Academic literature on the topic 'Molecular beam epitaxy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular beam epitaxy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molecular beam epitaxy"

1

Yong, T. Y. "Molecular beam epitaxy." IEEE Potentials 8, no. 3 (October 1989): 18–22. http://dx.doi.org/10.1109/45.41532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joyce, B. A. "Molecular beam epitaxy." Reports on Progress in Physics 48, no. 12 (December 1, 1985): 1637–97. http://dx.doi.org/10.1088/0034-4885/48/12/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arthur, John R. "Molecular beam epitaxy." Surface Science 500, no. 1-3 (March 2002): 189–217. http://dx.doi.org/10.1016/s0039-6028(01)01525-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KAMOHARA, Hideaki, and Kazue TAKAHASHI. "Molecular Beam Epitaxy." Journal of the Society of Mechanical Engineers 92, no. 848 (1989): 625–28. http://dx.doi.org/10.1299/jsmemag.92.848_625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Panish, Morton B. "Molecular-Beam Epitaxy." AT&T Technical Journal 68, no. 1 (January 2, 1989): 43–52. http://dx.doi.org/10.1002/j.1538-7305.1989.tb00645.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulchitsky, N. A. "Atomic and Molecular Beams Control in Molecular Beam Epitaxy." Nano- i Mikrosistemnaya Tehnika 23, no. 1 (February 24, 2021): 47–56. http://dx.doi.org/10.17587/nmst.23.47-56.

Full text
Abstract:
Rapid development of molecular beam epitaxy (MBE) in recent decades has led to the emergence of a variety of technological installations, as well as electronic and optical diagnostics of growing layers, as well as atomic and molecular beams. Known methods for monitoring atomic and molecular beams in MBE installations-mass spectrometric and luminescent - involve bulky sensors, which can only be placed in special growth chambers. This paper describes a structurally simple and fairly universal method for determining the intensities of atomic and molecular beams, based on registering the amount of electron scattering at small angles that occur when a narrow electron beam interacts with the atoms of a vaporized substance. We consider the theoretical prerequisites for the diagnosis of an atomic beam by the phenomenon of scattering of fast electrons in it.
APA, Harvard, Vancouver, ISO, and other styles
7

Shiraki, Yasuhiro. "Silicon molecular beam epitaxy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 3, no. 2 (March 1985): 725. http://dx.doi.org/10.1116/1.583126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shiraki, Yasuhiro. "Silicon molecular beam epitaxy." Progress in Crystal Growth and Characterization 12, no. 1-4 (January 1986): 45–66. http://dx.doi.org/10.1016/0146-3535(86)90006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gravesteijn, Dirk J., Gerjan F. A. van De Walle, and Aart A. van Gorkum. "Silicon molecular beam epitaxy." Advanced Materials 3, no. 7-8 (July 1991): 351–55. http://dx.doi.org/10.1002/adma.19910030705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curless, Jay A. "Molecular beam epitaxy beam flux modeling." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 3, no. 2 (March 1985): 531. http://dx.doi.org/10.1116/1.583169.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Molecular beam epitaxy"

1

Leong, Weng Yee. "Silicon molecular beam epitaxy." Thesis, London Metropolitan University, 1985. http://repository.londonmet.ac.uk/3359/.

Full text
Abstract:
This thesis reports on the techniques used in the growth and doping of Si-MBE layers prepared in a commercial molecular beam growth system and in the evaluation of their electrical and crystallographic properties. A number of technological problems associated with flux monitoring, the flaking of excess Si deposits and the use of closed-cycle He cryopumps during system bakeout were addressed. The electrical and crystallographic qualities of the undoped and doped Sl-MBE materials were assessed using preferential defect etching, four-point probe and Hall measurements, electrochemical CV profiling. Auger electron surface analysis, transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS) analysis, spreading resistance measurement, and photoluminescence. The basic material grown was found to be of high quality and comparable to the Si-MBE material grown in other laboratories. Two electrically active contaminants, boron and phosphorus, were identified in our materials. The boron contamination was observed to occur at the substrate/epitaxial interface where the presence of an oxide layer prior to growth was apparently critical for its accumulation. Two new techniques in co-evaporatIve doping in Si-MBE are reported. The use of co-evaporated boron doping was Investigated enabling the growth of Sl-MBE material with bulk-like mobilities and carrier concentrations up to 1x10(to the power of 20) cm(to the power of -3) and giving excellent dopant profile control over a range of growth temperatures. The second technique called Potential Enhanced Doping (PED) involves applying a substrate potential during layer growth which enhances Sb dopant incorporation coefficient by up to a factor of 1000. Doping transitions were obtained by stepping the substrate potential. Using the PED technique, a maximum Sb dopant concentration of 2-3x10(to the power of 19) cm(to the power of -3) at 850°C and dopant transitions as abrupt as 200A/decade were achieved. Possible mechanisms for the observed PED effect are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Benz, Rudolph G. II. "Surface growth kinetics in molecular beam epitxay and gas source molecular beam epitaxy of CdTe." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/30421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ericsson, Leif. "Silicon/Germanium Molecular Beam Epitaxy." Thesis, Karlstad University, Division for Engineering Sciences, Physics and Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-146.

Full text
Abstract:

Molecular Beam Epitaxy (MBE) is a well-established method to grow low-dimensional structures for research applications. MBE has given many contributions to the rapid expanding research-area of nano-technology and will probably continuing doing so. The MBE equipment, dedicated for Silicon/Germanium (Si/Ge) systems, at Karlstads University (Kau) has been studied and started for the first time. In the work of starting the system, all the built in interlocks has been surveyed and connected, and the different subsystems has been tested and evaluated. Service supplies in the form of compressed air, cooling water and electrical power has been connected. The parts of the system, their function and some of the theory behind them are described.

The theoretical part of this master’s thesis is focused on low-dimensional structures, so-called quantum wells, wires and dots, that all are typical MBE-built structures. Physical effects, and to some extent the technical applications, of these structures are studied and described.

The experimental part contains the MBE growth of a Si/Ge quantum well (QW) structure and characterisation by Auger Electron Spectroscopy (AES). The structure, consisting of three QW of Si0,8Ge0,2 separated by thicker Si layers, was built at Linköpings University (LiU) and characterised at Chalmers University of Technology (CTH). The result of the characterisation was not the expected since almost no Ge content could be discovered but an extended characterisation may give another result.

Keywords: Silicon, Germanium, Molecular Beam Epitaxy, MBE, Quantum wells


Molecular Beam Epitaxy (MBE) är en väl etablerad metod när det gäller tillverkning av låg-dimensionella strukturer för forskningsändamål och lämpar sig väl för användning inom det expanderande forskningsområdet nanoteknologi. MBE utrustningen vid Karlstads universitet (Kau), som är avsedd för kisel/germanium (Si/Ge) strukturer, har studerats och startats för första gången. Under studien av systemet har alla inbyggda förreglingar utretts och anslutits och de olika delsystemen har testats och utvärderats. Tryckluft, kylvatten och el har utretts och anslutits. Systemets delar, deras funktion och i viss mån den bakomliggande teorin har studerats.

Den teoretiska delen av detta arbete är inriktad mot låg-dimensionella strukturer d.v.s. kvant brunnar, kvanttrådar och kvantprickar, som alla är strukturer lämpliga för framställning i MBE processer. De fysikaliska effekterna och i viss mån de tekniska tillämpningarna för dessa strukturer har studerats.

Den experimentella delen består av MBE tillväxt av en Si/Ge kvantbrunn-struktur och karakterisering m.h.a. Auger Electron Spectroscopy (AES). Tillväxten av strukturen, som består av tre kvantbrunnar av Si0,8Ge0,2 separerade av tjockare Si-lager, utfördes på Linköpings Universitet (LiU) och karakteriseringen utfördes på Chalmers Tekniska Högskola (CTH). Resultatet av karakteriseringen var inte det förväntade då knappast något Ge innehåll kunde detekteras men en utökad undersökning skulle kanske ge ett annat resultat.

Sökord: Kisel, germanium, Molecular Beam Epitaxy, MBE, kvantbrunn

APA, Harvard, Vancouver, ISO, and other styles
4

鄭聯喜 and Lianxi Zheng. "Growth kinetics of GaN during molecular beam epitaxy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31242741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pindoria, Govind. "Silicon molecular beam epitaxy : doping and material aspects." Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/106729/.

Full text
Abstract:
Silicon Molecular Beam Epitaxy (Si-MBE) allows independent control over the dopant and matrix species, offering the possibility of engineering device structures with resolution down to the monolayer level. However, significant improvements in material quality and doping capability are essential before the potential of the growth technique for applications in VLSI technologies and in evaluating new device designs can be assessed. Three key areas have been identified in this study, where advances were considered feasible in the time scale of this project: particulate contamination, the modelling of the co-evaporation dopant incorporation process and an evaluation of a new dopant in Si-MBE, phosphorus. A fourth area, that of metallic contamination, was also investigated. Particulate contamination in Si-MBE epilayers is of increasing concern, as the possible applications of this layer growth technology to VLSI are assessed. A systematic study of several hundred epilayers correlated the particulate contamination in the epilayers with the high electron flux in the deposition region arising from the electron beam evaporator and with the unstable excess silicon deposits in the growth chamber. Reduction of silicon accumulation in the deposition zone by containment of the silicon flux significantly reduces particulate densities in the epilayers. Two types of particulate-related features have been identified. The first type thought to be due to microscopic particulates is decorated by crystallographic defects, whereas the second type, which is free of these defects, appears to be related to shadowing by larger particulates. A correlation in the densities of both types of particulate defects in epilayers grown under a variety of experimental conditions suggests a common source. The incorporation of dopants in Si-MBE has proven to be the most difficult aspect of this growth technology. In this study it is shown that the atomic size of a dopant relative to the matrix, is the key parameter which determines whether or not a dopant exhibits surface accumulation behaviour during molecular beam epitaxy. Specifically, surface accumulation only occurs If the dopant atoms are larger than those of the matrix atom substituted. In compound and alloy matrix systems, this size effect strongly influences the net site occupation of a dopant, a process previously believed to be dominated by site availability. The physical basis of this phenomenon is discussed with particular reference to theories of equilibrium surface segregation and the nature of the surface stress. Although p-type doping in Si-MBE with boron is now well established, allowing high doping concentrations and good dopant control, n-type doping using antimony has not matched these achievements, the problems becoming acute at low growth temperatures, (S 500°C). A possible alternative is the use of phosphorus instead of antimony. In this study the first phosphorus doped Si-MBE epilayers were grown, using a tin phosphide source. Bulk-like mobilities were demonstrated. The behaviour of phosphorus as a function of growth parameters and of 'potential enhanced doping' indicates a non-unity, almost growth temperature independent incorporation efficiency. Preliminary evidence indicates that phosphorus does not accumulate on the growing silicon surface, in line with the predictions of the empirical model. Metallic impurities can have a variety of influences on semiconducting devices, the majority of them detrimental. A preliminary investigation into the levels of metallic impurities in MBE grown silicon was carried out and a methodology developed aimed at reducing these levels.
APA, Harvard, Vancouver, ISO, and other styles
6

Sherman, Edward. "Renormalised field theory for ideal molecular-beam epitaxy." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10961.

Full text
Abstract:
In this thesis an overview is given of the renormalisation group as it is applied to equilibrium systems; the methods of field theory are extended to non-equilibrium systems, described by a Langevin equation in the stead of a Hamiltonian; this analysis is applied to a well known model of surface growth driven by molecular-beam epitaxy. The renormalisation group is a celebrated technique in both hard and soft condensed matter physics for probing the asymptotic behaviour of a model, though in this thesis no examination is made of quantum effects. Several distinct methods exist under the banner of renormalisation, most famously the approaches of Wilson and field theory. The renormalisation group is explored through a comparison of these approaches. The approach of field theory, with its methods being applied to an equilibrium system where a model is defined by a Hamiltonian, can be extended to analyse non-equilibrium systems, where a model is described by a Langevin equation. One class of the non-equilibrium condensed matter systems which have received extensive attention is that of surface growth. For the last two decades the Villain-Lai-Das Sarma equation has been used to understand conserved surface growth processes such as molecular-beam epitaxy. However, the theory has some aspects that seem incomplete. The mound formation observed experimentally and numerically lacks a complete theoretical narrative for its mechanism. Also, no clear picture has emerged over a disagreement in the literature about the alleged exactness of scaling relations. Using field theory to analyse the original derivation of the Villain-Lai-Das Sarma equation reveals that terms responsible for mound formation are generated under renormalisation, further these terms should have been included initially on symmetry grounds. It is possible to recover several widely studied Langevin equations at the trivial fixed point of the full theory, allowing a more complete theoretical picture to be presented for conserved epitaxial surface growth.
APA, Harvard, Vancouver, ISO, and other styles
7

Zheng, Lianxi. "Growth kinetics of GaN during molecular beam epitaxy." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23316639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jabeen, Fauzia. "III-V semiconducting nanowires by molecular beam epitaxy." Doctoral thesis, Università degli studi di Trieste, 2009. http://hdl.handle.net/10077/3097.

Full text
Abstract:
2007/2008
This thesis is devoted to the study of the growth of III-V nanowires (NWs) by catalyst assisted and catalyst free molecular beam epitaxy (MBE). The nanostructures have been routinely characterized by scanning electron microscopy (SEM) and, to a minor extent by transmission electron microscopy (TEM). X-ray photoemission spectroscopy (XPS), scanning photoemission microscopy (SPEM), extended X-ray absrorption fi ne structure analysis (EXAFS), photoluminescence (PL) and trans- port measurements have given an important contribution on specifi c topics. The first section of this thesis reports on GaAs, InAs, and InGaAs NWs growth by Au assisted MBE. A substrate treatment is proposed that improves uniformity in the NWS morphology. Thanks to a careful statistical analysis of the NWs shape and dimensions as a function of growth temperature and duration, evidence is found of radial growth of the NWs taking place together with the axial growth at the tip. This eff ect is interpreted in term of temperature dependent diff usion length of the cations on the NWs lateral surface. The control of the NWs radial growth allowed to grow core shell InGaAs/GaAs NWs, displaying superior optical quality. A new procedure is proposed to protect NWs surface from air exposure. This procedure allowed to perform ex-situ SPEM studies of electronic properties of the NWs. The second part of this thesis is devoted to Au-free NWs growth. GaAs and InAs NWs were successfully grown for the first time using Mn as catalyst. Incorporation of Mn in the NW is studied using EXAFS technique. It is shown that Mn atoms are incorporated in the body of GaAs NWs. Use of low growth temperature is suggested in order to improve the Mn incorporation inside GaAs NWs and obtain NWs with magnetic properties. Finally, growth of GaAs and InAs NWs on cleaved Si subtrate is demonstrated without the use of any outside metal catalyst. Two kinds of nanowires have been obtained. The experimental findings suggest that the two types of nanowires grow after di fferent growth processes.
Questa tesi e' dedicata allo studio della crescita di nanofili di semiconduttori III- V tramite epitassia da fasci molecolari (MBE) assistita da catalizzatore e senza l'uso di catalizzatori. Le nanostrutture sono state caratterizzate sistematicamente tramite microscopia elettronica a scansione (SEM), e in maniera minore microscopia elettronica in trasmissione (TEM). Altre tecniche come la spettroscopia di fotoemissione da raggi x (XPS), la microscopia da fotoemissione in scansione (SPEM), la spettroscopia di assorbimento x (in particolare la extended X-ray absorpition fine structure analysis (EXAFS)) la fotoluminescenza (PL), e il trasporto elettrico hanno dato importanti contributi su problematiche specifiche. La prima parte di questa tesi riguarda la crescita di nanofili di GaAs, InAs e InGaAs tramite MBE assistita da oro. Viene proposto un trattamento del substrato che migliora nettamente l'omogeneita' morfologica dei nanofili. Grazie ad un'attenta analisi statistica della forma e delle dimensioni dei nanofili in funzione della temperatura e del tempo di crescita e' stata dimostrata la crescita radiale dei nanofili, che avviene insieme alla crescita assiale che ha luogo alla punta del nanofilo. Le osservazioni sperimentali sono state interpretate in termini di dipendenza dalla temperatura della lunghezza di diffusione dei cationi sulle super ci laterali dei nanofili. Il controllo della crescita radiale ha permesso di crescere nanofili di InGaAs/GaAs core shell, costituiti cioe' da una anima centrale di InGaAs (core) e uno strato esterno di GaAs (shell) , che hanno dimostrato eccellente qualita' ottica. Viene quindi proposta una nuova procedura per proteggere la super ficie dei nanofili durante l'esposizione all'aria. Grazie a questa e' stato possibile realizzare ex-situ uno studio SPEM delle proprieta' elettroniche dei nanofili. La seconda parte della tesi riguarda la crescita di nanofili senza l'uso di oro. Viene per la prima volta dimostrata la possibilita' di crescere nanofili di GaAs e InAs usando il manganese come catalizzatore. L'incorporazione del Mn come impurezza nei nanofili e' stata studiata tramite EXAFS. Le misure hanno dimostrato che atomi di Mn sono effettivamente incorporate nel corpo dei nano fili. La crescita delle nanostrutture a temperatura piu' bassa potrebbe migliorare qualitativamente l'incorporazione del Mn e permettere la crescita di nanofili con proprieta' magnetiche. Viene in fine dimostrata la crescita di nanofili di GaAs e di InAs senza l'utilizzo di materiali diversi da quelli costituenti il semiconduttore. Tale risultato e' ottenuto su superfici sfaldate di silicio. Sono state osservate nanostrutture di due tipi, che sulla base dei dati sperimentali sembrano essere dovuti a due diversi meccanismi di crescita.
XXI Ciclo
1977
APA, Harvard, Vancouver, ISO, and other styles
9

Devine, R. L. S. "Some kinetic and thermodynamic aspects of molecular beam epitaxy." Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sadofiev, Sergey. "Radical-source molecular beam epitaxy of ZnO-based heterostructures." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2009. http://dx.doi.org/10.18452/16054.

Full text
Abstract:
Im Rahmen der Dissertation wurden molekularstrahlepitaktische Verfahren zur Züchtung von Hetero-und Quantenstrukturen auf der Basis der Gruppe II-Oxide entwickelt. Insbesondere wurde ein Wachstumsregime weit entfernt vom thermischen Gleichgewicht etabliert, welches die Mischung von CdO und MgO mit ZnO in phasenreiner Wurtzitstruktur ermöglicht, wobei die Gleichgewichtslöslichkeitsgrenzen dramatisch überschritten werden. In den Mischkristallen kann die Bandlücke kontinuierlich von 2.2 bis 4.4 eV eingestellt werden. Das Wachstum verläuft in einem zweidimensionalen Modus und resultiert in atomar glatten Ober- und Grenzflächen. Ausgeprägte RHEED- Intensitätsoszillationen erlauben die atomlagengenaue Kontrolle der Schichtdicken und somit die Realisierung wohl-defi- nierter Einzel- und Mehrfachquantengrabenstrukturen. Diese zeichnen sich durch eine hohe Photolumineszenzquantenausbeute im gesamten sichtbaren Spektralbereich aus. Laseraktivität kann vom UV bis zum grünen Wellenlängenbereich bei Zimmertemperatur erzielt werden. Das Potenzial dieser Quantenstrukturen in Hinblick auf ihre Anwendung in opto-elektronischen Bauelementen wird diskutiert.
This work focuses on the development of the novel growth approaches for the fabrication of Group II-oxide materials in the form of epitaxial films and heterostructures. It is shown that molecular-beam epitaxial growth far from thermal equilibrium allows one to overcome the standard solubility limit and to alloy ZnO with MgO or CdO in strict wurtzite phase up to mole fractions of several 10 %. In this way, a band-gap range from 2.2 to 4.4 eV can be covered. A clear layerby- layer growth mode controlled by oscillations in reflection high-energy electron diffraction makes it possible to fabricate atomically smooth heterointerfaces and well-defined quantum well structures exhibiting prominent band-gap related light emission in the whole composition range. On appropriately designed structures, laser action from the ultraviolet down to green wavelengths and up to room temperature is achieved. The properties and potential of the "state-of-the-art" materials are discussed in relation to the advantages for their applications in various optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Molecular beam epitaxy"

1

Herman, Marian A., and Helmut Sitter. Molecular Beam Epitaxy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97098-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herman, Marian A., and Helmut Sitter. Molecular Beam Epitaxy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80060-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Asahi, Hajime, and Yoshiji Horikoshi. Molecular Beam Epitaxy. Chichester, UK: John Wiley & Sons Ltd, 2019. http://dx.doi.org/10.1002/9781119354987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alfred, Cho, ed. Molecular beam epitaxy. Woodbury, N.Y: American Institute of Physics, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Materials fundamentals of molecular beam epitaxy. Boston: Academic Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, Leroy L., and Klaus Ploog, eds. Molecular Beam Epitaxy and Heterostructures. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5073-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Panish, Morton B., and Henryk Temkin. Gas Source Molecular Beam Epitaxy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78127-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Leroy L. Molecular Beam Epitaxy and Heterostructures. Dordrecht: Springer Netherlands, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

L, Chang Leroy, Ploog Klaus, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Molecular beam epitaxy and heterostructures. Dordrecht: M. Nijhoff, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

S, Foord J., Davies G. J, and Tsang W. T, eds. Chemical beam epitaxy and related techniques. Chichester: Wiley, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Molecular beam epitaxy"

1

Herman, Marian A., Wolfgang Richter, and Helmut Sitter. "Molecular Beam Epitaxy." In Epitaxy, 131–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07064-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vaya, P. R., and K. Ponnuraju. "Molecular Beam Epitaxy." In Solid State Materials, 249–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ng, Hock Min, and Theodore D. Moustakas. "Molecular Beam Epitaxy." In Intermetallic Compounds - Principles and Practice, 779–88. Chichester, UK: John Wiley & Sons, Ltd, 2002. http://dx.doi.org/10.1002/0470845856.ch37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adams, R. L. "Molecular Beam Epitaxy." In Inorganic Reactions and Methods, 220–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Foxon, C. T. "Molecular Beam Epitaxy." In Interfaces, Quantum Wells, and Superlattices, 11–41. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1045-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tu, Charles W. "Molecular Beam Epitaxy." In The Handbook of Surface Imaging and Visualization, 433–47. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367811815-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herman, Marian A., and Helmut Sitter. "Introduction." In Molecular Beam Epitaxy, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80060-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Herman, Marian A., and Helmut Sitter. "Sources of Atomic and Molecular Beams." In Molecular Beam Epitaxy, 33–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80060-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herman, Marian A., and Helmut Sitter. "High-Vacuum Growth and Processing Systems." In Molecular Beam Epitaxy, 81–134. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80060-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herman, Marian A., and Helmut Sitter. "Characterization Techniques." In Molecular Beam Epitaxy, 135–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80060-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Molecular beam epitaxy"

1

McCollum, M. J., M. A. Plano, M. A. Haase, V. M. Robbins, S. L. Jackson, K. Y. Cheng, and G. E. Stillman. "Pumping Requirements And Options For Molecular Beam Epitaxy And Gas Source Molecular Beam Epitaxy/Chemical Beam Epitaxy." In 1st Intl Conf on Idium Phosphide and Related Materials for Advanced Electronic and Optical Devices, edited by Louis J. Messick and Rajendra Singh. SPIE, 1989. http://dx.doi.org/10.1117/12.961995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PANISH, MORTON B., and HENRYK TEMKIN. "Gas source molecular beam epitaxy." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/cleo.1985.tho1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schulze, Dean W., J. M. Slaughter, and Charles M. Falco. "Molecular Beam Epitaxy For Multilayer Fabrication." In 32nd Annual Technical Symposium, edited by Finn E. Christensen. SPIE, 1988. http://dx.doi.org/10.1117/12.948772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vakhtin, V. V., M. Yu Korostelev, and L. N. Orlikov. "Video Complex for the Molecular-Beam Epitaxy." In 2007 Siberian Conference on Control and Communications. IEEE, 2007. http://dx.doi.org/10.1109/sibcon.2007.371311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Praseuth, J. P., M. Quillec, and J. M. Gerard. "Molecular Beam Epitaxy Of AlGaInAs For Optoelectronics." In 1987 Symposium on the Technologies for Optoelectronics, edited by Alain P. Brenac. SPIE, 1987. http://dx.doi.org/10.1117/12.943571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kauer, M., J. Heffernan, S. E. Hooper, V. Bousquet, K. Johnson, and C. Zellweger. "InGaN laser diodes by molecular beam epitaxy." In Integrated Optoelectronic Devices 2005, edited by Carmen Mermelstein and David P. Bour. SPIE, 2005. http://dx.doi.org/10.1117/12.597027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bacher, K., S. Massie, D. Hartzel, and T. Stewart. "Present ability of commercial molecular beam epitaxy." In Conference Proceedings. 1997 International Conference on Indium Phosphide and Related Materials. IEEE, 1997. http://dx.doi.org/10.1109/iciprm.1997.600153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bárta, Tomáš, Petr Novák, Lucie Nedvědová, Štěpánka Jansová, Zdeněk Jansa, Laurent Nicolai, and Ján Minár. "Bismuth films deposited by molecular beam epitaxy." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM2023). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0188562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dai, Pan, Ziwei Xu, Yujie Lu, Xiangxiang Fan, Wenxian Yang, Shulong Lu, and Chun Huang. "GaN Film Grown by Molecular Beam Epitaxy." In 2022 7th International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2022. http://dx.doi.org/10.1109/icicm56102.2022.10011369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Kyeong K., Terence Brown, Georgianna Dagnall, Robert Bicknell-Tassius, April Brown, and Gary May. "Neural Network Modeling of Molecular Beam Epitaxy." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1470.

Full text
Abstract:
Abstract This paper presents the systematic characterization of the molecular beam epitaxy (MBE) process to quantitatively model the effects of process conditions on film qualities. A five-layer, undoped AlGaAs and InGaAs single quantum well structure grown on a GaAs substrate is designed and fabricated. Six input factors (time and temperature for oxide removal, substrate temperatures for AlGaAs and InGaAs layer growth, beam equivalent pressure of the As source and quantum well interrupt time) are examined by means of a fractional factorial experiment. Defect density, x-ray diffraction, and photoluminescence are characterized by a static response model developed by training back-propagation neural networks. In addition, two novel approaches for characterizing reflection high-energy electron diffraction (RHEED) signals used in the real-time monitoring of MBE are developed. In the first technique, principal component analysis is used to reduce the dimensionality of the RHEED data set, and the reduced RHEED data set is used to train neural nets to model the process responses. A second technique uses neural nets to model RHEED intensity signals as time series, and matches specific RHEED patterns to ambient process conditions. In each case, the neural process models exhibit good agreement with experimental results.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Molecular beam epitaxy"

1

Robinson, Gary L. Gas Source MBE (Molecular Beam Epitaxy). Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada181214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morkoc, Hadis. Electronic Materials and Devices Prepared by Molecular Beam Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada195694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McHugo, S. A., J. Krueger, and C. Kisielowski. Metallic impurities in gallium nitride grown by molecular beam epitaxy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Hung Hsiang, and G. Sun ;R A. Soref. Tin-based IV-IV Heterostructures by Using Molecular Beam Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada530763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Venkat, Rama. Molecular Beam Epitaxy of Nitrides: Theoretical Modeling and Process Simulation. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada414519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, K. L. Quantum Devices and Structures Using Si-Based Molecular Beam Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada238374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Breiland, W. G., B. E. Hammons, H. Q. Hou, K. P. Killeen, J. F. Klem, J. L. Reno, and M. Sherwin. In-situ spectral reflectance for improving molecular beam epitaxy device growth. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/481572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morkoc, Hadis. Gas Source Molecular Beam Epitaxy Deposition of Device Quality Gallium Nitride. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada204359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pijaili, S. Thermally robust optical semiconductor devices using molecular beam epitaxy grown AlGaInAs. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/9794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shih, Chih-Kang. Influence of Surface Steps on Molecular Beam Epitaxy of Topological Insulators. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada604045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography