Academic literature on the topic 'Molded Case Circuit Breaker'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Molded Case Circuit Breaker.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Molded Case Circuit Breaker"

1

Shea, J. J., and J. A. Bindas. "Measuring molded case circuit breaker resistance." IEEE Transactions on Components, Hybrids, and Manufacturing Technology 16, no. 2 (March 1993): 196–202. http://dx.doi.org/10.1109/33.219405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Kun-A., Young-Maan Cho, and Ho-Joon Lee. "Circuit Model and Analysis of Molded Case Circuit Breaker Interruption Phenomenon." Electronics 9, no. 12 (December 2, 2020): 2047. http://dx.doi.org/10.3390/electronics9122047.

Full text
Abstract:
There are complex physical phenomena for the interpretation of a molded case circuit breaker (MCCB) in a distribution system. Most of the studies of MCCB interruption phenomena were conducted with numerical analysis and experiments. This traditional approach may help improve the performance of the MCCB itself, but it is difficult to find connectivity with other systems. In this paper, the circuit model is proposed and the interruption phenomenon of MCCB is analyzed. The interruption of the MCCB is divided into three sections to deal with physical phenomena occurring in each area. A simplified model is proposed considering the characteristics of each section. Based on this model, the circuit model is proposed. To implement the features of each section, the calculation of physical phenomena is carried out, and this is expressed in the circuit model with resistance and zener diode. Comparing the results of the simulation with the experimental results is as follows. For 7-plates (basic state), the error rate is −5.6% in section II and 16.8% in section III. For 1-plate, the error rate is 36.5% in section II and −17.0% in section III. This case shows much difference from the simplified model in this paper, resulting in the largest error rate. The 7-plates and 5-plates cases, which are available in the general MCCB owing to the shortest distance from the arc, represent a relatively small error rate. Using the proposed circuit model, it is expected that the entire system, including the interruption phenomenon, can be interpreted as a single circuit model.
APA, Harvard, Vancouver, ISO, and other styles
3

Yoo, Jae-Geun, Myung-Il Choi, Chee-Hyun Park, and Jae-Hyun Son. "Effect on Molded Case Circuit Breaker of Harmonic Current." Journal of the Korea Academia-Industrial cooperation Society 9, no. 1 (February 28, 2008): 53–58. http://dx.doi.org/10.5762/kais.2008.9.1.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Ya Jun, Wen Bo Chen, and Zhe Chen. "Design of Current Selective Protection in Intelligent Molded Case Circuit Breaker." Advanced Materials Research 544 (June 2012): 77–81. http://dx.doi.org/10.4028/www.scientific.net/amr.544.77.

Full text
Abstract:
Synthetically applied the technology of Full Current Selective Protection and Zone-Selective interlocking mainly, this paper comes up with a new Intelligent Molded Case Circuit Breaker system. Use the accurate calculation method, to achieve a good function of three kinds of current protection. By means of coordinate communication, the system implements selective trip and protection function, and improve the reliability and safety of the distribution system. Self-diagnostic function works when the system goes wrong, which extend the service life of this circuit breaker system.
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Tae-hun, Young-Maan Cho, and Kwang-Cheol Ko. "Dielectric Recovery Characteristic according to Design Parameters of Molded Case Circuit Breaker." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 30, no. 4 (April 30, 2016): 72. http://dx.doi.org/10.5207/jieie.2016.30.4.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogawa, Yoshihisa, Tadashi Koshizuka, Koichi Asakusa, and Tsuyoshi Wakasa. "Arc Model to Evaluate D.C. Interruption Performance for Molded Case Circuit Breaker." IEEJ Transactions on Power and Energy 138, no. 6 (June 1, 2018): 529–34. http://dx.doi.org/10.1541/ieejpes.138.529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pan, Ying, Zhixian Tang, and Zhi Cheng. "Analysis of vibration characteristics of mounting plate for molded case circuit breaker." Journal of Physics: Conference Series 1303 (August 2019): 012008. http://dx.doi.org/10.1088/1742-6596/1303/1/012008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gregory, G. D. "Single-pole short-circuit interruption of molded-case circuit breakers." IEEE Transactions on Industry Applications 35, no. 6 (1999): 1265–70. http://dx.doi.org/10.1109/28.806037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gregory, G. D., and W. M. Hall. "Predicting molded-case circuit breaker let-through characteristics in an electrical system under short-circuit conditions." IEEE Transactions on Industry Applications 29, no. 3 (1993): 548–56. http://dx.doi.org/10.1109/28.222425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aronstein, Jesse. "Temperature Sensitivity of Residential Molded Case Circuit Breakers." IEEE Access 7 (2019): 38714–20. http://dx.doi.org/10.1109/access.2019.2906198.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Molded Case Circuit Breaker"

