation Force in Confined Molecular Fluids Using Molecular Dynamics Simulation." Journal of Physical Chemistry 100, no. 17 (January 1996): 7122–29. http://dx.doi.org/10.1021/jp952281g.
Full textNwobi, Obika C., Lyle N. Long, and Michael M. Micci. "Molecular Dynamics Studies of Properties of Supercritical Fluids." Journal of Thermophysics and Heat Transfer 12, no. 3 (July 1998): 322–27. http://dx.doi.org/10.2514/2.6364.
Full textKeblinski, P., J. Eggebrecht, D. Wolf, and S. R. Phillpot. "Molecular dynamics study of screening in ionic fluids." Journal of Chemical Physics 113, no. 1 (July 2000): 282–91. http://dx.doi.org/10.1063/1.481819.
Full textDissertations / Theses on the topic "Molecular Dynamics- Fluids"
Grinberg, Farida. "Ultraslow molecular dynamics of organized fluids." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196884.
Full textZhang, Junfang. "Computer simulation of nanorheology for inhomogenous fluids." Australasian Digital Thesis Program, 2005. http://adt.lib.swin.edu.au/public/adt-VSWT20050620.095154.
Full textA thesis submitted in fulfilment of requirements for the degree of Doctor of Philosophy, Centre for Molecular Simulation, School of Information Technology, Swinburne University of Technology - 2005. Typescript. Bibliography: p. 164-170.
Brookes, Sarah. "Fluids in Nanopores." Thesis, Griffith University, 2016. http://hdl.handle.net/10072/365467.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
Siavosh-Haghighi, Ali. "Topics in molecular dynamics." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164542.
Full textVyalov, Ivan. "Molecular dynamics simulation of dissolution of cellulose in supercritical fluids and mixtures of cosolvents/supercritical fluids." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10178/document.
Full textCellulose is insoluble in neat supercritical CO2 and the main objective of this work was to investigate mixtures of scCO2 with polar cosolvents for the development of new processing technologies for the cellulose dissolution. The objective is achieved by studying the dissolution process of monomer of cellulose and its various polymorphs. The effect of the t/d parameters on the dissolution process was analyzed by molecular dynamics simulation. We begin with analyzing structure of pure supercritical fluids and mixtures of supercritical fluids/cosolvents using unconvential tools: Voronoi tesselations and nearest neighbours approach.Thermodynamics of the mixtures of scCO2/cosolvents is analysed in order to check the validity of the potential models used in our simulations for what the method of thermodynamic integration to calculate the energy, entropy and free energy of mixing was applied. To analyze the dissolution of cellulose we started from studying the solvation free energy of cellobiose(cellulose monomer) which was calculated from molecular dynamics simulations using free energy perturbation method. The influence of conformational degrees of freedom on solvation free energy of cellobiose was also considered.Finally, the direct dissolution of cellulose crystals models in well-known good cellulose solvent(1-ethyl-3-methylimidazolium chloride) and then considered supercritical solvents. It was found that various mixtures of CO2 with cosolvents do not dissolve cellulose but they can considerably affect its crystalline structure whereas ammonia fluid can dissolve cellulose and this process is significantly influenced by temperature, pressure and density
Grinberg, Farida. "Ultraslow molecular dynamics of organized fluids: NMR experiments and Monte-Carlo simulations." Diffusion fundamentals 2 (2005) 119, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14460.
Full textMuscatello, Jordan. "Heat transport in fluids and interfaces via non-equilibrium molecular dynamics simulations." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11081.
Full textAlekseeva, Uliana [Verfasser]. "Adaptive resolution simulations : combining multi-particle-collision dynamics and molecular dynamics simulations for fluids / Uliana Alekseeva." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/105230351X/34.
Full textBos�ko, Jaroslaw Tomasz, and jbosko@unimelb edu au. "Molecular simulation of dendrimers under shear." Swinburne University of Technology. Centre for Molecular Simulation, 2005. http://adt.lib.swin.edu.au./public/adt-VSWT20050804.141034.
Full textLiu, Qianli Zewail Ahmed H. Zewail Ahmed H. "Femtosecond real-time dynamics of solvation : molecular reactions in clusters and supercritical fluids /." Diss., Pasadena, Calif. : California Institute of Technology, 1997. http://resolver.caltech.edu/CaltechETD:etd-04072008-091702.
Full textBooks on the topic "Molecular Dynamics- Fluids"
Lee, Lloyd L. Molecular thermodynamics of nonideal fluids. Boston: Butterworths, 1988.
Find full textSadus, Richard J. Molecular simulation of fluids: Theory, algorithms, and object-orientation. Amsterdam: Elsevier, 1999.
Find full textArce, Pedro F. Fluid phase behavior of systems involving high molecular weight compounds and supercritical fluids. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full text1941-, Lichtenthaler Ruediger N., and Azevedo, Edmundo Gomes de, 1949-, eds. Molecular thermodynamics of fluid-phase equilibria. 3rd ed. Upper Saddle River, N.J: Prentice Hall PTR, 1999.
Find full text1941-, Lichtenthaler Ruediger N., and Azevedo, Edmundo Gomes de, 1949-, eds. Molecular thermodynamics of fluid-phase equilibria. 2nd ed. Englewood Cliffs, N.J: Prentice-Hall, 1986.
Find full textComplex dynamics of glass-forming liquids: A mode-coupling theory. New York: Oxford University Press, 2008.
Find full textMarc, Baus, Rull Luis F, Ryckaert Jean-Paul, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Observation, Prediction and Simulation of Phase Transitions in Complex Fluids (1994 : Varenna, Italy), eds. Observation, prediction and simulation of phase transitions in complex fluids. Dordrecht: Kluwer Academic Publishers, 1995.
Find full textCollins, Michael W. Micro and Nano Flow Systems for Bioanalysis. New York, NY: Springer New York, 2013.
Find full textGreenspan, Donald. Molecular cavity flow. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1998.
Find full textAntonchenko, V. I͡A. Fizika vody. Kiev: Nauk. dumka, 1986.
Find full textBook chapters on the topic "Molecular Dynamics- Fluids"
Ladd, Anthony J. C. "Molecular Dynamics." In Computer Modelling of Fluids Polymers and Solids, 55–82. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_3.
Full textClarke, Julian H. R. "Molecular Dynamics of Chain Molecules." In Computer Modelling of Fluids Polymers and Solids, 203–17. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_8.
Full textFrenkel, D. "Simulation of Sub-molecular and Supra-molecular Fluids." In Molecular Dynamics Simulations, 111–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84713-4_10.
Full textPosch, H. A., and W. G. Hoover. "Nonequilibrium Molecular Dynamics of Classical Fluids." In Molecular Liquids: New Perspectives in Physics and Chemistry, 527–47. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2832-2_30.
Full textSprik, M. "Molecular Dynamics Techniques for Complex Molecular Systems." In Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, 421–61. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0065-6_10.
Full textHeinzinger, K. "Molecular Dynamics Simulations of Aqueous Systems." In Computer Modelling of Fluids Polymers and Solids, 357–94. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_14.
Full textRapaport, D. C. "Hardware Issues in Molecular Dynamics Algorithm Design." In Computer Modelling of Fluids Polymers and Solids, 249–67. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_10.
Full textMizan, Tahmid I., Phillip E. Savage, and Robert M. Ziff. "A Molecular Dynamics Investigation of Hydrogen Bonding in Supercritical Water." In Innovations in Supercritical Fluids, 47–64. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0608.ch003.
Full textSchlamp, S., and B. C. Hathorn. "Molecular dynamics of shock waves in dense fluids." In Shock Waves, 43–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_6.
Full textBrooks, Charles L. "Molecular Simulations of Protein Structure, Dynamics and Thermodynamics." In Computer Modelling of Fluids Polymers and Solids, 289–334. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2484-0_12.
Full textConference papers on the topic "Molecular Dynamics- Fluids"
Takagi, Shu, Gota Kikugawa, and Yoichiro Matsumoto. "Molecular Dynamics Simulation of Nanobubbles." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45675.
Full textIsaiev, Mykola, Michel Gradeck, and Konstantinos Termentzidis. "LEIDENFROST EFFECT, SIMULATION WITH MOLECULAR DYNAMICS." In Second Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/tfec2017.mnt.017667.
Full textSakai, Kiminori, and Takashi Tokumasu. "Molecular Dynamics Study of Oxygen Permeation Through the Ionomer of PEFC Catalyst Layer." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-36020.
Full textWashizu, H., S. Sanda, S. Hyodo, T. Ohmori, N. Nishino, and A. Suzuki. "A Molecular Dynamics Analysis of the Traction Fluids." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-1016.
Full textYip, Sidney. "Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis." In Symposium in Honor of Dr Berni Alder's 90th Birthday. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813209428_0009.
Full textLi, Ji, Shan Gao, Wei Liu, and Zhichun Liu. "CAPILLARY EVAPOTRATION ON NANOPOROUS MEMBRANE: A MOLECULAR DYNAMICS STUDY." In 4th Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/tfec2019.hpp.028502.
Full textDarbandi, Masoud, Hossein Reza Abbasi, Moslem Sabouri, and Rasool Khaledi-Alidusti. "Simulation of Heat Transfer in Nanoscale Flow Using Molecular Dynamics." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31065.
Full textDoi, Kentaro, and Satoyuki Kawano. "Theoretical Development of Predicted Iteration Method for Considering Electron Dynamics in Quantum Molecular Dynamics." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-36033.
Full textLi, Zhong-zhen, L. Chen, Ya-Ling He, and Wen-Quan Tao. "Molecular Dynamics Simulation of Methane Adsorption in Shale Matrix." In First Thermal and Fluids Engineering Summer Conference. Connecticut: Begellhouse, 2016. http://dx.doi.org/10.1615/tfesc1.mnt.013032.
Full textNwobi, Obika, Lyle Long, Michael Micci, Obika Nwobi, Lyle Long, and Michael Micci. "Molecular dynamics studies of transport properties of supercritical fluids." In 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-598.
Full textReports on the topic "Molecular Dynamics- Fluids"
Smolyanitsky, Alex, Andrei F. Kazakov, Thomas J. Bruno, and Marcia L. Huber. Mass diffusion of organic fluids : a molecular dynamics perspective. National Institute of Standards and Technology, May 2013. http://dx.doi.org/10.6028/nist.tn.1805.
Full textMorgen, Michael Mark. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/501549.
Full textBowers, Geoffrey. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1365679.
Full textR. James Kirkpatrick and Andrey G. Kalinichev. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/943318.
Full textWong, C. C., A. R. Lopez, M. J. Stevens, and S. J. Plimpton. Molecular dynamics simulations of microscale fluid transport. Office of Scientific and Technical Information (OSTI), February 1998. http://dx.doi.org/10.2172/574190.
Full textPaesani, Francesco, and Wei Xiong. Probing the Structure and Dynamics of Fluid Mixtures in Porous Materials Through Ultrafast Vibrational Spectro-Microscopy and Many-Body Molecular Dynamics. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1901582.
Full textMurad, S. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. Final report, September 15, 1987--March 14, 1997. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/491501.
Full textMurad, S. Transport properties of dense fluid mixtures using nonequilibrium molecular dynamics. [Viscosity and thermal conductivity of continuous, or polydisperse mixtures]. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6765028.
Full text