Academic literature on the topic 'Molecular adaptor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molecular adaptor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Molecular adaptor"
Pucadyil, Thomas J., and Sachin S. Holkar. "Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering." Molecular Biology of the Cell 27, no. 20 (October 15, 2016): 3156–63. http://dx.doi.org/10.1091/mbc.e16-06-0399.
Full textAdes, Sarah E. "Proteolysis: Adaptor, Adaptor, Catch Me a Catch." Current Biology 14, no. 21 (November 2004): R924—R926. http://dx.doi.org/10.1016/j.cub.2004.10.015.
Full textD'Souza, Cynthia R., Ken V. Deugau, and John H. Spencer. "A simplified procedure for cDNA and genomic library construction using nonpalindromic oligonucleotide adaptors." Biochemistry and Cell Biology 67, no. 4-5 (April 1, 1989): 205–9. http://dx.doi.org/10.1139/o89-031.
Full textMaldonado-Báez, Lymarie, Michael R. Dores, Edward M. Perkins, Theodore G. Drivas, Linda Hicke, and Beverly Wendland. "Interaction between Epsin/Yap180 Adaptors and the Scaffolds Ede1/Pan1 Is Required for Endocytosis." Molecular Biology of the Cell 19, no. 7 (July 2008): 2936–48. http://dx.doi.org/10.1091/mbc.e07-10-1019.
Full textVanHook, A. M., and N. R. Gough. "Two-Way Adaptor." Science Signaling 1, no. 20 (May 20, 2008): ec190-ec190. http://dx.doi.org/10.1126/stke.120ec190.
Full textLuo, Leo Y., and William C. Hahn. "Oncogenic Signaling Adaptor Proteins." Journal of Genetics and Genomics 42, no. 10 (October 2015): 521–29. http://dx.doi.org/10.1016/j.jgg.2015.09.001.
Full textHorikawa, H. "Interaction of Synaptophysin with the AP-1 Adaptor Protein γ-Adaptin." Molecular and Cellular Neuroscience 21, no. 3 (November 2002): 454–62. http://dx.doi.org/10.1006/mcne.2002.1191.
Full textDziurdzik, Samantha K., Björn D. M. Bean, Michael Davey, and Elizabeth Conibear. "A VPS13D spastic ataxia mutation disrupts the conserved adaptor-binding site in yeast Vps13." Human Molecular Genetics 29, no. 4 (January 15, 2020): 635–48. http://dx.doi.org/10.1093/hmg/ddz318.
Full textWong, W. "Zap70 as an Adaptor." Science Signaling 3, no. 150 (November 30, 2010): ec363-ec363. http://dx.doi.org/10.1126/scisignal.3150ec363.
Full textDell’Angelica, Esteban C., Chean Eng Ooi, and Juan S. Bonifacino. "β3A-adaptin, a Subunit of the Adaptor-like Complex AP-3." Journal of Biological Chemistry 272, no. 24 (June 13, 1997): 15078–84. http://dx.doi.org/10.1074/jbc.272.24.15078.
Full textDissertations / Theses on the topic "Molecular adaptor"
Kowanetz, Katarzyna. "Adaptor Proteins in Regulation of Receptor Endocytosis." Doctoral thesis, Uppsala University, Ludwig Institute for Cancer Research, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4477.
Full textLigand-induced endocytosis of receptor tyrosine kinases (RTKs) is a dynamic process governed by numerous protein-protein and protein-lipid interactions. This is a major mechanism of signal termination and is also frequently impaired in cancer. The Cbl family of ubiquitin ligases has been shown to play a key role in downregulation of RTKs, by directing their ligand-induced ubiquitination and subsequent lysosomal degradation. My thesis work has led to the identification of novel, ubiquitin-ligase independent, functions of Cbl in receptor endocytosis. We demonstrated that the adaptor protein CIN85 links Cbl with epidermal growth factor receptor (EGFR) internalization. The three SH3 domains of CIN85 interact with Cbl/Cbl-b in a phosphotyrosine dependent manner, whereas its proline-rich region constitutively binds endophilins, known regulators of plasma membrane invagination. The SH3 domains of CIN85 recognize an atypical proline-arginine (PxxxPR) motif present in Cbl and Cbl-b. Moreover, we showed that numerous endocytic regulatory proteins, among them ASAP1 and Dab2, interact with CIN85 via their PxxxPR motifs. The SH3 domains of CIN85 are able to cluster and exchange its effectors at subsequent stages of EGFR endocytosis, thus participating in the control of receptor internalization, recycling and degradation in the lysosome. We proposed that CIN85 functions as a scaffold molecule implicated in control of multiple steps in downregulation of RTKs.
Furthermore, we identified two novel Cbl- and ubiquitin-interacting adaptor proteins named Sts-1 and Sts-2 (Suppressors of T-cell receptor signaling). Ligand-induced and Cbl-mediated recruitment of Sts-1/Sts-2 into activated EGFR complexes led to inhibition of receptor internalization and subsequent block of receptor degradation followed by prolonged mitogenic signaling pathways. Our results indicate that Sts-1 and Sts-2 represent a new class of negative regulators of Cbl functions in receptor endocytosis.
In conclusion, this thesis describes novel mechanisms by which Cbl, coupled to its effectors, orchestrates trafficking of RTKs. Detailed understanding of how these processes are controlled under physiological as well as under pathological conditions may be important for future therapeutic approaches.
Standen, Claire. "Molecular studies of the Fe65 and X11 adaptor proteins." Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401885.
Full textBeauparlant, Stephen Lewis. "Functional characterization of the p97 adaptor protein UBXD1." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/213118.
Full textPh.D.
p97 is a member of the AAA family of proteins (ATPase Associated with various cellular Activities). It is a highly conserved and abundant protein and functions in numerous ubiquitin-mediated processes including ERAD. Endoplasmic Reticulum Associated Degradation is the process by which misfolded/ubiquitinated proteins translocate out of the ER and migrate to the proteasome for degradation. p97 maintains substrate misfolding and mediates its exit from the ER and trafficking to the 26S proteasome. It also plays important roles in protein trafficking, the cell-cycle, apoptosis and homeotypic Golgi Apparatus and Endoplasmic Reticulum membrane fusion after mitosis. In addition, p97 plays a role in the aggresome-autophagy degradation pathway, which handles the ubiquitin-mediated destruction of aggregate-prone, misfolded, cytosolic proteins. p97 mutation is the causative alteration in the disorder, IBMPFD, which is marked by defects in autophagy. This broad diversity of function is mediated through p97's interaction with a large group of adaptor proteins. Many of these adaptors harbor both p97 interaction motifs and ubiquitin association domains. However, more than half of known p97 adaptors do not. Their function is largely unknown. UBXD1 is one known adaptor for p97 that does not have a ubiquitin association domain (UBA), and has been shown to have decreased interaction with IBMPFD mutant p97R155H and p97A232E. Recently, it has been suggested to perform a role in protein trafficking, specifically in monoubiquitinated caveolin-1 internalization and trafficking to the endosome. A novel high abundance UBXD1 interacting partner has been identified via solution-based mass spectrometric analyses. ERGIC-53, the namesake of the ER-Golgi Intermediate Compartment, has been shown to be involved in bi-directional trafficking between the ER and Golgi. The association between UBXD1 and ERGIC-53 is unique among UBX family members. Deletional analysis has shown that unlike p97, the ERGIC-53-UBXD1 interaction takes place in the extreme amino terminus of UBXD1, (within the first 10 amino acids) which is predicted by computer modeling to form a hydrophobic binding pocket. Further site-directed mutagenesis work has clearly shown four amino acids (3 highly hydrophobic) are crucial for maintaining this interaction. They have been modeled to form a conserved alpha-helix. ßCOPI, a primary member of the COPI coatomer complex which is involved in protectively coating ERGIC-53 positive vesicles, is also thought to be involved with the ERGIC-53-UBXD1-p97 pathway. ßCOPI has been identified as a UBXD1-independent interactor with p97. Modest UBXD1 over- expression using a ponasterone inducible system has shown that UBXD1 modulates ERGIC-53 localization. Additionally, a functional link between UBXD1, p97 and ERGIC-53 in autophagy has been discovered through the use of a highly efficient, miR30-based, inducible knockdown system. Upon individual knockdown of UBXD1, p97 and ERGIC-53, autophagic markers p62 and LC3-II accumulate at relatively high levels in normal culture conditions, strongly suggesting a role in mediating basal autophagy. However, when placed under starvation conditions, autophagy progresses and p62 is degraded. It is speculated from these studies that a p97/UBXD1 complex plays a role in regulating the trafficking of ERGIC-53 positive vesicles and this activity plays an important role in autophagy.
Temple University--Theses
Chan, Gabriel. "The role of Crk adaptor proteins in human breast cancer /." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81608.
Full textLuke, Courtney. "Expression, molecular interactions and functions of Ruk, a novel adaptor protein." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/29855.
Full textAbu-Thuraia, Afnan. "Characterization of the interaction between the adaptor protein Nck and the protein kinase PKR." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96908.
Full textLa protéine kinase PKR, activée par l'ARN double brins (ARNdb), est connue pour jouer un rôle inhibiteur de la traduction des protéines. La régulation de PKR est donc critique pour le maintien de l'homéostasie cellulaire. Nous avons précédemment identifié la protéine adaptatrice Nck 1 comme étant un potentiel régulateur de l'activation de PKR, suivant son interaction avec PKR. Dans la présente étude, nous avons été en mesure de confirmer que, dans des conditions physiologiques, Nck-1 peut limiter l'activation de PKR par l'ARNdb. Cependant, le contrôle qu'exerce Nck-1 sur PKR est réversible puisque, lorsque la quantité d'ARNdb dépasse une certaine concentration, PKR est activée et alors Nck-1 se dissocie de PKR, l'empêchant ainsi de limiter son activation. Nos données démontrent également que Nck-1 doit être dans sa forme native pour interagir et moduler l'activation de PKR. De plus, il semble que l'interaction entre Nck-1 et PKR ne nécessite pas que les différents domaines homologues de Src (SH2 et SH3) présents chez Nck-1 soient fonctionnels. De plus, nous avons observé que Nck-1 interagit à la fois avec les domaines N- et C-terminaux de PKR. Nous démontrons également que lorsque les niveaux d'ARNdb atteignent un niveau seuil, Nck-1 se dissocie de PKR non pas à cause d'une compétition avec l'ARNdb, ni à cause d'un changement de conformation de PKR ou son autophosphorylation, mais est plutôt dû à l'activation du domaine catalytique de PKR. De plus, il semble que Nck-1 puisse être phosphorylé par PKR in vivo. Nck-1 est donc non seulement un modulateur de l'activation de PKR mais peut également servir de substrat pour PKR. Ceci nous amène donc à proposer que la phosphorylation de Nck-1 par PKR activée soit responsable du mécanisme de dissociation entre Nck-1 et PKR. En conclusion, nos résultats confirment Nck-1 comme étant un nouveau modulateur cellulaire de PKR, en limitant son activation dans des conditions physiologiques.
Nasertorabi, Fariborz. "Biochemical and Structural Studies on the Adaptor Protein p130Cas." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4777.
Full textDomiziana, De Tommaso. "Astrocytes contribute to neuroinflammation during EAE by shaping the CNS microenvironment via Rai signalling." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1105117.
Full textDemone, Jordan. "Characterizing the role of the transcriptional adaptor ADA2: an integrating node in the cold response mechanism in «Brachypodium distachyon»." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114517.
Full textPour les pays nordiques, les épisodes de gel précoces et tardifs limitent considérablement le rendement des cultures et génèrent de lourdes pertes économiques. Bien que la plupart des plantes céréalières cultivées au Canada possèdent d'emblée un certain niveau de tolérance au gel, elles nécessitent toutes une période d'exposition à de basses températures (de 2 à 10°C) afin de maximiser leurs niveaux de tolérance. Ce processus d'acclimatation repose sur l'expression induite des gènes COR (Cold-Regulated Genes) contrôlés en grande partie par le régulateur CBF1 (C-repeat Binding Factor 1). Récemment, il a été proposé que CBF1 pourrait interagir avec le complexe chromatinien SAGA dans le but d'accomplir sa fonction. Cette interaction serait médiée par une sous-unité du complexe SAGA, la protéine adaptatrice ADA2. Cette dernière représenterait donc le lien moléculaire unissant les mécanismes de régulation génique traditionnels et chromatiniens impliqués dans le développement de la tolérance au gel des plantes. Le but de cette étude était de caractériser l'interaction physique entre CBF1 et ADA2 dans un contexte in planta. Des analyses d'expression en temps réel ont démontré que BradiCBF1 et BradiADA2 sont exprimés de façon similaire en réponse aux basses températures. De plus, des analyses d'interactions utilisant la technique de complémentation bimoléculaire de fluorescence (BiFC) ont démontré pour la première fois une interaction in planta entre les protéines BradiCBF1 and BradiADA2. Les résultats présentés ici suggèrent fortement qu'un complexe apparenté au complexe SAGA existe chez Brachypodium distachyon et que ce dernier pourrait jouer un rôle important lors du développement de la tolérance au gel chez les plantes céréalières.
Kong, Mei 1972. "Epidermal growth factor-induced DNA synthesis : key roles for phosphatidylinositol 3-kinase and the adaptor protein Gab2." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82904.
Full textBooks on the topic "Molecular adaptor"
Adler, M. Properties and potential of protein–DNA conjugates for analytic applications. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.25.
Full textSchinner, Franz, and Rosa Margesin. Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer Berlin / Heidelberg, 2010.
Find full text(Editor), Rosa Margesin, and Franz Schinner (Editor), eds. Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer, 1999.
Find full textSchinner, Franz, and Rosa Margesin. Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer, 2014.
Find full textSchinner, Franz, and Rosa Margesin. Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer London, Limited, 2013.
Find full textSchulkin, Jay. Evolution and Diversification of Function of an Information Molecule. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198793694.003.0002.
Full textBiology of Parasitism: Molecular Biology and Imunology of the Adaption and Development of Parasites. Ediciones Trilce, 1994.
Find full textPowell, Craig M., and Antony A. Boucard. Neuroligins and Neurexins: Bridging the Synaptic Cleft in Autism. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199744312.003.0014.
Full textDarrigol, Olivier. The Critical Turn (1895–1899). Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.003.0008.
Full textAllen, Michael P., and Dominic J. Tildesley. Advanced Monte Carlo methods. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0009.
Full textBook chapters on the topic "Molecular adaptor"
Hedman, Andrew C., and David B. Sacks. "Adaptor Proteins." In Encyclopedia of Molecular Pharmacology, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21573-6_265-1.
Full textHedman, Andrew C., and David B. Sacks. "Adaptor Proteins." In Encyclopedia of Molecular Pharmacology, 24–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57401-7_265.
Full textShi, Rui, Ying-Husan Sun, Xing-Hai Zhang, and Vincent L. Chiang. "Poly(T) Adaptor RT-PCR." In Methods in Molecular Biology, 53–66. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-427-8_4.
Full textMiura, Fumihito, Yukiko Shibata, Miki Miura, and Takashi Ito. "Post-bisulfite Adaptor Tagging Based on an ssDNA Ligation Technique (tPBAT)." In Methods in Molecular Biology, 21–37. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2724-2_2.
Full textMiura, Fumihito, and Takashi Ito. "Post-Bisulfite Adaptor Tagging for PCR-Free Whole-Genome Bisulfite Sequencing." In Methods in Molecular Biology, 123–36. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7481-8_7.
Full textButler, Juliet M., and Leonard Beevers. "Putative Adaptor Proteins of Clathrin Coated Vesicles from Developing Pea." In Molecular Mechanisms of Membrane Traffic, 331–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02928-2_68.
Full textQiu, Jingfan, and Shu-Bing Qian. "Poly-A Tailing and Adaptor Ligation Methods for Ribo-Seq Library Construction." In Methods in Molecular Biology, 221–37. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1150-0_10.
Full textVautrot, Valentin, and Isabelle Behm-Ansmant. "Enhanced Probe-Based RT-qPCR Quantification of MicroRNAs Using Poly(A) Tailing and 5′ Adaptor Ligation." In Methods in Molecular Biology, 39–54. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9833-3_4.
Full textCaruccio, Nicholas. "Preparation of Next-Generation Sequencing Libraries Using Nextera™ Technology: Simultaneous DNA Fragmentation and Adaptor Tagging by In Vitro Transposition." In Methods in Molecular Biology, 241–55. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-089-8_17.
Full textBiswas-Fiss, Esther E., Stephanie Affet, Malissa Ha, Takaya Satoh, Joe B. Blumer, Stephen M. Lanier, Ana Kasirer-Friede, et al. "Adaptor Protein Complex 4." In Encyclopedia of Signaling Molecules, 54. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100036.
Full textConference papers on the topic "Molecular adaptor"
Elmansuri, Aiman, Mishie Tanino, Roshan Mahabir, Lei Wang, Masumi Tsuda, Taichi Kimura, Hiroshi Nishihara, and Shinya Tanaka. "Abstract A156: CrkI and CrkII adaptor proteins promote invasiveness and metastasis via epithelial-mesenchymal transition (EMT) in A549 lung adenocarcinoma cells." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-a156.
Full textLi, Z., EN Potts, WM Foster, and JW Hollingsworth. "Ozone-Induced Airway Hyperresponsiveness Is Dependent on TRIF-Related Adaptor Molecule (TRAM) and TIR-Domain-Containing Adaptor-Inducing Interferon-beta (TRIF)." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2567.
Full textDumitricaˇ, Traian, Dong-Bo Zhang, and Ming Hua. "Nanomechanics of Silicon Nanowires via Symmetry-Adapted Tight-Binding and Classical Objective Molecular Dynamics." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66802.
Full textFisher, S. P., J. F. Leonard, I. T. Muirhead, G. Buller, and P. Meredith. "The Fabrication of Optical Devices by Molecular Beam Deposition Technology." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oic.1992.otub7.
Full textTejwani, Gopal D. "Transmittance and Radiance Computations for Rocket Engine Plume Environments." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47406.
Full textAllam, Sushmita L., Jean-Marie C. Bouteiller, Renaud Greget, Serge Bischoff, Michel Baudry, and Theodore W. Berger. "EONS Synaptic Modeling Platform: Exploration of Mechanisms Regulating Information Processing in the CNS and Application to Drug Discovery." In ASME 2008 3rd Frontiers in Biomedical Devices Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/biomed2008-38095.
Full textZhu, Cheng, and Scott E. Chesla. "Dissociation of Individual Molecular Bonds Under Force." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0286.
Full textMeredith, Paul, Gerald S. Buller, Andrew C. Walker, and S. Desmond Smith. "Determination of the Optical Constants of Molecular Beam Deposited Thin Films." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oic.1992.othd6.
Full textIlyasov, R. A., A. G. Nikolenko, and H. W. Kwon. "GENETIC IMPROVEMENT OF HONEY BEES FOR KEEPING IN EXTREMAL CLIMATIC CONDITIONS." In V International Scientific Conference CONCEPTUAL AND APPLIED ASPECTS OF INVERTEBRATE SCIENTIFIC RESEARCH AND BIOLOGICAL EDUCATION. Tomsk State University Press, 2020. http://dx.doi.org/10.17223/978-5-94621-931-0-2020-55.
Full textGerosa, Luca, Christopher Chidley, Fabian Froehlich, Gabriela Sanchez, Sang Kyun Lim, Jeremy Muhlich, Jia-Yun Chen, et al. "Abstract LB-B09: ERK pulses drive non-genetic resistance in drug-adapted BRAFV600Emelanoma cells." In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-lb-b09.
Full textReports on the topic "Molecular adaptor"
Bray, Elizabeth, Zvi Lerner, and Alexander Poljakoff-Mayber. The Role of Phytohormones in the Response of Plants to Salinity Stress. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7613007.bard.
Full textTaylor, DeCarlos E. Prediction of the Impact Sensitivity of Energetic Molecules Using Symmetry Adapted Perturbation Theory. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada550736.
Full textBlum, Abraham, and Henry T. Nguyen. Molecular Tagging of Drought Resistance in Wheat: Osmotic Adjustment and Plant Productivity. United States Department of Agriculture, November 2002. http://dx.doi.org/10.32747/2002.7580672.bard.
Full textStern, David, and Gadi Schuster. Manipulation of Gene Expression in the Chloroplast. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575289.bard.
Full textMurray, Chris, Keith Williams, Norrie Millar, Monty Nero, Amy O'Brien, and Damon Herd. A New Palingenesis. University of Dundee, November 2022. http://dx.doi.org/10.20933/100001273.
Full textLurie, Susan, John Labavitch, Ruth Ben-Arie, and Ken Shackel. Woolliness in Peaches and Nectarines. United States Department of Agriculture, 1995. http://dx.doi.org/10.32747/1995.7570557.bard.
Full textSela, Hanan, Eduard Akhunov, and Brian J. Steffenson. Population genomics, linkage disequilibrium and association mapping of stripe rust resistance genes in wild emmer wheat, Triticum turgidum ssp. dicoccoides. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598170.bard.
Full textSplitter, Gary A., Menachem Banai, and Jerome S. Harms. Brucella second messenger coordinates stages of infection. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7699864.bard.
Full textCenter for Plant Health Science and Technology Accomplishments, 2007. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, December 2008. http://dx.doi.org/10.32747/2008.7296841.aphis.
Full text