1

Latzo, Curtis Thomas. "Approaches to Arc Flash Hazard Mitigation in 600 Volt Power Systems." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3198.

Full text
Abstract:
ABSTRACT Federal regulations have recognized that arc flash hazards are a critical source of potential injury. As a consequence, in order to work on some electrical equipment, the energy source must be completely shut-down. However, power distribution systems in mission critical facilities such as hospitals and data centers must sometimes remain energized while being maintained. In recent years the Arc Flash Hazard Analysis has emerged as a power system tool that informs the qualified technician of the incident energy at the equipment to be maintained and recommends the proper protective equipment to wear. Due to codes, standards and historically acceptable design methods, the Arc Flash Hazard is often higher and more dangerous than necessary. This dissertation presents detailed methodology and proposes alternative strategies to be implemented at the design stage of 600 volt facility power distribution systems which will decrease the Arc Flash Hazard Exposure when compared to widely used code acceptable design strategies. Software models have been developed for different locations throughout a power system. These software model simulations will analyze the Arc Flash Hazard in a system designed with typical mainstream code acceptable methods. The model will be changed to show implementation of arc flash mitigation techniques at the system design level. The computer simulations after the mitigation techniques will show significant lowering of the Arc Flash Hazard Exposure.
APA, Harvard, Vancouver, ISO, and other styles
2

Dostál, Lukáš. "VYUŽITÍ MODERNÍCH NUMERICKÝCH METOD PŘI NÁVRHU SPÍNACÍCH PŘÍSTROJŮ." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400419.

Full text
Abstract:
The theses is focused on efficient use of numerical methods in development of low-voltage switching devices, namely to create a physically correct and reliable numerical model of the temperature field to find an application in the design of the current path of a device for various operating conditions. The creation of this numerical model requires not only correct inclusion of all modes of heat transfer - conduction, convection and radiation, but also correct solution of problematic transient resistance - both electrical and thermal in electrical contacts at different stages of usage. Therefore an essential part of the theses forms a thorough experimental analysis of the necessary material properties and dependencies which forms input data for the numerical model that is based on the finite volume method. The last part of the theses deals with debugging and verification of numerical model to correspond with experimentally obtained data. The result of the theses is the numerical model which is able to solve correctly both steady and various transient states of swiching devices.
APA, Harvard, Vancouver, ISO, and other styles
3

Mejzlík, Tomáš. "Teplotní profil výkonového spínacího přístroje nízkého napětí pro různé provozní stavy." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221176.

Full text
Abstract:
The heat generated in a circuit breaker can be transmitted in two ways: Either through metal parts of current path to conductors outside of device or through plastic parts or air of chassis. The accuracy of the simulation depends on the accuracy of the 3D model and all his parts and it also depends on precise definition of materials with precise definition of electrical and thermal parameters. Electrical circuit breaker has various source of the heat which results in raising temperature of the device above the level of environment. Heat sources are: 1) Joule’s loss of the circuit breaker current path. 2) Heat loss in a bimetal, which is used for thermal release. 3) Resistivity of contacts. This thesis deals with static state of thermal analysis so the sources do not include transient heat source for switching OFF and switching ON. Electrical circuit breakers are made in smaller and smaller forms however their electrical parameters are not decreasing with size. There is logical conclusion that there is more heat on the same unit size which makes thermal analysis of circuit breaker one of the most important part of development.
APA, Harvard, Vancouver, ISO, and other styles
4

Zelenka, Michal. "Analýza bimetalové spouště." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221260.

Full text
Abstract:
This master‘s thesis deals with the thermal overload trip unit in automatically operated electrical switching devices. The first part of this thesis serves as a basis for a design of thermostatic bimetal element in electrical switching device. The thesis presents important parameters and calculation principles needed for the design of bimetal element. The thesis further describes the operating principle of thermal trip unit and its possible design solutions. The main part is devoted to analytical calculation and measurement of specific thermostatic bimetal type contained in thermal trip unit of molded case circuit breaker. It is measurement of force and deflection, depending on temperature change. In the next part a numerical model of the bimetallic strip was created and its deflection was simulated. The analytical results are compared with the measured and simulated results at the end of the thesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Šic, Pavel. "Bilance elektrodynamických sil působících na kontakt elektrického přístroje." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-241105.

Full text
Abstract:
This master’s thesis is focused on calculation, simulation and experimental verification of electrodynamic forces acting upon movable contact piece of MCCB and experimental current carrying path. A short description of low voltage circuit breakers is briefly discussed in first chapter. Second chapter is focused upon contact system analysis of particular MCCB with thermomagnetic trigger. A hardness of contact materials is briefly described. A detailed analytical calculations were used to determine electrodynamic forces in MCCB. A FEM simulation in ANSYS Maxwell was carried out for comparison with analytical results. An experimental apparatus was designed and built for verification of constriction repulsion force, so called Holm’s force. A series of measurements is subsequently performed on proposed apparatus and results are compared with results from previous chapters.
APA, Harvard, Vancouver, ISO, and other styles
6

Fradinho, Bastos Ivan. "Marketing Introduction Plan for the New Generation of Sustainable Circuit Breakers LTA 420 kV : A real-life case for implementation at Hitachi ABB Power Grids." Thesis, KTH, Kemiteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297294.

Full text
Abstract:
En strömbrytare är en säkerhetsanordning som är utformad för att bryta strömmen om ett problem uppstår. Det finns ett flertal olika typer av brytare beroende vilket spänningsområde som avses. Brytare för lågspänning används för hushållsapparater, medan högspänningstyper används för överföring av spänning i elnätet. Högspänningsbrytare använder idag svavelhexafluorid (SF6)-gas, som ett isolerande medium för att släcka den elektriska ljusbåge som bildas när strömmen bryts. SF6 är dock problematiskt för miljön, då dess globala uppvärmningspotential (GWP) är 23 500 gånger högre jämfört med koldioxid (CO2). Företaget Hitachi ABB Power Grids har utvecklat AirPlus™-tekniken som ersätter SF6-gasen med en koldioxidbaserad gasblandning. Examensarbetet fokuserade på att utvärdera möjligheten att minska användningen av SF6 genom AirPlus™-tekniken och hur tekniken skulle kunna en introduceras på marknaden. Slutligen så utvecklades en strategi för hur detta skulle kunna ske. Studien innefattar den bakomliggande informationsinhämtningen och analysen av data, marknadsutvärdering och utvecklingen av marknadsstrategin. Detta utfördes genom att utvärdera AirPlus™-tekniken och dess konkurrenter, samt genom en kvalitativ och kvantitativ analys av implementeringen av LTA 420 kV-brytaren på marknaden. Sammanfattningsvis så visar studien att marknadsintroduktionen av strömbrytaren LTA 420 kV är genomförbar. Även om koldioxid tekniskt inte har samma prestanda som SF6, är tekniken fortfarande bra och ger starka kundfördelar: GWP minskar med över 99,9%, användningen överensstämmer med miljöregler, den ger lägre ägandekostnader, färre kontroller, lägre kostnad för hantering av koldioxidgasen, och fungerar väl vid extremt låga temperaturer. De viktigaste utmaningarna för Hitachi ABB Power Grids relaterar till konkurrensen på marknaden. Det är därför tillrådligt att företaget arbetar med en effektiv marknadsintroduktion för att säkerställa en stor marknadsandel.
A circuit breaker is a safety device designed to interrupt power if a problem is detected. There are several kinds of circuit breakers for different applications. Low-voltage circuit breakers are used for household appliances, while high-voltage types are used for transmission networks. High-voltage circuit breakers use sulfur hexafluoride (SF6) gas as an insulating medium, which extinguishes the electric arc that is formed when power is cut. However, it is a huge hazard for the environment, as its global warming potential (GWP) is 23,500 times higher than that of CO2 gas. The company Hitachi ABB Power Grids developed the AirPlus™ technology, which replaces the SF6 gas with a carbon dioxide (CO2) based gas mixture. The presented degree project has evaluated the feasibility of reducing the use of SF6 through the AirPlus™ technology and then developed a strategy for the company Hitachi ABB Power Grids for the market introduction of the eco-efficient LTA 420 kV circuit breaker. This study covers the background research, market evaluation, and market strategy.  It was done through research about the AirPlus™ technology and its competitors, so as qualitative and quantitative analysis of the LTA 420 kV circuit breaker implementation in the market. In conclusion, the study shows that the market introduction of the LTA 420 kV circuit breaker is feasible. Although CO2 is not as good an insulation medium as SF6, it is still good and presents strong customer benefits: GWP reduced by over 99.9%, compliance with new regulations, lower cost of ownership, fewer regulatory controls, reduced cost of handling the gas, and well-functioning at extremely low temperatures. The main concerns for Hitachi ABB Power Grids are related to market competition. Thus, it is advisable that the company works on an effective market introduction to assure a large market share.
APA, Harvard, Vancouver, ISO, and other styles
7

Dostál, Lukáš. "Simulace nadproudové spouště jističe." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218784.

Full text
Abstract:
Securing of electrical devices is important not only to protect against destruction under the effects of electric current, but also for protection of people or animals against electric shock. With increasing of living standards goes hand in hand increasing of the electricity consumption. Therefore In the grid of low voltage, there are increasing short-circuit currents. With improving technology is posed considerable demand on the performance, security and switching capacity of circuit breakers. This thesis is oriented on development of thermal and electromagnetic switch of circuit breaker on which is put a big demand in development of new types of circuit breakers. The thesis is interesting because of comprehensive use of circuits’ breakers since it can be used in AC and DC networks with frequency of 50 Hz and 400 Hz.
APA, Harvard, Vancouver, ISO, and other styles
8

Adam, Robert. "Beitrag zur thermischen Dimensionierung von Niederspannungs-Schaltgerätekombinationen." 2018. https://tud.qucosa.de/id/qucosa%3A36402.

Full text
Abstract:
In der Niederspannungstechnik werden die Anlagen zum Übertragen und Verteilen von Elektroenergie als Niederspannungs-Schaltgerätekombinationen bezeichnet. Die Anlagen sollen ihre Aufgaben möglichst wartungsfrei über einen Zeitraum von mehreren Jahrzehnten erfüllen. Damit ein langzeitstabiler Betrieb der Niederspannungs-Schaltgerätekombinationen möglich ist, müssen die Anlagen mindestens normgerecht thermisch dimensioniert sein. Um die Erwärmung von Niederspannungs-Schaltgerätekombinationen zuverlässig und effizient zu berechnen, wird in dieser Arbeit die Wärmenetzmethode genutzt. In der Wärmenetzmethode werden die Vorgänge der Erwärmung mit Hilfe von Wärmestromquellen, Temperaturquellen, Wärmewiderständen und Wärmekapazitäten nachgebildet. Einen wesentlichen Einfluss auf die Erwärmung einer Schaltgerätekombination haben die in den Wärmequellen der Anlage erzeugten Verlustleistungen. Die dominanten Wärmequellen (Hauptwärmequellen) innerhalb von Niederspannungs-Schaltgerätekombinationen werden in dieser Arbeit untersucht und die Ergebnisse in die Wärmenetzmethode integriert. Mit den Ergebnissen werdenmit Hilfe der Wärmenetzmethode die Erwärmungen verschiedener Betriebsmittel einer Niederspannungs-Schaltgerätekombination berechnet und anhand von Experimenten verifiziert. Die Wärmenetze der einzelnen Betriebsmittel werden zum Gesamt-Wärmenetz einer Niederspannungs-Schaltgerätekombination zusammengeschaltet. Die mit diesem Wärmenetz berechneten Temperaturen werden dann durch Experimente an der Versuchsanlage einer Niederspannungs-Schaltgerätekombination verifiziert. Eine der Hauptwärmequellen in Niederspannungs-Schaltgerätekombinationen sind die ohmschen Leitungsverluste in den Strombahnen der Hauptsammel- und Feldverteilerschienen. Bei Drehstrombelastung werden die hier in den einzelnen Teilleitern erzeugten Verlustleistungen durch die Stromverdrängung aufgrund des Skin- und den überlagerten Proximity-Effekts maßgeblich beeinflusst. Gegenüber einer Gleichstrombelastung unterscheiden sich die Verlustleistungen jedes einzelnen Teilleiters um den Leistungsfaktor k3~. Für Drehstromschienensysteme mit mehreren Teilleitern existieren bisher nur unzureichende Angaben zum Leistungsfaktor k3~ durch den Skin- und den Proximity-Effekt. In dieser Arbeit wurden FEM-Modelle aufgebaut, die Leistungsfaktoren k3~ für unterschiedliche Schienenanordnungen berechnet und anhand experimenteller Untersuchungen verifiziert. Weitere Hauptwärmequellen in Niederspannungs-Schaltgerätekombinationen sind die in den Anlagen eingebauten Betriebsmittel zum Schalten, Trennen und Schützen (z. B. Leistungsschalter, Trennschalter, Trenneinrichtungen, Sicherungen). Neben den Schaltkontakten selbst gehören die thermischen Schutzauslöser und Sicherungen zu den Hauptwärmequellen in den Strombahnen der Schaltgeräte. Um die Erwärmung der Geräte genau zu berechnen, müssen der Aufbau der Strombahnen und die Verteilung der Widerstände bekannt sein. Diese Widerstände können im Allgemeinen nur gemessen werden. Dabei hat sich zum einen gezeigt, dass die gemessenen Widerstände der Schaltkontakte von Kompaktleistungsschaltern auch im selben Gerät stark variieren können. Zum anderen sind die Widerstände der Schaltkontakte so dominant, dass in ihnen bis zu 47 % der gesamten Verlustleistungen eines Kompaktleistungsschalters entstehen können. Bedingt durch die zunehmende kompakte Bauweise der Anlagen erzeugen die Drehstromfelder der Sammelschienen hohe magnetische Feldstärken in umgebenden Metallteilen. In den Gehäusen, Einbauplatten, Wänden, Umhüllungen und Verkleidungen in Niederspannungs-Schaltgerätekombinationen können daher hohe Verlustleistungen entstehen, die maßgeblich die Erwärmung der Anlagen beeinflussen. Rechnerische und experimentelle Untersuchungen haben gezeigt, dass bei typischen Anordnungen von Schienen und Umhüllungen Verlustleistungen entstehen, die bis zu 32,7% der gesamten in der Versuchsanordnung gemessenen Verlustleistungen betragen. Sind die Ergebnisse der untersuchten Wärmequellen in die Wärmenetze der verschiedenen Betriebsmittel von Niederspannungs-Schaltgerätekombinationen integriert, ermöglichen die aufgebauten Wärmenetze die Berechnung von Temperaturen mit geringen Abweichungen (+4,4 K, -3,5 K) verglichen mit gemessenen Temperaturen. Mit den verifizierten und modularisierten Wärmenetzen der Betriebsmittel ist eine Möglichkeit geschaffen, Wärmenetze von Niederspannungs-Schaltgerätekombinationen effizient und wirtschaftlich aufzubauen.:1 Einleitung 1 2 Problemstellung 2 2.1 Stand der Technik / Ausgangssituation 2 2.2 Normen zur Erwärmung 3 2.3 Aufgabenstellung 5 2.4 Aufbau der Versuchsanlage 7 3 Grundlagen der Erwärmungsberechnung 11 3.1 Erzeugte Wärmeleistungen 11 3.2 Wärmeübertragung 17 3.3 Erwärmungsberechnung mit Wärmenetzen 39 4 Grundlagen zur Stromverdrängung 43 4.1 Stromdichteverteilung im Vollzylinder 43 4.2 Stromverdrängung und der Leistungsfaktor k 48 5 Untersuchungen zu den Wärmequellen 54 5.1 Stromwärmeverluste in den elektrischen Leiter von Sammel- und Feldverteilerschienen 57 5.2 Stromwärmeverluste in Schaltgeräten und zugehörigen Betriebsmitteln 90 5.3 Wirbelstrom- und Hystereseverluste in Metallteilen 105 6 Wärmenetze für die Betriebsmittel einer Niederspannungs- Schaltgerätekombination 126 7 Wärmenetz einer Niederspannungs-Schaltgerätekombination 148 8 Zusammenfassung und Ausblick 155 9 Literaturverzeichnis 158 10 Anhang 163
In low-voltage engineering the systems for transmission and distribution of electric energy are named as low-voltage switchgear and controlgear assemblies. The systems have to perform their functions maintenance free as much as possible for a period of some decades. To achieve a long-time stable operation, the systems have to be designed thermally at least according to standards. In this thesis the thermal network method is used to calculate the heating of low-voltage switchgear and controlgear assemblies reliably and efficiently. The thermal network method simulates the processes of heating by heat sources, temperature sources thermal resistors and thermal capacities. The thermal power losses which are produced in the heat sources of the systems have significant influence on the heating of switchgear and controlgear assemblies. The dominant heat sources (main heat sources) within low-voltage switchgear and controlgear assemblies are researched at this thesis and the results are integrated to the thermal network method. The results are used to calculate the heating of various electrical components of a low-voltage switchgear and controlgear assembly using the thermal network method and verified by means of experiments. The thermal networks of the individual components are interconnected to form the overall thermal network of a low-voltage switchgear and controlgear assembly. The temperatures computed with this thermal network are then verified by experiments at the test setup of a low-voltage switchgear and controlgear assembly. In low-voltage switchgear and controlgear assemblies one of the main heat sources are the ohmic losses in the current paths of the main busbars and the distribution busbars. If the busbars are loaded with a three-phase current, the generated power losses of every individual subconductors are significantly influenced by the current displacement due to the skin effect and the superposed proximity effect. The power losses of each individual subconductor differ by the power factor k3~ compared to a DC load. For three-phase busbar systems with several subconductors there is only insufficient information on the power factor k3~ which takes into account the current displacement by the skin effect and the proximity effect. In this thesis, FEM models were developed to calculate the power factor k3~ for different busbar systems. The results were verified by experimental investigations. The installed electrical devices for switching, isolating and protection (e. g. circuit breakers, disconnectors, devices for disconnecting and fuses) are further main heat sources in low-voltage switchgear and controlgear assemblies. In addition to the main switching contacts themselves, thermal protection trips and the fuses are the main heat sources in the current paths of the switching devices. In order to calculate the heating of the electrical devices properly, the structure of the current paths and the distribution of the electrical resistances have to be known. In general these resistances can only determine by measuring. On one hand, it was found that the measured resistances vary widely even inside the same device. On the other hand, the resistances of the switching contacts are dominating, that up to 47 % of the entire power losses of a molded case circuit breaker can be generated there. Conditioned by the more and more compact design of the switchgears, the three-phase fields of the main busbars causes high magnetic fields at the surrounding metallic components. High power losses can therefore occur in housings, panels, walls, casings and enclosures in low-voltage switchgear and controlgear assemblies, which have a significant influence on the heating of the systems. Computational and experimental investigations have shown that typical arrangements of busbars and enclosures result in power losses of up to 32.7% of the total power losses measured in the test setup. If the results of the investigated heat sources are integrated into the networks of the various equipment of low-voltage switchgear and controlgear assemblies, the thermal networks set up enable the calculation of temperatures with small deviations (+4.4 K, -3.5 K) compared with measured temperatures. The verified and modularised thermal networks of the equipment provide an efficient and economical way of setting up heating networks of low-voltage switchgear and controlgear assemblies.:1 Einleitung 1 2 Problemstellung 2 2.1 Stand der Technik / Ausgangssituation 2 2.2 Normen zur Erwärmung 3 2.3 Aufgabenstellung 5 2.4 Aufbau der Versuchsanlage 7 3 Grundlagen der Erwärmungsberechnung 11 3.1 Erzeugte Wärmeleistungen 11 3.2 Wärmeübertragung 17 3.3 Erwärmungsberechnung mit Wärmenetzen 39 4 Grundlagen zur Stromverdrängung 43 4.1 Stromdichteverteilung im Vollzylinder 43 4.2 Stromverdrängung und der Leistungsfaktor k 48 5 Untersuchungen zu den Wärmequellen 54 5.1 Stromwärmeverluste in den elektrischen Leiter von Sammel- und Feldverteilerschienen 57 5.2 Stromwärmeverluste in Schaltgeräten und zugehörigen Betriebsmitteln 90 5.3 Wirbelstrom- und Hystereseverluste in Metallteilen 105 6 Wärmenetze für die Betriebsmittel einer Niederspannungs- Schaltgerätekombination 126 7 Wärmenetz einer Niederspannungs-Schaltgerätekombination 148 8 Zusammenfassung und Ausblick 155 9 Literaturverzeichnis 158 10 Anhang 163
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Molded Case Circuit Breaker"

1

Institute, American National Standards. Molded-Case Circuit-Breakers and Circuit Breaker Enclosures, UL 489. Underwriters Laboratories, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The 2006-2011 World Outlook for Molded Case Circuit Breakers. Icon Group International, Inc., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parker, Philip M. The 2007-2012 World Outlook for Molded Case Circuit Breakers with Maximum 1000 Volts. ICON Group International, Inc., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

The 2006-2011 World Outlook for Molded Case Circuit Breakers with Maximum 1000 Volts. Icon Group International, Inc., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Molded Case Circuit Breaker"

1

Weik, Martin H. "molded-case circuit breaker." In Computer Science and Communications Dictionary, 1041. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_11768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mathew, Greegory, and Santosh B. Rane. "Reliability Estimation of Molded Case Circuit Breaker in Development Phase." In Proceedings of International Conference on Intelligent Manufacturing and Automation, 581–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4485-9_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pesenti Campagnoni, V., S. Ierace, F. Floreani, and S. Cavalieri. "A Pattern Recognition Methodology for Fault Detection: A Circuit Breaker Case Study." In Proceedings of the 10th World Congress on Engineering Asset Management (WCEAM 2015), 279–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27064-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yuan, Yijun Liu, and Qianqian Li. "Public Policy Simulation Based on Online Social Network: Case Study of Chinese Circuit Breaker Mechanism." In Communications in Computer and Information Science, 130–39. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2857-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szewczyk, Marcin, Tomasz Kuczek, Piotr Oramus, and Wojciech Piasecki. "Modeling of Repetitive Ignitions in Switching Devices: Case Studies on Vacuum Circuit Breaker and GIS Disconnector." In Lecture Notes in Electrical Engineering, 241–50. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11248-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vaghela, Chirag Kumar M., and Reena R. Trivedi. "Enhancement in mechanical strength of knob of molded case circuit breaker." In Technologies for Sustainable Development, 350–55. CRC Press, 2020. http://dx.doi.org/10.1201/9780429321573-62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shirurkar, Ajinkya, Yogesh Patil, and J. D. Davidson. "Study on extension springs hook geometry using FEA technique for moulded case circuit breaker." In Recent Advances in Materials, Mechanics and Management, 219–23. CRC Press, 2019. http://dx.doi.org/10.1201/9781351227544-38.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Molded Case Circuit Breaker"

1

Shea, J. J., and J. A. Bindas. "Measuring molded case circuit breaker resistance." In Electrical Contacts - 1992 Proceedings of the Thirty-Eighth IEEE Holm Conference on Electrical Contacts. IEEE, 1992. http://dx.doi.org/10.1109/holm.1992.246920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Xin, Yanjun Feng, Z. John Shen, and Slobodan Krstic. "Hybrid DC Molded Case Circuit Breaker Technology." In 2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM). IEEE, 2020. http://dx.doi.org/10.1109/hlm49214.2020.9307846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Ruiguang, Junxing Chen, Chunping Niu, Hao Sun, Zhexin Chen, and Mingliang Wu. "Simulation of arc characteristics in molded case circuit breaker." In TENCON 2013 - 2013 IEEE Region 10 Conference. IEEE, 2013. http://dx.doi.org/10.1109/tencon.2013.6718934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Babb, Mark, and Andrew Trusty. "A Balanced Approach to Molded Case Circuit Breaker Maintenance." In 2019 IEEE IAS Electrical Safety Workshop (ESW). IEEE, 2019. http://dx.doi.org/10.1109/esw41045.2019.9024751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Degui, Ruicheng Dai, Jingshu Zhang, and Weixiong Tong. "Dynamic Simulation of Operating Mechanism for Molded Case Circuit Breaker." In Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts. IEEE, 2007. http://dx.doi.org/10.1109/holm.2007.4318215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu-Min Kim, Sung-Hoon Cho, Kee-Joe Lim, Kil-Sou Kim, and Bong-Yun Jang. "Analysis on electromagnetic repulsion force in Molded Case Circuit Breaker." In 2011 1st International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE, 2011. http://dx.doi.org/10.1109/icepe-st.2011.6123012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Keewon, Hyun Woo Joo, Chae Yoon Bae, Jongung Choi, and Young Geun Kim. "3D Simulation of Air Arc in the Molded Case Circuit Breaker." In 2019 5th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE, 2019. http://dx.doi.org/10.1109/icepe-st.2019.8928799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palake, Sonali A., and Seema P. Diwan. "Nuisance Tripping Failure Modes and Corrective Actions in Molded Case Circuit Breaker." In 2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS). IEEE, 2020. http://dx.doi.org/10.1109/sceecs48394.2020.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Otsuka, T., K. Kojmna, and T. Okazaki. "Customer-oriented CIM Of molded-casb Circuit Breaker Business." In IEEE International Workshop on Emerging Technologies and Factory Automation,. IEEE, 1992. http://dx.doi.org/10.1109/etfa.1992.683246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Enami, Yoshiaki, and Masayoshi Sakata. "Simulation of arc in molded-case circuit breaker with metal vapor and moving electrode." In 2013 2nd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE, 2013. http://dx.doi.org/10.1109/icepe-st.2013.6804390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography