Journal articles on the topic 'Molecular beam epitaxy'

To see the other types of publications on this topic, follow the link: Molecular beam epitaxy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Molecular beam epitaxy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yong, T. Y. "Molecular beam epitaxy." IEEE Potentials 8, no. 3 (October 1989): 18–22. http://dx.doi.org/10.1109/45.41532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joyce, B. A. "Molecular beam epitaxy." Reports on Progress in Physics 48, no. 12 (December 1, 1985): 1637–97. http://dx.doi.org/10.1088/0034-4885/48/12/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arthur, John R. "Molecular beam epitaxy." Surface Science 500, no. 1-3 (March 2002): 189–217. http://dx.doi.org/10.1016/s0039-6028(01)01525-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KAMOHARA, Hideaki, and Kazue TAKAHASHI. "Molecular Beam Epitaxy." Journal of the Society of Mechanical Engineers 92, no. 848 (1989): 625–28. http://dx.doi.org/10.1299/jsmemag.92.848_625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Panish, Morton B. "Molecular-Beam Epitaxy." AT&T Technical Journal 68, no. 1 (January 2, 1989): 43–52. http://dx.doi.org/10.1002/j.1538-7305.1989.tb00645.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulchitsky, N. A. "Atomic and Molecular Beams Control in Molecular Beam Epitaxy." Nano- i Mikrosistemnaya Tehnika 23, no. 1 (February 24, 2021): 47–56. http://dx.doi.org/10.17587/nmst.23.47-56.

Full text
Abstract:
Rapid development of molecular beam epitaxy (MBE) in recent decades has led to the emergence of a variety of technological installations, as well as electronic and optical diagnostics of growing layers, as well as atomic and molecular beams. Known methods for monitoring atomic and molecular beams in MBE installations-mass spectrometric and luminescent - involve bulky sensors, which can only be placed in special growth chambers. This paper describes a structurally simple and fairly universal method for determining the intensities of atomic and molecular beams, based on registering the amount of electron scattering at small angles that occur when a narrow electron beam interacts with the atoms of a vaporized substance. We consider the theoretical prerequisites for the diagnosis of an atomic beam by the phenomenon of scattering of fast electrons in it.
APA, Harvard, Vancouver, ISO, and other styles
7

Shiraki, Yasuhiro. "Silicon molecular beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 3, no. 2 (March 1985): 725. http://dx.doi.org/10.1116/1.583126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shiraki, Yasuhiro. "Silicon molecular beam epitaxy." Progress in Crystal Growth and Characterization 12, no. 1-4 (January 1986): 45–66. http://dx.doi.org/10.1016/0146-3535(86)90006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gravesteijn, Dirk J., Gerjan F. A. van De Walle, and Aart A. van Gorkum. "Silicon molecular beam epitaxy." Advanced Materials 3, no. 7-8 (July 1991): 351–55. http://dx.doi.org/10.1002/adma.19910030705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curless, Jay A. "Molecular beam epitaxy beam flux modeling." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 3, no. 2 (March 1985): 531. http://dx.doi.org/10.1116/1.583169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, N. Y., H. K. Dong, C. W. Tu, and M. Geva. "p-Type GaAs doped by diiodomethane (CI2H2) in molecular beam epitaxy, metalorganic molecular beam epitaxy, and chemical beam epitaxy." Journal of Crystal Growth 150 (May 1995): 246–50. http://dx.doi.org/10.1016/0022-0248(95)80215-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Barnett, S. A., J. E. Greene, and J. E. Sundgren. "Ion-beam doping during molecular beam epitaxy." JOM 41, no. 4 (April 1989): 16–19. http://dx.doi.org/10.1007/bf03220192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Morishita, Y., A. Tsuboi, H. Suzuki, and K. Sato. "Molecular-Beam Epitaxy of AlGaMnAs." Journal of the Magnetics Society of Japan 23, no. 1_2 (1999): 93–95. http://dx.doi.org/10.3379/jmsjmag.23.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Panish, M. B., and H. Temkin. "Gas-Source Molecular Beam Epitaxy." Annual Review of Materials Science 19, no. 1 (August 1989): 209–29. http://dx.doi.org/10.1146/annurev.ms.19.080189.001233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Longenbach, K. F., and W. I. Wang. "Molecular beam epitaxy of GaSb." Applied Physics Letters 59, no. 19 (November 4, 1991): 2427–29. http://dx.doi.org/10.1063/1.106037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Micovic, M., D. Lubyshev, W. Z. Cai, F. Flack, R. W. Streater, A. J. SpringThorpe, and D. L. Miller. "Iodine-assisted molecular beam epitaxy." Journal of Crystal Growth 175-176 (May 1997): 428–34. http://dx.doi.org/10.1016/s0022-0248(96)00818-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lange, M. D., D. F. Storm, and Teresa Cole. "Molecular-beam epitaxy of InTlAs." Journal of Electronic Materials 27, no. 6 (June 1998): 536–41. http://dx.doi.org/10.1007/s11664-998-0011-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Novák, V., M. Cukr, Z. Šobáň, T. Jungwirth, X. Martí, V. Holý, P. Horodyská, and P. Němec. "Molecular beam epitaxy of LiMnAs." Journal of Crystal Growth 323, no. 1 (May 2011): 348–50. http://dx.doi.org/10.1016/j.jcrysgro.2010.11.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhdanov, V. P., and P. R. Norton. "Nucleation during molecular beam epitaxy." Applied Surface Science 81, no. 2 (October 1994): 109–17. http://dx.doi.org/10.1016/0169-4332(94)90040-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Davies, G. J., P. J. Skevington, E. G. Scott, C. L. French, and J. S. Foord. "Some comparisons of chemical beam epitaxy with gas source molecular beam epitaxy." Journal of Crystal Growth 107, no. 1-4 (January 1991): 999–1008. http://dx.doi.org/10.1016/0022-0248(91)90593-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Miner, C. J. "Wafer-scale temperature mapping for molecular beam epitaxy and chemical beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11, no. 3 (May 1993): 998. http://dx.doi.org/10.1116/1.586910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tsang, W. T., T. H. Chiu, and R. M. Kapre. "Monolayer chemical beam etching: Reverse molecular beam epitaxy." Applied Physics Letters 63, no. 25 (December 20, 1993): 3500–3502. http://dx.doi.org/10.1063/1.110132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kugiyama, Koichi, Yuichi Hirofuji, and Naoto Matsuo. "Si-Beam Radiation Cleaning in Molecular-Beam Epitaxy." Japanese Journal of Applied Physics 24, Part 1, No. 5 (May 20, 1985): 564–67. http://dx.doi.org/10.1143/jjap.24.564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

SARMA, S. DAS. "KINETIC SURFACE ROUGHENING AND MOLECULAR BEAM EPITAXY." Fractals 01, no. 04 (December 1993): 784–94. http://dx.doi.org/10.1142/s0218348x93000812.

Full text
Abstract:
We review recent developments in our understanding of Molecular Beam Epitaxy as a kinetically rough growth phenomenon. It is argued that while the most general growth conditions lead to generic growth universality, actual growth conditions allow a complex interplay of several different dynamic universality classes producing rich crossover behavior determined by growth temperature, incident flux rate, and local solid state physics and chemistry of the growing material. Possible coarse-grained continuum growth equations which may be applicable to Molecular Beam Epitaxy are discussed.
APA, Harvard, Vancouver, ISO, and other styles
25

Chatillon, Christian, and J. Massies. "Practical Aspects of Molecular Beam Epitaxy." Materials Science Forum 59-60 (January 1991): 229–86. http://dx.doi.org/10.4028/www.scientific.net/msf.59-60.229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Franchi, S. "Molecular Beam Epitaxy and Electronic Materials." Key Engineering Materials 58 (January 1991): 149–68. http://dx.doi.org/10.4028/www.scientific.net/kem.58.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tang, Lei-Han, and Thomas Nattermann. "Kinetic roughening in molecular-beam epitaxy." Physical Review Letters 66, no. 22 (June 3, 1991): 2899–902. http://dx.doi.org/10.1103/physrevlett.66.2899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pchelyakov, Oleg P. "Molecular beam epitaxy: equipment, devices, technology." Physics-Uspekhi 43, no. 9 (September 30, 2000): 923–25. http://dx.doi.org/10.1070/pu2000v043n09abeh000790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brahlek, Matthew, Jason Lapano, and Joon Sue Lee. "Topological materials by molecular beam epitaxy." Journal of Applied Physics 128, no. 21 (December 7, 2020): 210902. http://dx.doi.org/10.1063/5.0022948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tsui, Frank, and Liang He. "Techniques for combinatorial molecular beam epitaxy." Review of Scientific Instruments 76, no. 6 (June 2005): 062206. http://dx.doi.org/10.1063/1.1905967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

BLÖMKER, DIRK, STANISLAUS MAIER-PAAPE, and THOMAS WANNER. "SURFACE ROUGHNESS IN MOLECULAR BEAM EPITAXY." Stochastics and Dynamics 01, no. 02 (June 2001): 239–60. http://dx.doi.org/10.1142/s0219493701000126.

Full text
Abstract:
This paper discusses the roughness of surfaces described by nonlinear stochastic partial differential equations on bounded domains. Roughness is an important characteristic for processes arising in molecular beam epitaxy, and is usually described by the mean interface width of the surface, i.e. the expected value of the squared Lebesgue norm. By employing results on the mean interface width for linear stochastic partial differential equations perturbed by colored noise, which have been previously obtained, we describe the evolution of the surface roughness for two classes of nonlinear equations, asymptotically both for small and large times.
APA, Harvard, Vancouver, ISO, and other styles
32

Pchelyakov, Oleg P. "Molecular beam epitaxy: equipment, devices, technology." Uspekhi Fizicheskih Nauk 170, no. 9 (2000): 993. http://dx.doi.org/10.3367/ufnr.0170.200009d.0993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schlom, Darrell G. "Perspective: Oxide molecular-beam epitaxy rocks!" APL Materials 3, no. 6 (June 2015): 062403. http://dx.doi.org/10.1063/1.4919763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tsao, Jeffrey Y., and James P. Harbison. "Materials Fundamentals of Molecular Beam Epitaxy." Physics Today 46, no. 10 (October 1993): 125–26. http://dx.doi.org/10.1063/1.2809075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bosch, A. J., R. G. van Welzenis, and O. F. Z. Schannen. "Molecular beam epitaxy of InSb (110)." Journal of Applied Physics 58, no. 9 (November 1985): 3434–39. http://dx.doi.org/10.1063/1.335763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Delorme, O., L. Cerutti, E. Luna, A. Trampert, E. Tournié, and J. B. Rodriguez. "Molecular-beam epitaxy of GaInSbBi alloys." Journal of Applied Physics 126, no. 15 (October 21, 2019): 155304. http://dx.doi.org/10.1063/1.5096226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ozasa, Kazunari, Masaaki Yuri, Shigehisa Tanaka, and Hiroyuki Matsunami. "Metalorganic molecular‐beam epitaxy of InGaP." Journal of Applied Physics 65, no. 7 (April 1989): 2711–16. http://dx.doi.org/10.1063/1.342757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Villain, Jacques, Alberto Pimpinelli, Leihan Tang, and Dietrich Wolf. "Terrace sizes in molecular beam epitaxy." Journal de Physique I 2, no. 11 (November 1992): 2107–21. http://dx.doi.org/10.1051/jp1:1992271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nishinaga, Tatau. "Atomistic aspects of molecular beam epitaxy." Progress in Crystal Growth and Characterization of Materials 48-49 (January 2004): 104–22. http://dx.doi.org/10.1016/j.pcrysgrow.2005.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Foxon, C. T. "Three decades of molecular beam epitaxy." Journal of Crystal Growth 251, no. 1-4 (April 2003): 1–8. http://dx.doi.org/10.1016/s0022-0248(02)02396-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Farrow, R. F. C. "Recent developments in molecular beam epitaxy." Journal of Crystal Growth 104, no. 2 (July 1990): 556–77. http://dx.doi.org/10.1016/0022-0248(90)90158-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Michalak, Leszek, and Bogdan Adamczyk. "Light simulation of molecular beam epitaxy." Vacuum 42, no. 12 (January 1991): 735–39. http://dx.doi.org/10.1016/0042-207x(91)90169-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bauer, Günther, and Gunther Springholz. "Molecular beam epitaxy—aspects and applications." Vacuum 43, no. 5-7 (May 1992): 357–65. http://dx.doi.org/10.1016/0042-207x(92)90038-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Arthur, John R. "Molecular beam epitaxy of compound semiconductors." Surface Science 299-300 (January 1994): 818–23. http://dx.doi.org/10.1016/0039-6028(94)90699-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Krishnamurthy, Srinivasan, M. A. Berding, A. Sher, and A. ‐B Chen. "Energetics of molecular‐beam epitaxy models." Journal of Applied Physics 68, no. 8 (October 15, 1990): 4020–28. http://dx.doi.org/10.1063/1.346238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Moktadir, Z. "Scale decomposition of molecular beam epitaxy." Journal of Physics: Condensed Matter 20, no. 23 (May 13, 2008): 235240. http://dx.doi.org/10.1088/0953-8984/20/23/235240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, G., S. K. Lok, G. K. L. Wong, and I. K. Sou. "Molecular beam epitaxy-grown Bi4Te3 nanowires." Applied Physics Letters 95, no. 26 (December 28, 2009): 263102. http://dx.doi.org/10.1063/1.3276071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Duport, Christophe, Philippe Nozières, and Jacques Villain. "New Instability in Molecular Beam Epitaxy." Physical Review Letters 74, no. 1 (January 2, 1995): 134–37. http://dx.doi.org/10.1103/physrevlett.74.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bean, John C. "Silicon molecular beam epitaxy: 1984–1986." Journal of Crystal Growth 81, no. 1-4 (February 1987): 411–20. http://dx.doi.org/10.1016/0022-0248(87)90426-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chan, S. K., N. Liu, Y. Cai, N. Wang, G. K. L. Wong, and I. K. Sou. "Molecular beam epitaxy—Grown ZnSe nanowires." Journal of Electronic Materials 35, no. 6 (June 2006): 1246–50. http://dx.doi.org/10.1007/s11664-006-0249-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography