Academic literature on the topic 'Molecular and optical physics not elsewhere classified'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular and optical physics not elsewhere classified.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molecular and optical physics not elsewhere classified"

1

Kelly, Matthew, and Yuriy Kuleshov. "Flood Hazard Assessment and Mapping: A Case Study from Australia’s Hawkesbury-Nepean Catchment." Sensors 22, no. 16 (August 19, 2022): 6251. http://dx.doi.org/10.3390/s22166251.

Full text
Abstract:
Floods are among the costliest natural hazards, in Australia and globally. In this study, we used an indicator-based method to assess flood hazard risk in Australia’s Hawkesbury-Nepean catchment (HNC). Australian flood risk assessments are typically spatially constrained through the common use of resource-intensive flood modelling. The large spatial scale of this study area is the primary element of novelty in this research. The indicators of maximum 3-day precipitation (M3DP), distance to river—elevation weighted (DREW), and soil moisture (SM) were used to create the final Flood Hazard Index (FHI). The 17–26 March 2021 flood event in the HNC was used as a case study. It was found that almost 85% of the HNC was classified by the FHI at ‘severe’ or ‘extreme’ level, illustrating the extremity of the studied event. The urbanised floodplain area in the central-east of the HNC had the highest FHI values. Conversely, regions along the western border of the catchment had the lowest flood hazard risk. The DREW indicator strongly correlated with the FHI. The M3DP indicator displayed strong trends of extreme rainfall totals increasing towards the eastern catchment border. The SM indicator was highly variable, but featured extreme values in conservation areas of the HNC. This study introduces a method of large-scale proxy flood hazard assessment that is novel in an Australian context. A proof-of-concept methodology of flood hazard assessment developed for the HNC is replicable and could be applied to other flood-prone areas elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Hongxin. "Classified one‐step modified signed‐digit arithmetic and its optical implementation." Optical Engineering 35, no. 4 (April 1, 1996): 1134. http://dx.doi.org/10.1117/1.600602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khalid, Hagar, Roy Schwartz, Luke Nicholson, Josef Huemer, Mohamed Hosny El-Bradey, Dawn A. Sim, Praveen J. Patel, et al. "Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy." British Journal of Ophthalmology 105, no. 1 (March 19, 2020): 118–23. http://dx.doi.org/10.1136/bjophthalmol-2019-315365.

Full text
Abstract:
PurposeTo evaluate the utility of widefield optical coherence tomography angiography (WF-OCTA) compared with clinical examination in grading diabetic retinopathy in patients diagnosed clinically with proliferative diabetic retinopathy (PDR) or severe non-proliferative diabetic retinopathy (NPDR).DesignThis retrospective observational case series included patients diagnosed clinically with PDR or severe NPDR. Patients underwent standard clinical examination and WF-OCTA imaging (PLEX Elite 9000, Carl Zeiss Meditec AG) using 12×12 montage scans between August 2018 and January 2019. Two trained graders identified neovascularisation at the disc (NVD) and neovascularisation elsewhere (NVE) on WF-OCTA which were compared with the clinical examination, and to ultra-widefield fluorescein angiography (UWFA) when available.ResultsSeventy-nine eyes of 46 patients were evaluated. Of those, 57 eyes were diagnosed clinically with PDR, and 22 with severe NPDR. NVD was detected on OCTA-B scan as preretinal hyperreflective material (PRHM) in 39 eyes (100%) with evident flow signals in 79.5% compared with 51.3% detected clinically. We further classified NVD on OCTA into four subtypes and found that subtypes 1 and 2 could not be seen on clinical examination alone. WF-OCTA detected NVE in 81% of the cases compared with 55.7% detected clinically. Using WF-OCTA resulted in a higher percentage of PDR grading (88.6%) than on clinical examination (72.2%). When available, UWFA confirmed the WF-OCTA diagnosis in the majority of cases.ConclusionThis study demonstrates that WF-OCTA has a higher detection rate of PDR than clinical examination. This suggests that this modality could be used non-invasively for the purpose of early detection and characterisation of neovascularisation.
APA, Harvard, Vancouver, ISO, and other styles
4

Romanov, S. G. "3-Dimensional Photonic Crystals at Optical Wavelengths." Journal of Nonlinear Optical Physics & Materials 07, no. 02 (June 1998): 181–200. http://dx.doi.org/10.1142/s0218863598000168.

Full text
Abstract:
Different experimental strategies towards the 3-dimensional photonic crystals operating at optical wavelength are classified. The detailed discussion is devoted to the recent progress in photonic crystals fabricated by template method — the photonic band gap materials on the base of opal. The control of photonic properties of opal-based gratings is achieved through impregnating the opal with high refractive index semiconductors and dielectrics. Experimental study demonstrated the dependence of the stop band behaviour upon the type of impregnation (complete or partial) and showed a way for approaching complete photonic band gap. The photoluminescence from opal- semiconductor gratings revealed suppression of spontaneous emission in the gap region with following enhancement of the emission efficiency at the low-energy edge of the gap.
APA, Harvard, Vancouver, ISO, and other styles
5

RAMELAN, A. H., I. YAHYA, PRASODJO, and E. M. GOLDYS. "GaSb/AlGaSb COMPOUND SEMICONDUCTORS GROWN BY MOCVD FOR OPTOELECTRONIC APPLICATIONS." Journal of Nonlinear Optical Physics & Materials 15, no. 03 (September 2006): 323–29. http://dx.doi.org/10.1142/s0218863506003335.

Full text
Abstract:
Al x Ga 1-x Sb films in the regime 0 ≤ x ≤ 0.30 have been grown by metalorganic chemical vapor deposition on GaAs and GaSb substrates using TMAl , TMGa and TMSb precursors. We report the effects of growth conditions on the optical properties. Samples grown at temperatures of 540°C, 580°C and 600°C and a V/III ratio of 1 have been investigated. The Al x Ga 1-x Sb layers grown at 580°C and 600°C with a V/III ratio of 1 and Al content in the range of 0.5% to 25% were found to exhibit excellent optical quality with a very high optical transmission at energies below the bandgap. The principle photoluminescence features observed are attributed to bound exciton and donor-acceptor transitions with FWHM comparable to the best values reported elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Pallavi, Devendra Kr Tripathi, Shikha Jaiswal, and H. K. Dixit. "All-Optical Logic Gates: Designs, Classification, and Comparison." Advances in Optical Technologies 2014 (March 19, 2014): 1–13. http://dx.doi.org/10.1155/2014/275083.

Full text
Abstract:
The paper reviews the current status and designs of all-optical gates. Various schemes with and without semiconductor optical amplifiers are discussed and compared. The optical gates are classified according to their design structures. It is divided into two major divisions that is, nonsemiconductor optical amplifier based gates and semiconductor optical amplifier based gates. In nonsemiconductor optical amplifier based gates, different schemes have been proposed to create non-linearity which is discussed. The semiconductor optical amplifier based gates of different design structures are discussed to show the probe pulse that is modulated in different ways to obtain results.
APA, Harvard, Vancouver, ISO, and other styles
7

Amarie, Dragos, Nazanin Mosavian, Elijah L. Waters, and Dwayne G. Stupack. "Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors." Sensors 20, no. 17 (August 30, 2020): 4906. http://dx.doi.org/10.3390/s20174906.

Full text
Abstract:
Microcavity surface plasmon resonance sensors (MSPRSs) develop out of the classic surface plasmon resonance technologies and aim at producing novel lab-on-a-chip devices. MSPRSs generate a series of spectral resonances sensitive to minute changes in the refractive index. Related sensitivity studies and biosensing applications are published elsewhere. The goal of this work is to test the hypothesis that MSPRS resonances are standing surface plasmon waves excited at the surface of the sensor that decay back into propagating photons. Their optical properties (mean wavelength, peak width, and peak intensity) appear highly dependent on the internal morphology of the sensor and the underlying subwavelength aperture architecture in particular. Numerous optical experiments were designed to investigate trends that confirm this hypothesis. An extensive study of prior works was supportive of our findings and interpretations. A complete understanding of those mechanisms and parameters driving the formations of the MSPRS resonances would allow further improvement in sensor sensitivity, reliability, and manufacturability.
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, Shan, Yajun Pang, Zhenxu Bai, Yulei Wang, and Zhiwei Lu. "Research Progress of Stress Measurement Technologies for Optical Elements." International Journal of Optics 2021 (April 20, 2021): 1–11. http://dx.doi.org/10.1155/2021/5541358.

Full text
Abstract:
It is of great significance to measure the residual stress distribution accurately for optical elements and evaluate its influence on the performance of optical instruments in optical imaging, aviation remote sensing, semiconductor manufacturing, and other fields. The stress of optical elements can be closely related to birefringence based on photoelasticity. Thus, the method of quantifying birefringence to obtain the stress becomes the main method of stress measurement technologies for optical elements. This paper first introduces the basic principle of stress measurement based on photoelasticity. Then, the research progress of stress measurement technologies based on this principle is reviewed, which can be classified into two methods: polarization method and interference method. Meanwhile, the advantages and disadvantages of various stress measurement technologies are analyzed and compared. Finally, the developing trend of stress measurement technologies for optical elements is summarized and prospected.
APA, Harvard, Vancouver, ISO, and other styles
9

Moretta, Rosalba, Luca De Stefano, Monica Terracciano, and Ilaria Rea. "Porous Silicon Optical Devices: Recent Advances in Biosensing Applications." Sensors 21, no. 4 (February 13, 2021): 1336. http://dx.doi.org/10.3390/s21041336.

Full text
Abstract:
This review summarizes the leading advancements in porous silicon (PSi) optical-biosensors, achieved over the past five years. The cost-effective fabrication process, the high internal surface area, the tunable pore size, and the photonic properties made the PSi an appealing transducing substrate for biosensing purposes, with applications in different research fields. Different optical PSi biosensors are reviewed and classified into four classes, based on the different biorecognition elements immobilized on the surface of the transducing material. The PL signal modulation and the effective refractive index changes of the porous matrix are the main optical transduction mechanisms discussed herein. The approaches that are commonly employed to chemically stabilize and functionalize the PSi surface are described.
APA, Harvard, Vancouver, ISO, and other styles
10

Hecht, Jeff. "The First Time the Laser Was Classified." Optics and Photonics News 33, no. 1 (January 1, 2022): 40. http://dx.doi.org/10.1364/opn.33.1.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Molecular and optical physics not elsewhere classified"

1

(9643427), Troy A. Seberson. "Heating and Cooling Mechanisms for the Thermal Motion of an Optically Levitated Nanoparticle." Thesis, 2020.

Find full text
Abstract:
Bridging the gap between the classical and quantum regimes has consequences not only for fundamental tests of quantum theory, but for the relation between quantum mechanics and gravity. The field of levito-dynamics provides a promising platform for testing the hypotheses of the works investigating these ideas. By manipulating a macroscopic particle's motion to the scale of its ground state wavefunction, levito-dynamics offers insight into the macroscopic-quantum regime.

Ardent and promising research has brought the field of levito-dynamics to a state in which these tests are available. Recent work has brought a mesoscopic particle's motion to near the ground state. Several factors of decoherence are limiting efficient testing of these fundamental theories which implies the need for alternative strategies for achieving the same goal. This thesis is concerned with investigating alternative methods that may enable a mesoscopic particle to reach the quantum regime. 

In this thesis, three theoretical proposals are studied as a means for a mesoscopic particle to reach the quantum regime as well as a detailed study into one of the most important factors of heating and decoherence for optical trapping. The first study of cooling a particle's motion highlights that the rotational degrees of freedom of a levitated symmetric-top particle leads to large harmonic frequencies compared to the translational motion, offering a more accessible ground state temperature after feedback cooling is applied. An analysis of a recent experiment under similar conditions is compared with the theoretical findings and found to be consistent. 
The second method of cooling takes advantage of the decades long knowledge of atom trapping and cooling. By coupling a spin-polarized, continuously Doppler cooled atomic gas to a magnetic nanoparticle through the dipole-dipole interaction, motional energy is able to be removed from the nanoparticle. Through this method, the particle is able to reach near its quantum ground state provided the atoms are at a temperature below the nanoparticle ground state temperature and the atom number is sufficiently large.
The final investigation presents the dynamics of an optically levitated dielectric disk in a Gaussian standing wave. Though few studies have been performed on disks both theoretically and experimentally, our findings show that the stable couplings between the translational and rotational degrees of freedom offer a possibility for cooling several degrees of freedom simultaneously by actively cooling a single degree freedom.
APA, Harvard, Vancouver, ISO, and other styles
2

(6858197), Yao De George Toh. "Progress towards a new parity non-conservation measurement in cesium-133." Thesis, 2019.

Find full text
Abstract:
Atomic parity violation measurements provide a way to probe physics beyond the Standard Model. They can provide constraints on conjectures of a massive Z′ bosonor a light boson, or searches of dark energy. Using the two-pathway coherent control technique, our group plans to make a new measurement of the weak interaction induced parity non-conservation (PNC) transition moment (EPNC) on the cesium 6S→7S transition. We will coherently interfere a 2-photon transition with the Stark and PNC transitions to amplify and extract the PNC amplitude. Previously, our lab has measured the magnetic dipole transition moment on the same 6S→7S transition to about 0.4% uncertainty using this technique. In this dissertation, I discuss improvements made to the system, and review what future upgrades are needed for a new EPNC measurement. Key systematics are also described. For an accurate determination of EPNC, properties of cesium such as the scalar (α) and vector (β) transition polarizabilities are needed. I present improved determinations of keyelectric dipole matrix elements, and calculate new high precision determinations of α and β. Finally, using β and the previously measured value of EPNC, I calculate new values for the weak charge of the cesium nucleus Qw.
APA, Harvard, Vancouver, ISO, and other styles
3

(8407140), Saadia T. Chaudhry. "CHAIN-LENGTH PROPERTIES OF CONJUGATED SYSTEMS: STRUCTURE, CONFORMATION, AND REDOX CHEMISTRY." Thesis, 2021.

Find full text
Abstract:
The development of solution-processable semiconducting polymers has brought mankind’s long-sought dream of plastic electronics to fruition. Their potential in the manufacturing of lightweight, flexible yet robust, and biocompatible electronics has spurred their use in organic transistors, photovoltaics, electrochromic devices, batteries, and sensors for wearable electronics. Yet, despite the successful engineering of semiconducting polymers, we do not fully understand their molecular behavior and how it influences their doping (oxidation/reduction) properties. This is especially true for donor-acceptor (D-A) p-systems which have proven to be very efficient at tuning the electronic properties of organic semiconductors. Historically, chain-length dependent studies have been essential in uncovering the relationship between the molecular structure and polymer properties. Discussed here is the systematic investigation of a complete D-A molecular series composed of monodispersed and well-defined conjugated molecules ranging from oligomer (n=3-21) to polymer scale lengths. Structure-property relationships are established between the molecular structure, chain conformation, and redox-active opto-electronic properties for the molecular series in solution. This research reveals a rod-to-coil transition at the 15 unit chain length, or 4500 Da, in solution. The redox-active optical and electronic properties are investigated as a function of increasing chain-length, giving insight into the nature of charge carriers in a D-A conjugated system. This research aids in understanding the solution behavior of conjugated organic materials.
APA, Harvard, Vancouver, ISO, and other styles
4

(6787016), Krishnakali Chaudhuri. "Plasmonic Metasurfaces Utilizing Emerging Material Platforms." Thesis, 2019.

Find full text
Abstract:

Metasurfaces are broadly defined as artificially engineered material interfaces that have the ability to determinately control the amplitude and phase signatures of an incident electromagnetic wave. Subwavelength sized optical scatterers employed at the planar interface of two media, introduce abrupt modifications to impinged light characteristics. Arbitrary engineering of the optical interactions and the arrangement of the scatterers on plane, enable ultra-compact, miniaturized optical systems with a wide array of applications (e.g. nanoscale and nonlinear optics, sensing, detection, energy harvesting, information processing and so on) realizable by the metasurfaces. However, maturation from the laboratory to industry scale realistic systems remain largely elusive despite the expanding reach and vast domains of functionalities demonstrated by researchers. A large part of this multi-faceted problem stems from the practical constraints posed by the commonly used plasmonic materials that limit their applicability in devices requiring high temperature stability, robustness in varying ambient, mechanical durability, stable growth into nanoscale films, CMOS process compatibility, stable bio-compatibility, and so on.

Aiming to create a whole-some solution, my research has focused on developing novel, high-performance, functional plasmonic metasurface devices that utilize the inherent benefits of various emerging and alternative material platforms. Among these, the two-dimensional MXenes and the refractory transition metal nitrides are of particular importance. By exploiting the plasmonic response of thin films of the titanium carbide MXene (Ti3C2Tx) in the near infrared spectral window, a highly broadband metamaterial absorber has been designed, fabricated and experimentally demonstrated. In another work, high efficiency photonic spin Hall Effect has been experimentally realized in robust phase gradient metasurface devices based on two different refractory transition metal nitrides –titanium nitride (TiN) and zirconium nitride (ZrN). Further, taking advantage of the refractory nature of these plasmonic nitrides, a metasurface based temperature sensor has been developed that is capable of remote, optical sensing of very high temperatures ranging up to 1200oC.

APA, Harvard, Vancouver, ISO, and other styles
5

(11146737), Swapnil Dattatray Deshmukh. "UNVEILING THE AMINE-THIOL MOLECULAR PRECURSOR CHEMISTRY FOR FABRICATION OF SEMICONDUCTING MATERIALS." Thesis, 2021.

Find full text
Abstract:
Inorganic metal chalcogenide materials are of great importance in the semiconducting field for various electronic applications such as photovoltaics, thermoelectrics, sensors, and many others. Compared to traditional vacuum processing routes, solution processing provides an alternate cost-effective route to synthesize these inorganic materials through its ease of synthesis and device fabrication, higher material utilization, mild processing conditions, and opportunity for roll-to-roll manufacturing. One such versatile solution chemistry involving a mixture of amine and thiol species has evolved in the past few years as a common solvent for various precursor dissolutions including metal salts, metal oxides, elemental metals, and chalcogens.

The amine-thiol solvent system has been used by various researchers for the fabrication of inorganic materials, but without the complete understanding of the chemistry involved in this system, utilizing its full potential, and overcoming any inherent limitations will be difficult. So, to identify the organometallic complexes and their reaction pathways, the precursor dissolutions in amine-thiol solutions, specifically for elemental metals like Cu, In and chalcogens like Se, Te were studied using X-ray absorption, nuclear magnetic resonance, infrared, and Raman spectroscopy along with electrospray ionization mass spectrometry techniques. These analyses suggested the formation of metal thiolate complexes in the solution with the release of hydrogen gas in the case of metal dissolutions confirming irreversibility of the dissolution. Insights gained for chalcogen dissolutions confirmed the formation of different species like monoatomic or polyatomic clusters when different amine-thiol pair is used for dissolution. Results from these analyses also identified the role of each component in the dissolution which allowed for tuning of the solutions by isolating the complexes to reduce their reactivity and corrosivity for commercial applications.

After identifying complexes in metal dissolution for Cu and In metals, the decomposition pathway for these complexes was studied using X-ray diffraction and gas chromatography mass spectrometry techniques which confirmed the formation of phase pure metal chalcogenide material with a release of volatile byproducts like hydrogen sulfide and thiirane. This allowed for the fabrication of impurity-free thin-film Cu(In,Ga)S2 material for use in photovoltaic applications. The film fabrication with reduced carbon impurity achieved using this solvent system yielded a preliminary promising efficiency beyond 12% for heavy alkali-free, low bandgap CuInSe2 material. Along with promising devices, by utilizing the understanding of the chalcogen complexation, a new method for CuInSe2 film fabrication was developed with the addition of selenide precursors and elemental selenium which enabled first-ever fabrication of a solution-processed CuInSe2 thin film with thickness above 2 μm and absence of any secondary fine-grain layer.

Along with thin-film fabrication, a room temperature synthesis route for lead chalcogenide materials (PbS, PbSe, PbTe) with controlled size, shape, crystallinity, and composition of nanoparticle self-assemblies was demonstrated. Micro-assemblies formed via this route, especially the ones with hollow-core morphology were subjected to a solution-based anion and cation exchange to introduced desired foreign elements suitable for improving the thermoelectric properties of the material. Adopting from traditional hot injection and heat up synthesis routes, a versatile synthesis procedure for various binary, ternary, and quaternary metal chalcogenide (sulfide and sulfoselenide) nanoparticles from elemental metals like Cu, Zn, Sn, In, Ga, and Se was developed. This new synthesis avoids the incorporation of impurities like O, Cl, I, Br arising from a traditional metal oxide, halide, acetate, or other similar metal salt precursors giving an opportunity for truly impurity-free colloidal metal chalcogenide nanoparticle synthesis.
APA, Harvard, Vancouver, ISO, and other styles
6

(8028629), Piyush Mishra. "Jet-Cooled Molecular Spectroscopy from the Microwave to the Ultraviolet." Thesis, 2019.

Find full text
Abstract:
The present thesis shows how versatile and important the field of gas-phase spectroscopy under supersonic expansion conditions can be to understand fundamental intermolecular and intramolecular interactions. We have employed spectroscopic techniques over a very broad range spanning from microwave (2-18 GHz), through infrared (2600-4000 cm-1) and ultraviolet (350-250 nm) region, studying therotational, vibrational and electronic properties,respectively. These techniques use either chirped-pulse based (broadband rotational spectroscopy) or laser based methods (vibrational and electronic spectroscopy), and their usage depends on the types of information of particular interest and the chemical system requirements of specific techniques. The analytes are brought into the gas phase and supersonically cooled to their zero-point vibrational level to perform rotational and vibrationallyresolved IR/UV spectroscopy, including conformer-specific techniques. The variety of small organic molecular systemsstudied include phenyl-containing hydrocarbons, water containing clusters, heteroatom containing organic molecules with and without phenyl ring, fused aromatic molecules, bichromophoric molecules and pyrolysis reaction intermediates. Apart from gaining invaluable fundamental knowledge of the various interactions, we also observe interesting quantum-physical phenomena like tunneling and large amplitude motions that provide further insight into the molecular world.
APA, Harvard, Vancouver, ISO, and other styles
7

(8802935), Honggu Choi. "Biodynamic Imaging of Bacterial Infection and Advanced Phase-sensitive Spectroscopy." Thesis, 2020.

Find full text
Abstract:
Biological dynamics have been studied by many methods. Fluorescence dynamic microscopy and optical coherence tomography provided fundamental understandings of biological systems. However, their high NA optics only represent local characteristics. Biodynamic imaging (BDI) technique implements a low NA optics and acquires the statistical average of Doppler shifts that occurred by dynamic light scattering with biological dynamic subsystems provided globally averaged dynamic characteristics.
BDI is used for this study to investigate biomedical applications. The chemotherapy efficacy measurement by BDI demonstrated a good agreement between the Doppler spectral phenotypes and the preclinical outcomes. Also, dynamic responses of microbiomes by chemical stimuli demonstrated featured Doppler characteristics. The bacterial infection of epithelial spheroids showed consistent spectral responses and antibiotic-resistant E. coli infection treatment with a sensitive and resistive antibiotic showed a dramatic contrast. Furthermore, the phase-sensitive characteristics of BDI provided a clue to understanding the characteristics of the random process of biological systems. Levy-like heavy-tailed probability density functions are demonstrated and
the shape changed by infection will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

(11199132), Xin Chen. "Temporal mode structure and its measurement of entangled fields in continuous and discrete variables." Thesis, 2021.

Find full text
Abstract:
Field-orthogonal temporal mode analysis of optical fields was recently developed to form a new framework of quantum information science. But so far, the exact profiles of the temporal modes are not known, which makes it difficult to achieve mode selection and de-multiplexing. A novel feedback-iteration method which, combined with the stimulated emission method, can give rise to the exact forms of the temporal mode structure of pulse-pumped spontaneous parametric processes both for high gain parametric process, which gives rise to quantum entanglement in continuous variables, and for the low gain case, which produces a two-photon entangled state for discrete variables.

For the temporal mode analysis in high gain situations, the common treatment of parametric interaction Hamiltonian does not consider the issue of time ordering problem of interaction Hamiltonian and thus leads to the inaccurate conclusion that the mode structure and the temporal mode functions do not change as the gain increases. We use an approach that is usually employed for treating nonlinear interferometers and avoids the time ordering issue. This allows us to derive an evolution equation in differential-integral form. Numerical solutions for high gain situations indicate a gain-dependent mode structure that has its mode distributions changed and mode functions broadened as the gain increases. This will enable us to have a complete picture of the mode structure of parametric processes and produce high quality quantum sources for a variety of applications of quantum technology.

To verify the feedback-iteration method which measures temporal mode structure directly, we measure the joint spectral density of photon pairs produced with the spontaneous parametric down-conversion process of a pulse-pumped PPKTP crystal. The measurement method is based on a stimulated emission process which significantly improves the measurement time and accuracy compared with old spectrally resolved photon coincidence measurement. With the measured joint spectral density, the amplitude of the temporal modes can be obtained with the mathematical tool of singular value decomposition and compared with those measured directly with the feedback-iteration method.

Because the parametric amplifier is in essence a linear four-port device, it couples and linearly mixes two inputs before amplifying and sending them to two output ports. We show that for quadrature phase amplitudes, a parametric amplifier can replace beam splitters to play the role of mixer. We apply this idea to a continuous-variable quantum state teleportation scheme in which a parametric amplifier replaces a beam splitter in the Bell measurement. We show that this scheme is loss-tolerant in the Bell measurement process and thus demonstrate the advantage of parametric amplifiers over beam splitter in the applications in quantum measurement.
APA, Harvard, Vancouver, ISO, and other styles
9

(5930102), John P. Oliver. "Colliding Laser Produced Plasma Physics and Applications in Inertial Fusion and Nanolithography." Thesis, 2019.

Find full text
Abstract:
Laser-produced plasmas (LPP) have been used in a wide range of applications such as in pulsed laser deposition (PLD), extreme ultraviolet lithography (EUVL), laser-induced breakdown spectroscopy (LIBS), and many more. In the collision of two laser-produced plasmas, the two counter-streaming plasmas may face a degree of stagnation which influences the subsequent development of the compound plasma plume. The plume development of the stagnation layer can deviate quite noticeably from typical laser-plasma behavior. For instance, an enhanced degree of collisionality is expected, especially when the plasma collision transpires in a low pressure ambient. Colliding plasma can be intentionally implemented or conversely may occur naturally. In EUV lithography colliding plasma could service as an efficient EUV source with inherent debris mitigation. Conversely, colliding plasma could manifest in an inertial fusion energy (IFE) chamber leading to contamination, disrupting successful device operation.

Various techniques such as optical emission spectroscopy (OES), CCD plume imaging, laser-induced fluorescence (LIF), laser-induced incandescence (LII), and scanning electron microscopy (SEM) may be used to study laser-produced plasmas and their associated byproducts. These techniques will be used extensively throughout this work to aid in developing an understanding of the various physical and chemical phenomena occurring in these plasmas.

Chapter 1 provides introductory knowledge regarding LPPs with a specific exploration into colliding plasma and its relevance to a broad body of scientific knowledge. Additionally, the principles behind the various experimental techniques are capitulated.

Chapter 2 presents the laboratory facilities available at our Center for Materials Under eXtreme Environment (CMUXE) which can be used to study LPP. The various equipment (chambers, lasers, spectrograph, etc.) are discussed in detail.

Chapter 3 begins the series of substantive chapters which comprise the original research of this thesis. Here, the early formation (< 1 μs) of colliding carbon plasmas produced from the ablation of graphite is explored. The influence of plume hydrodynamics on the temporary lateral confinement of the stagnation layer is discussed with attention to the three different laser intensities studied. Additionally, species in the plasma were identified using OES and monochromatic plume imaging. A large increase in Swan emission from C2 dimers is observed in the stagnation layer, suggesting formation of C2 and/or re-excitation of C2 produced ab initio during laser ablation. Results were compared with HEIGHTS computational modeling to verify observations and to validate the code package for a new plasma regime.

Chapter 4 functions as a continuation from Chapter 3, looking into the intermediate time (1-10 μs) dynamics of colliding carbon plasma. To observe transient molecular species of carbon, C2 and C3, LIF was employed. By acquiring plume images through LIF, the various mechanisms by which C2 and C3 appear at different times in the plasma lifetime may be discerned. Using optical time-of-flight (OTOF), more information of carbon species populations may be determined to construct space-time contours which offer corroborative information regarding the spatiotemporal development of the stagnation layer.

Chapter 5 presents work on colliding Sn plasma for application as a EUV light source. The accumulation of material along the stagnation layer makes colliding plasmas a suitable preplasma in a dual pulse laser scheme. Dual-pulse EUV concepts call for the formation of a preplasma from the stagnation of two Sn plasmas. This preformed plasma is then subject to a second, pumping laser purposed to optimize the conversion efficiency (CE) of laser energy into EUV output. Characterization of the stagnation layer was obtained through optical emission spectroscopy while CE data is obtained using an absolutely calibrated EUV photodiode. HEIGHTS computational modeling then provides prediction of EUV emission upon using a CO2 laser for preplasma reheat.

Chapter 6 explores the collision between two dissimilar plasmas. Laser-produced plasma of Si and C are created in a manner which enables the two plasmas to collide. The ensuing development of the colliding plasma regime is then discussed in terms of relevant plume hydrodynamics. Analysis of the colliding regime is accomplished using fast-gated plume imaging and optical time-of-flight.

The final chapter, Chapter 7, provides a concise summary of the results presented in the preceding chapters. Additionally, recommended research directives are presented which are designed with consideration for the current facilities and capabilities at CMUXE.
APA, Harvard, Vancouver, ISO, and other styles
10

(5930231), Prasad Sarangapani. "Quantitative Prediction of Non-Local Material and Transport Properties Through Quantum Scattering Models." Thesis, 2020.

Find full text
Abstract:
Challenges in the semiconductor industry have resulted in the discovery of a plethora of promising materials and devices such as the III-Vs (InGaAs, GaSb, GaN/InGaN) and 2D materials (Transition-metal dichalcogenides [TMDs]) with wide-ranging applications from logic devices, optoelectronics to biomedical devices. Performance of these devices suffer significantly from scattering processes such as polar-optical phonons (POP), charged impurities and remote phonon scattering. These scattering mechanisms are long-ranged, and a quantitative description of such devices require non-local scattering calculations that are computationally expensive. Though there have been extensive studies on coherent transport in these materials, simulations are scarce with scattering and virtually non-existent with non-local scattering.
In this work, these scattering mechanisms with full non-locality are treated rigorously within the Non-Equilibrium Green's function (NEGF) formalism. Impact of non-locality on charge transport is assessed for GaSb/InAs nanowire TFETs highlighting the underestimation of scattering with local approximations. Phonon, impurity scattering, and structural disorders lead to exponentially decaying density of states known as Urbach tails/band tails. Impact of such scattering mechanisms on the band tail is studied in detail for several bulk and confined III-V devices (GaAs, InAs, GaSb and GaN) showing good agreement with existing experimental data. A systematic study of the dependence of Urbach tails with dielectric environment (oxides, charged impurities) is performed for single and multilayered 2D TMDs (MoS2, WS2 and WSe2) providing guideline values for researchers.

Often, empirical local approximations (ELA) are used in the literature to capture these non-local scattering processes. A comparison against ELA highlight the need for non-local scattering. A physics-based local approximation model is developed that captures the essential physics and is computationally feasible.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography