Journal articles on the topic 'Moisture retrieval depth'

To see the other types of publications on this topic, follow the link: Moisture retrieval depth.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Moisture retrieval depth.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Karthikeyan, Lanka, Ming Pan, Dasika Nagesh Kumar, and Eric F. Wood. "Effect of Structural Uncertainty in Passive Microwave Soil Moisture Retrieval Algorithm." Sensors 20, no. 4 (February 24, 2020): 1225. http://dx.doi.org/10.3390/s20041225.

Full text
Abstract:
Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture (SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth (VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this regard typically use the τ-ω types of models, which consist of two third-order polynomial equations and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is presented, along with two widely used existing analytical solutions. All three solutions are applied to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that, with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an era where the sensitivity of retrieval algorithms is still being researched, we believe the structural indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.
APA, Harvard, Vancouver, ISO, and other styles
2

Burke, E. J., W. J. Shuttleworth, and A. N. French. "Using vegetation indices for soil-moisture retrievals from passive microwave radiometry." Hydrology and Earth System Sciences 5, no. 4 (December 31, 2001): 671–78. http://dx.doi.org/10.5194/hess-5-671-2001.

Full text
Abstract:
Abstract. Surface soil moisture and the nature of the overlying vegetation both influence microwave emission from land surfaces significantly. One widely discussed but underused method for allowing for the effect of vegetation on soil-moisture retrievals from microwave observations is to use remotely sensed vegetation indices. This paper explores the potential for using the Normalised Difference Vegetation Index (NDVI) in soil-moisture retrievals from L-band (1.4 GHz) aircraft data gathered during the Southern Great Plains '97 (SGP97) experiment. A simplified version of MICRO-SWEAT, a soil vegetation atmosphere transfer (SVAT) scheme coupled with a microwave emission model, was used as the retrieval algorithm. Estimates of the optical depth of the vegetation, the parameter that describes the effect of the vegetation on microwave emission, were obtained by calibrating this retrieval algorithm against measurements of soil moisture at 15 field sites. A significant relationship was found between the optical depth so obtained and the observed NDVI at these sites, although this relationship changed with the resolution of the microwave brightness temperature observations used. Soil-moisture estimates made with the retrieval algorithm using the empirical relationship between optical depth and NDVI applied at two additional sites not used in the calibration show good agreement with field measurements. Keywords: NDVI, soil moisture, passive microwave, SGP97
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, William L., Elisabeth Weisz, Stanislav V. Kireev, Daniel K. Zhou, Zhenglong Li, and Eva E. Borbas. "Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances." Journal of Applied Meteorology and Climatology 51, no. 8 (August 2012): 1455–76. http://dx.doi.org/10.1175/jamc-d-11-0173.1.

Full text
Abstract:
AbstractA fast physically based dual-regression (DR) method is developed to produce, in real time, accurate profile and surface- and cloud-property retrievals from satellite ultraspectral radiances observed for both clear- and cloudy-sky conditions. The DR relies on using empirical orthogonal function (EOF) regression “clear trained” and “cloud trained” retrievals of surface skin temperature, surface-emissivity EOF coefficients, carbon dioxide concentration, cloud-top altitude, effective cloud optical depth, and atmospheric temperature, moisture, and ozone profiles above the cloud and below thin or broken cloud. The cloud-trained retrieval is obtained using cloud-height-classified statistical datasets. The result is a retrieval with an accuracy that is much higher than that associated with the retrieval produced by the unclassified regression method currently used in the International Moderate Resolution Imaging Spectroradiometer/Atmospheric Infrared Sounder (MODIS/AIRS) Processing Package (IMAPP) retrieval system. The improvement results from the fact that the nonlinear dependence of spectral radiance on the atmospheric variables, which is due to cloud altitude and associated atmospheric moisture concentration variations, is minimized as a result of the cloud-height-classification process. The detailed method and results from example applications of the DR retrieval algorithm are presented. The new DR method will be used to retrieve atmospheric profiles from Aqua AIRS, MetOp Infrared Atmospheric Sounding Interferometer, and the forthcoming Joint Polar Satellite System ultraspectral radiance data.
APA, Harvard, Vancouver, ISO, and other styles
4

Hain, Christopher R., John R. Mecikalski, and Martha C. Anderson. "Retrieval of an Available Water-Based Soil Moisture Proxy from Thermal Infrared Remote Sensing. Part I: Methodology and Validation." Journal of Hydrometeorology 10, no. 3 (June 1, 2009): 665–83. http://dx.doi.org/10.1175/2008jhm1024.1.

Full text
Abstract:
Abstract A retrieval of available water fraction ( fAW) is proposed using surface flux estimates from satellite-based thermal infrared (TIR) imagery and the Atmosphere–Land Exchange Inversion (ALEXI) model. Available water serves as a proxy for soil moisture conditions, where fAW can be converted to volumetric soil moisture through two soil texture dependents parameters—field capacity and permanent wilting point. The ability of ALEXI to provide valuable information about the partitioning of the surface energy budget, which can be largely dictated by soil moisture conditions, accommodates the retrieval of an average fAW over the surface to the rooting depth of the active vegetation. For this method, the fraction of actual to potential evapotranspiration ( fPET) is computed from an ALEXI estimate of latent heat flux and potential evapotranspiration (PET). The ALEXI-estimated fPET can be related to fAW in the soil profile. Four unique fPET to fAW relationships are proposed and validated against Oklahoma Mesonet soil moisture observations within a series of composite periods during the warm seasons of 2002–04. Using the validation results, the most representative of the four relationships is chosen and shown to produce reasonable (mean absolute errors values less than 20%) fAW estimates when compared to Oklahoma Mesonet observations. Quantitative comparisons between ALEXI and modeled fAW estimates from the Eta Data Assimilation System (EDAS) are also performed to assess the possible advantages of using ALEXI soil moisture estimates within numerical weather predication (NWP) simulations. This TIR retrieval technique is advantageous over microwave techniques because of the ability to indirectly sense fAW—and hence soil moisture conditions—extending into the root-zone layer. Retrievals are also possible over dense vegetation cover and are available on spatial resolutions on the order of the native TIR imagery. A notable disadvantage is the inability to retrieve fAW conditions through cloud cover.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Fei, Xuefeng Peng, Xiuwan Chen, Maolin Liu, and Liwen Xu. "Analysis of Key Issues on GNSS-R Soil Moisture Retrieval Based on Different Antenna Patterns." Sensors 18, no. 8 (August 1, 2018): 2498. http://dx.doi.org/10.3390/s18082498.

Full text
Abstract:
GNSS-R (Global Navigation Satellite System-Reflectometry) has been demonstrated to be a new and powerful tool to sense soil moisture in recent years. Multi-antenna pattern and single-antenna pattern have been proposed regarding how to receive and process reflected signals. Great efforts have been made concerning ground-based and air-borne observations. Meanwhile, a number of satellite-based missions have also been implemented. For the in-depth study of soil moisture remote sensing by the technique of GNSS-R, regardless of the extraction methods of the reflected signals or the types of the observation platform, three key issues have to be determined: The specular reflection point, the spatial resolution and the detection depth in the soil. However, in current literatures, there are no comprehensive explanations of the above three key issues. This paper conducts theoretical analysis and formula derivation, aiming to systematically and quantitatively determine the extent of soil moisture being detected in three dimensions from the above-mentioned aspects. To further explain how the three factors behave in the specific application, the results of two application scenarios are shown: (1) a ground-based GPS measurement in Marshall, Colorado, US from the Plate Boundary Observatory, corresponding to single-antenna pattern. The relative location of the specular reflection points, the average area of the First Fresnel Ellipse Clusters and the sensing depth of the time-series soil moisture are analyzed, and (2) an aviation experiment conducted in Zhengzhou to retrieve soil moisture content, corresponding to the multi-antenna pattern. The spatial distribution of soil moisture estimation with a certain resolution based on the flight tracks and the relevant sensing depth are manifested. For remote sensing using GNSS reflected signals, BeiDou is different from GPS mainly in the carrier frequency. Therefore, the results of this study can provide references for China’s future development of the BeiDou-R technique.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Lu, Shiming Xu, Jiping Liu, and Bin Wang. "On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data." Cryosphere 12, no. 3 (March 22, 2018): 993–1012. http://dx.doi.org/10.5194/tc-12-993-2018.

Full text
Abstract:
Abstract. The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With detailed analysis, we show that the error of the retrieval mainly arises from the difference between the modeled and the observed (SMOS) L-band brightness temperature (TB). The narrow swath and the limited coverage of the sea ice cover by altimetry is the potential source of error associated with the modeling of L-band TB and retrieval. The proposed retrieval methodology can be applied to the basin-scale retrieval of sea ice thickness and snow depth, using concurrent passive remote sensing and active laser altimetry based on satellites such as ICESat-2 and WCOM.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Shu-Wen, Xubin Zeng, Weidong Zhang, and Michael Barlage. "Revising the Ensemble-Based Kalman Filter Covariance for the Retrieval of Deep-Layer Soil Moisture." Journal of Hydrometeorology 11, no. 1 (February 1, 2010): 219–27. http://dx.doi.org/10.1175/2009jhm1146.1.

Full text
Abstract:
Abstract Previous studies have demonstrated that soil moisture in the top layers (e.g., within the top 1-m depth) can be retrieved by assimilating near-surface soil moisture observations into a land surface model using ensemble-based data assimilation algorithms. However, it remains a challenging issue to provide good estimates of soil moisture in the deep layers, because the error correlation between the surface and deep layers is low and hence is easily influenced by the physically limited range of soil moisture, probably resulting in a large noise-to-signal ratio. Furthermore, the temporally correlated errors between the surface and deep layers and the nonlinearity of the system make the retrieval even more difficult. To tackle these problems, a revised ensemble-based Kalman filter covariance method is proposed by constraining error covariance estimates in deep layers in two ways: 1) explicitly using the error covariance at the previous time step and 2) limiting the increase of the soil moisture error correlation with the increase of the vertical distance between the two layers. This method is then tested at three separate point locations representing different precipitation regimes. It is found that the proposed method can effectively control the abrupt changes of error covariance estimates between the surface layer and two deep layers. It significantly improves the estimates of soil moisture in the two deep layers with daily updating. For example, relative to the initial background error, after 150 daily updates, the error in the deepest layer reduces to 11.4%, 32.3%, and 27.1% at the wet, dry, and medium wetness locations, only reducing to 62.3%, 80.8%, and 47.5% with the original method, respectively. However, the improvement of deep-layer soil moisture retrieval is very slight when the updating frequency is reduced to once every three days.
APA, Harvard, Vancouver, ISO, and other styles
8

De Jeu, R. A. M., and M. Owe. "Further validation of a new methodology for surface moisture and vegetation optical depth retrieval." International Journal of Remote Sensing 24, no. 22 (January 2003): 4559–78. http://dx.doi.org/10.1080/0143116031000095934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vittucci, C., P. Ferrazzoli, Y. Kerr, P. Richaume, L. Guerriero, R. Rahmoune, and G. Vaglio Laurin. "SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates." Remote Sensing of Environment 180 (July 2016): 115–27. http://dx.doi.org/10.1016/j.rse.2016.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Al Bitar, Ahmad, Arnaud Mialon, Yann H. Kerr, François Cabot, Philippe Richaume, Elsa Jacquette, Arnaud Quesney, et al. "The global SMOS Level 3 daily soil moisture and brightness temperature maps." Earth System Science Data 9, no. 1 (June 6, 2017): 293–315. http://dx.doi.org/10.5194/essd-9-293-2017.

Full text
Abstract:
Abstract. The objective of this paper is to present the multi-orbit (MO) surface soil moisture (SM) and angle-binned brightness temperature (TB) products for the SMOS (Soil Moisture and Ocean Salinity) mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS) makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD) compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD) using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive) TB. The Level 3 SM V300 product is compared to the single-orbit (SO) retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM) are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an open licence and free of charge using a web application (https://www.catds.fr/sipad/). The RE04 products, versions 300 and 310, used in this paper are also available at ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/Land_products/GRIDDED/L3SM/RE04/.
APA, Harvard, Vancouver, ISO, and other styles
11

Gao, Ya, Maofang Gao, Liguo Wang, and Offer Rozenstein. "Soil Moisture Retrieval over a Vegetation-Covered Area Using ALOS-2 L-Band Synthetic Aperture Radar Data." Remote Sensing 13, no. 19 (September 29, 2021): 3894. http://dx.doi.org/10.3390/rs13193894.

Full text
Abstract:
Soil moisture (SM) plays a significant part in regional hydrological and meteorological systems throughout Earth. It is considered an indispensable state variable in earth science. The high sensitivity of microwave remote sensing to soil moisture, and its ability to function under all weather conditions at all hours of the day, has led to its wide application in SM retrieval. The aim of this study is to evaluate the ability of ALOS-2 data to estimate SM in areas with high vegetation coverage. Through the water cloud model (WCM), the article simulates the scene coupling between active microwave images and optical data. Subsequently, we use a genetic algorithm to optimize back propagation (GA-BP) neural network technology to retrieve SM. The vegetation descriptors of the WCM, derived from optical images, were the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the normalized multi-band drought index (NMDI). In the vegetation-covered area, 240 field soil samples were collected simultaneously with the ALOS-2 SAR overpass. Soil samples at two depths (0–10 cm, 20–30 cm) were collected at each sampling site. The backscattering of the ALOS-2 with the copolarization was found to be more sensitive to SM than the crosspolarization. In addition, the sensitivity of the soil backscattering coefficient to SM at a depth of 0–10 cm was higher than at a depth of 20–30 cm. At a 0–10 cm depth, the best results were the mean square error (MAE) of 2.248 vol%, the root mean square error (RMSE) of 3.146 vol%, and the mean absolute percentage error (MAPE) of 0.056 vol%, when the vegetation is described as by the NDVI. At a 20–30 cm depth, the best results were an MAE of 2.333 vol%, an RMSE of 2.882 vol%, a MAPE of 0.067 vol%, with the NMDI as the vegetation description. The use of the GA-BP NNs method for SM inversion presented in this paper is novel. Moreover, the results revealed that ALOS-2 data is a valuable source for SM estimation, and ALOS-2 L-band data was sensitive to SM even under vegetation cover.
APA, Harvard, Vancouver, ISO, and other styles
12

Nie, Yan, Ying Tan, Yuqin Deng, and Jing Yu. "Suitability Evaluation of Typical Drought Index in Soil Moisture Retrieval and Monitoring Based on Optical Images." Remote Sensing 12, no. 16 (August 11, 2020): 2587. http://dx.doi.org/10.3390/rs12162587.

Full text
Abstract:
As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.
APA, Harvard, Vancouver, ISO, and other styles
13

Burke, E. J., and L. P. Simmonds. "A simple parameterisation for retrieving soil moisture from passive microwave data." Hydrology and Earth System Sciences 5, no. 1 (March 31, 2001): 39–48. http://dx.doi.org/10.5194/hess-5-39-2001.

Full text
Abstract:
Abstract. MICRO-SWEAT, a physically based soil water and energy balance model coupled with a microwave emission model, was used to investigate the relationship between near surface soil moisture (θ0-5) and L-band microwave brightness temperature (TB) under a wide range of conditions. The effects of soil texture, look angle and vegetation on this relationship were parameterised and combined into a simple summary model relating θ0-5 to TB. This model retains much of the physical basis of MICRO-SWEAT but can be used in more data limiting circumstances. It was tested using a variety of truck-based L-band data sets collected between 1980 and 1982. This paper emphasises the need to have an accurate estimate of the vegetation optical depth (a parameter that describes the degree of influence of the vegetation on the microwave emission from the soil surface) in order to retrieve correctly the soil water content. Keywords: passive microwave, soil moisture, remote sensing, vegetation, retrieval algorithm
APA, Harvard, Vancouver, ISO, and other styles
14

Pfeil, Isabella, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, Peter Strauss, and Günter Blöschl. "Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate." Remote Sensing 10, no. 11 (November 11, 2018): 1788. http://dx.doi.org/10.3390/rs10111788.

Full text
Abstract:
Previous validation studies have demonstrated the accuracy of the Metop-A ASCAT soil moisture (SM) product, although over- and underestimation during different seasons of the year suggest a need for improving the retrieval algorithm. In this study, we analyzed whether adapting the vegetation characterization based on global parameters to regional conditions improves the seasonal representation of SM and vegetation optical depth ( τ ). SM and τ are retrieved from ASCAT using both a seasonal (mean climatological) and a dynamic vegetation characterization that allows for year-to-year changes. The retrieved SM and τ are compared with in situ and satellite SM, and with vegetation products (SMAP, AMSR2, and SPOT-VGT/PROBA-V). The study region is set in an agricultural area of Lower Austria that is characterized by heterogeneous land cover and topography, and features an experimental catchment equipped with a SM network (HOAL SoilNet). We found that a stronger vegetation correction within the SM retrieval improves the SM product considerably (increase of the Spearman correlation coefficient r s by 0.15 on average, and r s comparable to SMAP and AMSR2). The vegetation product derived with a dynamic vegetation characterization compares well to the reference datasets and reflects vegetation dynamics such as start and peak of season and harvest. Although some vegetation effects cannot be corrected by the adapted vegetation characterization, our results demonstrate the benefits of a parameterization optimized for regional conditions in this temperate climate zone.
APA, Harvard, Vancouver, ISO, and other styles
15

Wu, Xiaojing, and Jun Wen. "Recent Progress on Modeling Land Emission and Retrieving Soil Moisture on the Tibetan Plateau Based on L-Band Passive Microwave Remote Sensing." Remote Sensing 14, no. 17 (August 25, 2022): 4191. http://dx.doi.org/10.3390/rs14174191.

Full text
Abstract:
L-band passive microwave remote sensing (RS) is an important tool for monitoring global soil moisture (SM) and freeze/thaw state. In recent years, progress has been made in its in-depth application and development in the Tibetan Plateau (TP) which has a complex natural environment. This paper systematically reviews and summarizes the research progress and the main applications of L-band passive microwave RS observations and associated SM retrievals on the TP. The progress of observing and simulating L-band emission based on ground-, aircraft-based and spaceborne platforms, developing regional-scale SM observation networks, as well as validating satellite-based SM products and developing SM retrieval algorithms are reviewed. On this basis, current problems of L-band emission simulation and SM retrieval on the TP are outlined, such as the fact that current evaluations of SM products are limited to a short-term period, and evaluation and improvement of the forward land emission model and SM retrieval algorithm are limited to the site or grid scale. Accordingly, relevant suggestions and prospects for addressing the abovementioned existing problems are finally put forward. For future work, we suggest (i) sorting out the in situ observations and conducting long-term trend evaluation and analysis of current L-band SM products, (ii) extending current progress made at the site/grid scale to improve the L-band emission simulation and SM retrieval algorithms and products for both frozen and thawed ground at the plateau scale, and (iii) enhancing the application of L-band satellite-based SM products on the TP by implementing methods such as data assimilation to improve the understanding of plateau-scale water cycle and energy balance.
APA, Harvard, Vancouver, ISO, and other styles
16

Palm, Stephen P., Denise Hagan, Geary Schwemmer, and S. H. Melfi. "Inference of Marine Atmospheric Boundary Layer Moisture and Temperature Structure Using Airborne Lidar and Infrared Radiometer Data." Journal of Applied Meteorology 37, no. 3 (March 1, 1998): 308–24. http://dx.doi.org/10.1175/1520-0450-37.3.308.

Full text
Abstract:
Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.
APA, Harvard, Vancouver, ISO, and other styles
17

Park, Chang-Hwan, Thomas Jagdhuber, Andreas Colliander, Johan Lee, Aaron Berg, Michael Cosh, Seung-Bum Kim, Yoonjae Kim, and Volker Wulfmeyer. "Parameterization of Vegetation Scattering Albedo in the Tau-Omega Model for Soil Moisture Retrieval on Croplands." Remote Sensing 12, no. 18 (September 10, 2020): 2939. http://dx.doi.org/10.3390/rs12182939.

Full text
Abstract:
An accurate radiative transfer model (RTM) is essential for the retrieval of soil moisture (SM) from microwave remote sensing data, such as the passive microwave measurements from the Soil Moisture Active Passive (SMAP) mission. This mission delivers soil moisture products based upon L-band brightness temperature data, via retrieval algorithms for surface and root-zone soil moisture, the latter is retrieved using data assimilation and model support. We found that the RTM based on the tau-omega (τ-ω) model can suffer from significant errors over croplands in the simulation of brightness temperature (Tb) (in average between −9.4K and +12.0K for single channel algorithm (SCA); −8K and +9.7K for dual-channel algorithm (DCA)) if the vegetation scattering albedo (omega) is set constant and temporal variations are not considered. In order to reduce this uncertainty, we propose a time-varying parameterization of omega for the widely established zeroth order radiative transfer τ-ω model. The main assumption is that omega can be expressed by a functional relationship between vegetation optical depth (tau) and the Green Vegetation Fraction (GVF). Assuming allometry in the tau-omega relationship, a power-law function was established and it is supported by correlating measurements of tau and GVF. With this relationship, both tau and omega increase during the development of vegetation. The application of the proposed time-varying vegetation scattering albedo results in a consistent improvement for the unbiased root mean square error of 16% for SCA and 15% for DCA. The reduction for positive and negative biases was 45% and 5% for SCA and 26% and 12% for DCA, respectively. This indicates that vegetation dynamics within croplands are better represented by a time-varying single scattering albedo. Based on these results, we anticipate that the time-varying omega within the tau-omega model will help to mitigate potential estimation errors in the current SMAP soil moisture products (SCA and DCA). Furthermore, the improved tau-omega model might serve as a more accurate observation operator for SMAP data assimilation in weather and climate prediction model.
APA, Harvard, Vancouver, ISO, and other styles
18

Santi, E., S. Pettinato, S. Paloscia, P. Pampaloni, G. Macelloni, and M. Brogioni. "An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: Hydroalgo." Hydrology and Earth System Sciences Discussions 9, no. 3 (March 27, 2012): 3851–900. http://dx.doi.org/10.5194/hessd-9-3851-2012.

Full text
Abstract:
Abstract. A systematic and timely monitoring of land surface parameters that affect the hydrological cycle at local and global scales is of primary importance in obtaining a better understanding of geophysical processes and in managing environmental resources as well as natural disasters. Soil moisture and snow water equivalent are two quantities that play a major role in these applications. In this paper an algorithm (HydroAlgo) which is able to generate maps of snow depth (SD) and soil moisture content (SMC) from AMSR-E data has been developed and implemented within the framework of the JAXA ADEOS-II/AMSR-E and GCOM/AMSR-2 programs, as well as of a project of the Italian Space Agency that is devoted to civil protection from floods and landslides. As auxiliary output, the algorithm also generates maps of vegetation biomass (VB). An initial phase of pre-processing includes the improvement of spatial resolution, as well as masking for urban areas, water bodies, and dense vegetation. The algorithm was then split into two branches, the first of which focused on the retrieval of SMC and the second, on SD. Both parameters were retrieved using Artificial Neural Network (ANN) methods. The algorithm was calibrated using a wide set of experimental data collected on three sites: Mongolia and Australia (for SMC), and Siberia (for SD), integrated with model simulations. These results were then validated by comparing the algorithm outputs with experimental data collected on two additional sites: a part of a watershed in Northern Italy, and a large portion of Scandinavia. An additional test of the algorithm was also performed on a large scale, and included sites characterized by differing climatic and meteorological conditions.
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Sizhe, Qingyun Yan, Shuanggen Jin, Weimin Huang, Tiexi Chen, Yan Jia, Shuci Liu, and Qing Cao. "Soil Moisture Retrieval from the CyGNSS Data Based on a Bilinear Regression." Remote Sensing 14, no. 9 (April 19, 2022): 1961. http://dx.doi.org/10.3390/rs14091961.

Full text
Abstract:
Soil moisture (SM) has normally been estimated based on a linear relationship between SM and the surface reflectivity (Γ) from the spaceborne Global Navigation Satellite System (GNSS)-Reflectometry, while it usually relies on inputs of SM data without considering vegetation optical depth (VOD/τ) effects. In this study, a new scheme is proposed for retrieving soil moisture from the Cyclone GNSS (CyGNSS) data. The variation of CyGNSS-derived ΔΓ is modeled as a function of both variations in SM and VOD (ΔSM and Δτ). For retrieving SM, ancillary τ data can be obtained from the Soil Moisture Active Passive (SMAP) mission. In addition to this option, a model for simulating Δτ is suggested as an alternative. Experimental evaluation is performed for the time span from August 2019 to July 2021. Excellent agreements between the final retrievals and referenced SMAP SM products are achieved for both training (1-year period) and test (1-year duration) sets. On the whole, overall correlation coefficients (r) of 0.97 and 0.95 and root-mean-square errors (RMSEs) of 0.024 and 0.028 cm3/cm3 are obtained based on models using the SMAP and simulated Δτ, respectively. The model without τ generates an r of 0.95 and an RMSE of 0.031 cm3/cm3. The efficiency and necessity of considering τ are thus confirmed by its enhancement based on correlation and RMSE against the one without τ, and the usefulness of approximating Δτ by sinusoidal functions is also validated. Influences of SM statistics in terms of mean and variance on the retrieval accuracy are evaluated. This work unveils the interaction between CyGNSS data, SM, and τ and demonstrates the feasibility of integrating the Δτ approximation function into a bilinear regression model to obtain SM results.
APA, Harvard, Vancouver, ISO, and other styles
20

Santi, E., S. Pettinato, S. Paloscia, P. Pampaloni, G. Macelloni, and M. Brogioni. "An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo." Hydrology and Earth System Sciences 16, no. 10 (October 16, 2012): 3659–76. http://dx.doi.org/10.5194/hess-16-3659-2012.

Full text
Abstract:
Abstract. A systematic and timely monitoring of land surface parameters that affect the hydrological cycle at local and global scales is of primary importance in obtaining a better understanding of geophysical processes and in managing environmental resources as well as natural disasters. Soil moisture and snow water equivalent are two quantities that play a major role in these applications. In this paper an algorithm for hydrological purposes (called hereinafter HydroAlgo), which is able to generate maps of snow depth (SD) and soil moisture content (SMC) from AMSR-E data, has been developed and implemented within the framework of the JAXA ADEOS-II/AMSR-E and GCOM/AMSR-2 programs, as well as of a project of the Italian Space Agency that is devoted to civil protection from floods and landslides. As auxiliary output, the algorithm also generates maps of vegetation biomass (VB). An initial phase of pre-processing includes the improvement of spatial resolution, as well as masking for urban areas, water bodies, and dense vegetation. The algorithm was then split into two branches, the first of which focused on the retrieval of SMC and the second, on SD. Both parameters were retrieved using Artificial Neural Network (ANN) methods. The algorithm was calibrated using a wide set of experimental data collected on three sites: Mongolia and Australia (for SMC), and Siberia (for SD), integrated with model simulations. These results were then validated by comparing the algorithm outputs with experimental data collected on two additional sites: a part of a watershed in Northern Italy, and a large portion of Scandinavia. An additional test of the algorithm was also performed on a large scale, and included sites characterized by differing climatic and meteorological conditions.
APA, Harvard, Vancouver, ISO, and other styles
21

Chaubell, Julian, Simon Yueh, R. Scott Dunbar, Andreas Colliander, Dara Entekhabi, Steven K. Chan, Fan Chen, et al. "Regularized Dual-Channel Algorithm for the Retrieval of Soil Moisture and Vegetation Optical Depth From SMAP Measurements." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022): 102–14. http://dx.doi.org/10.1109/jstars.2021.3123932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Owe, M., R. de Jeu, and J. Walker. "A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index." IEEE Transactions on Geoscience and Remote Sensing 39, no. 8 (2001): 1643–54. http://dx.doi.org/10.1109/36.942542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rosolem, R., T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz. "Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale." Hydrology and Earth System Sciences 18, no. 11 (November 4, 2014): 4363–79. http://dx.doi.org/10.5194/hess-18-4363-2014.

Full text
Abstract:
Abstract. Above-ground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the sub-kilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a "nearly-identical twin" experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA. The performance of the Noah land surface model is compared with and without assimilation of observations at hourly intervals, as well as every 2 days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root-zone soil layers (0–100cm), despite the limited measurement depth of the sensor (estimated to be 12–20cm). The ability of Noah to reproduce a "true" soil moisture profile is remarkably good, regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutron observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at a relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties.
APA, Harvard, Vancouver, ISO, and other styles
24

Rosolem, R., T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz. "Assimilation of near-surface cosmic-ray neutrons improves summertime soil moisture profile estimates at three distinct biomes in the USA." Hydrology and Earth System Sciences Discussions 11, no. 5 (May 27, 2014): 5515–58. http://dx.doi.org/10.5194/hessd-11-5515-2014.

Full text
Abstract:
Abstract. Aboveground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the sub-kilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a "nearly-identical twin" experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA The performance of the Noah land surface model is compared without and with assimilation of observations at hourly intervals and every 2 days Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root zone soil layers (0–100 cm) despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a "true" soil moisture profile is remarkably good regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutrons observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties.
APA, Harvard, Vancouver, ISO, and other styles
25

Dabrowska-Zielinska, Katarzyna, Jan Musial, Alicja Malinska, Maria Budzynska, Radoslaw Gurdak, Wojciech Kiryla, Maciej Bartold, and Patryk Grzybowski. "Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery." Remote Sensing 10, no. 12 (December 7, 2018): 1979. http://dx.doi.org/10.3390/rs10121979.

Full text
Abstract:
The objective of the study was to estimate soil moisture (SM) from Sentinel-1 (S-1) satellite images acquired over wetlands. The study was carried out during the years 2015–2017 in the Biebrza Wetlands, situated in north-eastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to SM retrieval for a broad range of vegetation and soil moisture conditions. The methodology is based on research into the effect of vegetation on backscatter (σ°) changes under different soil moisture and Normalized Difference Vegetation Index (NDVI) values. The NDVI was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. It was found that the state of the vegetation expressed by NDVI can be described by the indices such as the difference between σ° VH and VV, or the ratio of σ° VV/VH, as calculated from the Sentinel-1 images in the logarithmic domain. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the newly developed models using Water Cloud Model (WCM) that includes the derived indices based on S-1, allowed the estimation of SM for wetlands with reasonable accuracy (10 vol. %). The developed soil moisture retrieval algorithms based on S-1 data are suited for wetland ecosystems, where soil moisture values are several times higher than in agricultural areas.
APA, Harvard, Vancouver, ISO, and other styles
26

Camps, Adriano, Alberto Alonso-Arroyo, Hyuk Park, Raul Onrubia, Daniel Pascual, and Jorge Querol. "L-Band Vegetation Optical Depth Estimation Using Transmitted GNSS Signals: Application to GNSS-Reflectometry and Positioning." Remote Sensing 12, no. 15 (July 22, 2020): 2352. http://dx.doi.org/10.3390/rs12152352.

Full text
Abstract:
At L-band (1–2 GHz), and particularly in microwave radiometry (1.413 GHz), vegetation has been traditionally modeled with the τ-ω model. This model has also been used to compensate for vegetation effects in Global Navigation Satellite Systems-Reflectometry (GNSS-R) with modest success. This manuscript presents an analysis of the vegetation impact on GPS L1 C/A (coarse acquisition code) signals in terms of attenuation and depolarization. A dual polarized instrument with commercial off-the-shelf (COTS) GPS receivers as back-ends was installed for more than a year under a beech forest collecting carrier-to-noise (C/N0) data. These data were compared to different ground-truth datasets (greenness, blueness, and redness indices, sky cover index, rain data, leaf area index or LAI, and normalized difference vegetation index (NDVI)). The highest correlation observed is between C/N0 and NDVI data, obtaining R2 coefficients larger than 0.85 independently from the elevation angle, suggesting that for beech forest, NDVI is a good descriptor of signal attenuation at L-band, which is known to be related to the vegetation optical depth (VOD). Depolarization effects were also studied, and were found to be significant at elevation angles as large as ~50°. Data were also fit to a simple τ-ω model to estimate a single scattering albedo parameter (ω) to try to compensate for vegetation scattering effects in soil moisture retrieval algorithms using GNSS-R. It is found that, even including dependence on the elevation angle (ω(θe)), at elevation angles smaller than ~67°, the ω(θe) model is not related to the NDVI. This limits the range of elevation angles that can be used for soil moisture retrievals using GNSS-R. Finally, errors of the GPS-derived position were computed over time to assess vegetation impact on the accuracy of the positioning.
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Jin, Linna Chai, Zheng Lu, Shaomin Liu, Yuquan Qu, Deyuan Geng, Yongze Song, et al. "Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas." Remote Sensing 11, no. 7 (April 2, 2019): 792. http://dx.doi.org/10.3390/rs11070792.

Full text
Abstract:
High-quality and long time-series soil moisture (SM) data are increasingly required for the Qinghai-Tibet Plateau (QTP) to more accurately and effectively assess climate change. In this study, to evaluate the accuracy and effectiveness of SM data, five passive microwave remotely sensed SM products are collected over the QTP, including those from the soil moisture active passive (SMAP), soil moisture and ocean salinity INRA-CESBIO (SMOS-IC), Fengyun-3B microwave radiation image (FY3B), and two SM products derived from the advanced microwave scanning radiometer 2 (AMSR2). The two AMSR2 products are generated by the land parameter retrieval model (LPRM) and the Japan Aerospace Exploration Agency (JAXA) algorithm, respectively. The SM products are evaluated through a two-stage data comparison method. The first stage is direct validation at the grid scale. Five SM products are compared with corresponding in situ measurements at five in situ networks, including Heihe, Naqu, Pali, Maqu, and Ngari. Another stage is indirect validation at the regional scale, where the uncertainties of the data are quantified by using a three-cornered hat (TCH) method. The results at the regional scale indicate that soil moisture is underestimated by JAXA and overestimated by LPRM, some noise is contained in temporal variations in SMOS-IC, and FY3B has relatively low absolute accuracy. The uncertainty of SMAP is the lowest among the five products over the entire QTP. In the SM map composed by five SM products with the lowest pixel-level uncertainty, 66.64% of the area is covered by SMAP (JAXA: 19.39%, FY3B: 10.83%, LPRM: 2.11%, and SMOS-IC: 1.03%). This study reveals some of the reasons for the different performances of these five SM products, mainly from the perspective of the parameterization schemes of their corresponding retrieval algorithms. Specifically, the parameterization configurations and corresponding input datasets, including the land-surface temperature, the vegetation optical depth, and the soil dielectric mixing model are analyzed and discussed. This study provides quantitative evidence to better understand the uncertainties of SM products and explain errors that originate from the retrieval algorithms.
APA, Harvard, Vancouver, ISO, and other styles
28

Calabia, Andres, Iñigo Molina, and Shuanggen Jin. "Soil Moisture Content from GNSS Reflectometry Using Dielectric Permittivity from Fresnel Reflection Coefficients." Remote Sensing 12, no. 1 (January 1, 2020): 122. http://dx.doi.org/10.3390/rs12010122.

Full text
Abstract:
Global Navigation Satellite Systems-Reflectometry (GNSS-R) has shown unprecedented advantages to sense Soil Moisture Content (SMC) with high spatial and temporal coverage, low cost, and under all-weather conditions. However, implementing an appropriated physical basis to estimate SMC from GNSS-R is still a challenge, while previous solutions were only based on direct comparisons, statistical regressions, or time-series analyses between GNSS-R observables and external SMC products. In this paper, we attempt to retrieve SMC from GNSS-R by estimating the dielectric permittivity from Fresnel reflection coefficients. We employ Cyclone GNSS (CYGNSS) data and effectively account for the effects of bare soil roughness (BSR) and vegetation optical depth by employing ICESat-2 (Ice, Cloud, and land Elevation Satellites 2) and/or SMAP (Soil Moisture Active Passive) products. The tests carried out with ICESat-2 BSR data have shown the high sensitivity in SMC retrieval to high BSR values, due to the high sensitivity of ICESat-2 to land surface microrelief. Our GNSS-R SMC estimates are validated by SMAP SMC products and the results provide an R-square of 0.6, Root Mean Squared Error (RMSE) of 0.05, and a zero p-value, for the 4568 test points evaluated at the eastern region of China during April 2019. The achieved results demonstrate the optimal capability and potential of this new method for converting reflectivity measurements from GNSS-R into Land Surface SMC estimates.
APA, Harvard, Vancouver, ISO, and other styles
29

Laguardia, G., and S. Niemeyer. "On the comparison between the LISFLOOD modelled and the ERS/SCAT derived soil moisture estimates." Hydrology and Earth System Sciences Discussions 5, no. 3 (June 3, 2008): 1227–65. http://dx.doi.org/10.5194/hessd-5-1227-2008.

Full text
Abstract:
Abstract. In order to evaluate the reliability of the soil moisture product obtained by means of the LISFLOOD hydrological model (De Roo et al., 2000), we compare it to soil moisture estimates derived from ERS scatterometer data (Wagner et al., 1999). Once calculated the root mean square error and the correlation between the two soil moisture time series on a pixel basis, we assess the fraction of variance that can be explained by a set of input parameter fields that vary from elevation and soil depth to rainfall statistics and missing or snow covered ERS images. The two datasets show good agreement over large regions, with 90% of the area having a positive correlation coefficient and 66% having a root mean square error minor than 0.5. Major inconsistencies are located in mountainous regions such as the Alps or Scandinavia where both the methodologies suffer from insufficiently resolved land surface processes at the given spatial resolution, as well as from limited availability of satellite data on the one hand and the uncertainties in meteorological data retrieval on the other hand.
APA, Harvard, Vancouver, ISO, and other styles
30

Karthikeyan, L., Ming Pan, Alexandra G. Konings, María Piles, Roberto Fernandez-Moran, D. Nagesh Kumar, and Eric F. Wood. "Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations." Remote Sensing of Environment 234 (December 2019): 111473. http://dx.doi.org/10.1016/j.rse.2019.111473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhou, Zhilan, Lei Fan, Gabrielle De De Lannoy, Xiangzhuo Liu, Jian Peng, Xiaojing Bai, Frédéric Frappart, et al. "Retrieval of High-Resolution Vegetation Optical Depth from Sentinel-1 Data over a Grassland Region in the Heihe River Basin." Remote Sensing 14, no. 21 (October 30, 2022): 5468. http://dx.doi.org/10.3390/rs14215468.

Full text
Abstract:
Vegetation optical depth (VOD), as a microwave-based estimate of vegetation water and biomass content, is increasingly used to study the impact of global climate and environmental changes on vegetation. However, current global operational VOD products have a coarse spatial resolution (~25 km), which limits their use for agriculture management and vegetation dynamics monitoring at regional scales (1–5 km). This study aims to retrieve high-resolution VOD from the C-band Sentinel-1 backscatter data over a grassland of the Heihe River Basin in northwestern China. The proposed approach used an analytical solution of a simplified Water Cloud Model (WCM), constrained by given soil moisture estimates, to invert VOD over grassland with 1 km spatial resolution during the 2018–2020 period. Our results showed that the VOD estimates exhibited large spatial variability and strong seasonal variations. Furthermore, the dynamics of VOD estimates agreed well with optical vegetation indices, i.e., the mean temporal correlations with normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and leaf area index (LAI) were 0.76, 0.75, and 0.75, respectively, suggesting that the VOD retrievals could precisely capture the dynamics of grassland.
APA, Harvard, Vancouver, ISO, and other styles
32

Maaß, N., L. Kaleschke, X. Tian-Kunze, and M. Drusch. "Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data." Cryosphere Discussions 7, no. 4 (July 23, 2013): 3627–74. http://dx.doi.org/10.5194/tcd-7-3627-2013.

Full text
Abstract:
Abstract. The microwave interferometric radiometer of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a snow layer on top of the ice. Here, we implement a snow layer in our emission model and investigate how snow influences L-band brightness temperatures and whether it is possible to retrieve snow thickness over thick Arctic sea ice from SMOS data. We find that the brightness temperatures above snow-covered sea ice are higher than above bare sea ice and that horizontal polarisation is more affected by the snow layer than vertical polarisation. In accordance with our theoretical investigations, the root mean square deviation between simulated and observed horizontally polarised brightness temperatures decreases from 20.0 K to 4.4 K, when we include the snow layer in the simulations. Under cold Arctic conditions we find brightness temperatures to increase with increasing snow thickness. Because dry snow is almost transparent in L-band, this brightness temperature's dependence on snow thickness origins from the thermal insulation of snow and its dependence on the snow layer thickness. This temperature effect allows us to retrieve snow thickness over thick sea ice. For the best simulation scenario and snow thicknesses up to 35 cm, the average snow thickness retrieved from horizontally polarised SMOS brightness temperatures agrees within 0.7 cm with the average snow thickness measured during the IceBridge flight campaign in the Arctic in spring 2012. The corresponding root mean square deviation is 6.3 cm, and the correlation coefficient is r2 = 0.55.
APA, Harvard, Vancouver, ISO, and other styles
33

Maaß, N., L. Kaleschke, X. Tian-Kunze, and M. Drusch. "Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data." Cryosphere 7, no. 6 (December 20, 2013): 1971–89. http://dx.doi.org/10.5194/tc-7-1971-2013.

Full text
Abstract:
Abstract. The microwave interferometric radiometer of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a snow layer on top of the ice. Here, we implement a snow layer in our emission model and investigate how snow influences L-band brightness temperatures and whether it is possible to retrieve snow thickness over thick Arctic sea ice from SMOS data. We find that the brightness temperatures above snow-covered sea ice are higher than above bare sea ice and that horizontal polarisation is more affected by the snow layer than vertical polarisation. In accordance with our theoretical investigations, the root mean square deviation between simulated and observed horizontally polarised brightness temperatures decreases from 20.9 K to 4.7 K, when we include the snow layer in the simulations. Although dry snow is almost transparent in L-band, we find brightness temperatures to increase with increasing snow thickness under cold Arctic conditions. The brightness temperatures' dependence on snow thickness can be explained by the thermal insulation of snow and its dependence on the snow layer thickness. This temperature effect allows us to retrieve snow thickness over thick sea ice. For the best simulation scenario and snow thicknesses up to 35 cm, the average snow thickness retrieved from horizontally polarised SMOS brightness temperatures agrees within 0.1 cm with the average snow thickness measured during the IceBridge flight campaign in the Arctic in spring 2012. The corresponding root mean square deviation is 5.5 cm, and the coefficient of determination is r2 = 0.58.
APA, Harvard, Vancouver, ISO, and other styles
34

Gluba, Łukasz, Mateusz Łukowski, Radosław Szlązak, Joanna Sagan, Kamil Szewczak, Helena Łoś, Anna Rafalska-Przysucha, and Bogusław Usowicz. "Spatio-Temporal Mapping of L-Band Microwave Emission on a Heterogeneous Area with ELBARA III Passive Radiometer." Sensors 19, no. 16 (August 7, 2019): 3447. http://dx.doi.org/10.3390/s19163447.

Full text
Abstract:
Water resources on Earth become one of the main concerns for society. Therefore, remote sensing methods are still under development in order to improve the picture of the global water cycle. In this context, the microwave bands are the most suitable to study land–water resources. The Soil Moisture and Ocean Salinity (SMOS), satellite mission of the European Space Agency (ESA), is dedicated for studies of the water in soil over land and salinity of oceans. The part of calibration/validation activities in order to improve soil moisture retrieval algorithms over land is done with ground-based passive radiometers. The European Space Agency L-band Microwave Radiometer (ELBARA III) located near the Bubnów wetland in Poland is capable of mapping microwave emissivity at the local scale, due to the azimuthal and vertical movement of the horn antenna. In this paper, we present results of the spatio-temporal mapping of the brightness temperatures on the heterogeneous area of the Bubnów test-site consisting of an area with variable organic matter (OM) content and different type of vegetation. The soil moisture (SM) was retrieved with the L-band microwave emission of the biosphere (L-MEB) model with simplified roughness parametrization (SRP) coupling roughness and optical depth parameters. Estimated soil moisture values were compared with in-situ data from the automatic agrometeorological station. The results show that on the areas with a relatively low OM content (4–6%—cultivated field) there was good agreement between measured and estimated SM values. Further increase in OM content, starting from approximately 6% (meadow wetland), caused an increase in bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE) values and a general drop in correlation coefficient (R). Despite a span of obtained R values, we found that time-averaged estimated SM using the L-MEB SRP approach strongly correlated with OM contents.
APA, Harvard, Vancouver, ISO, and other styles
35

Laguardia, G., and S. Niemeyer. "On the comparison between the LISFLOOD modelled and the ERS/SCAT derived soil moisture estimates." Hydrology and Earth System Sciences 12, no. 6 (December 12, 2008): 1339–51. http://dx.doi.org/10.5194/hess-12-1339-2008.

Full text
Abstract:
Abstract. In order to evaluate the reliability of the soil moisture product obtained by means of the LISFLOOD hydrological model (De Roo et al., 2000), we compare it to soil moisture estimates derived from ERS scatterometer data (Wagner et al., 1999b). Once evaluated the effect of scale mismatch, we calculate the root mean square error and the correlation between the two soil moisture time series on a pixel basis and we assess the fraction of variance that can be explained by a set of input parameter fields that vary from elevation and soil depth to rainfall statistics and missing or snow covered ERS images. The two datasets show good agreement over large regions, with 90% of the area having a positive correlation coefficient and 66% having a root mean square error minor than 0.5 pF units. Major inconsistencies are located in mountainous regions such as the Alps or Scandinavia where both the methodologies suffer from insufficiently resolved land surface processes at the given spatial resolution, as well as from limited availability of satellite data on the one hand and the uncertainties in meteorological data retrieval on the other hand.
APA, Harvard, Vancouver, ISO, and other styles
36

Sui, Mingming, Kun Chen, and Fei Shen. "Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals." Remote Sensing 14, no. 19 (October 4, 2022): 4955. http://dx.doi.org/10.3390/rs14194955.

Full text
Abstract:
Global Navigation Satellite System interferometric reflectometry (GNSS-IR), a new and inexpensive technique, has become available to the broader scientific community for detecting surface environmental information, such as soil moisture, snow depth and vegetation growth. However, there have been limited experiments focusing on the potential of crop height retrieval, especially the performance evaluation of BeiDou Navigation Satellite System (BDS) with other GNSS. Accuracy and reliability are challenging to achieve with traditional methods utilizing a single GNSS, and few measured verification data. In this study, an improved method that includes segmentation processing and multi-GNSS fusion is proposed based on GPS/GLONASS/Galileo/BDS multi-frequency data. Furthermore, experiments were carried out on a farmland in Fengqiu County, Henan Province, China. The results show that the height retrievals from four GNSS were in good agreement with the in situ observations during the whole growth cycle of the wheat after overwintering. Meanwhile, the retrievals based on the proposed method exhibited greater correspondence than the single frequency results, the correlation coefficient was increased and the root-mean-square error (RMSE) was reduced, respectively. Therefore, this study illustrates the feasibility of the proposed method to precisely estimate wheat height and its potential for use in the early warning of wheat lodging based on GNSS-IR.
APA, Harvard, Vancouver, ISO, and other styles
37

van der Schalie, Robin, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu. "Characterizing natural variability in complex hydrological systems using passive microwave-based climate data records: a case study for the Okavango Delta." Hydrology and Earth System Sciences 26, no. 13 (July 13, 2022): 3611–27. http://dx.doi.org/10.5194/hess-26-3611-2022.

Full text
Abstract:
Abstract. The Okavango River system in southern Africa is known for its strong interannual variability of hydrological conditions. Here, we present how this is exposed in surface soil moisture, land surface temperature, and vegetation optical depth as derived from the Land Parameter Retrieval Model, using an inter-calibrated, long-term, multi-sensor passive microwave satellite data record (1998–2020). We also investigate how these interannual variations relate to state-of-the-art climate reanalysis data from ERA5-Land. We analysed both the upstream river catchment and the Okavango delta, supported by independent data records of discharge measurements, precipitation, and vegetation dynamics observed by optical satellites. The seasonal vegetation optical depth anomalies have a strong correspondence with the MODIS leaf area index (correlation catchment: 0.74, delta: 0.88). Land surface temperature anomalies derived from passive microwave observations match best with those of ERA5-Land (catchment: 0.88, delta: 0.81) as compared to MODIS nighttime land surface temperature (LST) (catchment: 0.70, delta: 0.65). Although surface soil moisture anomalies from passive microwave observations and ERA5-Land correlate reasonably well (catchment: 0.72, delta: 0.69), an in-depth evaluation over the delta uncovered situations where passive microwave satellites record strong fluctuations, while ERA5-Land does not. This is further analysed using information on inundated area, river discharge, and precipitation. The passive microwave soil moisture signal demonstrates a response to both the inundated area and precipitation. ERA5-Land however, which, by default, does not account for any lateral influx from rivers, only shows a response to the precipitation information that is used as forcing. This also causes the reanalysis model to miss record low land surface temperature values as it underestimates the latent heat flux in certain years. These findings demonstrate the complexity of this hydrological system and suggest that future land surface model generations should also include lateral land surface exchange. Also, our study highlights the importance of maintaining and improving climate data records of soil moisture, vegetation, and land surface temperature from passive microwave observations and other observation systems.
APA, Harvard, Vancouver, ISO, and other styles
38

Schlenz, F., J. T. dall'Amico, W. Mauser, and A. Loew. "Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany." Hydrology and Earth System Sciences 16, no. 10 (October 5, 2012): 3517–33. http://dx.doi.org/10.5194/hess-16-3517-2012.

Full text
Abstract:
Abstract. Soil Moisture and Ocean Salinity (SMOS) L1c brightness temperature and L2 optical depth data are analysed with a coupled land surface (PROMET) and radiative transfer model (L-MEB). The coupled models are validated with ground and airborne measurements under contrasting soil moisture, vegetation and land surface temperature conditions during the SMOS Validation Campaign in May and June 2010 in the SMOS test site Upper Danube Catchment in southern Germany. The brightness temperature root-mean-squared errors are between 6 K and 9 K. The L-MEB parameterisation is considered appropriate under local conditions even though it might possibly be further optimised. SMOS L1c brightness temperature data are processed and analysed in the Upper Danube Catchment using the coupled models in 2011 and during the SMOS Validation Campaign 2010 together with airborne L-band brightness temperature data. Only low to fair correlations are found for this comparison (R between 0.1–0.41). SMOS L1c brightness temperature data do not show the expected seasonal behaviour and are positively biased. It is concluded that RFI is responsible for a considerable part of the observed problems in the SMOS data products in the Upper Danube Catchment. This is consistent with the observed dry bias in the SMOS L2 soil moisture products which can also be related to RFI. It is confirmed that the brightness temperature data from the lower SMOS look angles and the horizontal polarisation are less reliable. This information could be used to improve the brightness temperature data filtering before the soil moisture retrieval. SMOS L2 optical depth values have been compared to modelled data and are not considered a reliable source of information about vegetation due to missing seasonal behaviour and a very high mean value. A fairly strong correlation between SMOS L2 soil moisture and optical depth was found (R = 0.65) even though the two variables are considered independent in the study area. The value of coupled models as a tool for the analysis of passive microwave remote-sensing data is demonstrated by extending this SMOS data analysis from a few days during a field campaign to a longer term comparison.
APA, Harvard, Vancouver, ISO, and other styles
39

Schlenz, F., J. T. dall'Amico, W. Mauser, and A. Loew. "Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany." Hydrology and Earth System Sciences Discussions 9, no. 4 (April 20, 2012): 5389–436. http://dx.doi.org/10.5194/hessd-9-5389-2012.

Full text
Abstract:
Abstract. Soil Moisture and Ocean Salinity (SMOS) L1c brightness temperature and L2 optical depth data are analysed with a coupled land surface (PROMET) and radiative transfer model (L-MEB) that are used as tool for the analysis and validation of passive microwave satellite observations. The coupled models are validated with ground and airborne measurements under contrasting soil moisture, vegetation and temperature conditions during the SMOS Validation Campaign in May and June 2010 in the SMOS test site Upper Danube Catchment in Southern Germany with good results. The brightness temperature root-mean-squared errors are between 6 K and 9 K and can partly be attributed to a known bias in the airborne L-band measurements. The L-MEB parameterization is considered appropriate under local conditions even though it might possibly further be optimised. SMOS L1c brightness temperature data are processed and analysed in the Upper Danube Catchment using the coupled models in 2011 and during the SMOS Validation Campaign 2010 together with airborne L-band brightness temperature data. Only low to fair correlations are found for this comparison (R < 0.5). SMOS L1c brightness temperature data do not show the expected seasonal behaviour and are positively biased. It is concluded that RFI is responsible for most of the observed problems in the SMOS data products in the Upper Danube Catchment. This is consistent with the observed dry bias in the SMOS L2 soil moisture products which can also be related to RFI. It is confirmed that the brightness temperature data from the lower SMOS look angles are less reliable. This information could be used to improve the brightness temperature data filtering before the soil moisture retrieval. SMOS L2 optical depth values have been compared to modelled data and are not considered a reliable source of information about vegetation due to missing seasonal behaviour and a very high mean value. A fairly strong correlation between SMOS L2 soil moisture and optical depth was found (R = 0.65) even though the two variables are considered independent in the study area. The value of coupled models as a tool for the analysis of passive microwave remote sensing data is demonstrated by extending this SMOS data analysis from a few days during a field campaign to a long term comparison.
APA, Harvard, Vancouver, ISO, and other styles
40

Park, Jeil, Praveen Gurrala, Brian Hornbuckle, and Jiming Song. "Modeling the Microwave Transmissivity of Row Crops." Applied Computational Electromagnetics Society 36, no. 6 (August 6, 2021): 816–23. http://dx.doi.org/10.47037/2020.aces.j.360624.

Full text
Abstract:
We develop a method to model the microwave transmissivity of row crops that explicitly accounts for their periodic nature as well as multiple scattering. We hypothesize that this method could eventually be used to improve satellite retrieval of soil moisture and vegetation optical depth in agricultural regions. The method is characterized by unit cells terminated by periodic boundary conditions and Floquet port excitations solved using commercial software. Individual plants are represented by vertically oriented dielectric cylinders. We calculate canopy transmissivity, reflectivity, and loss in terms of S-parameters. We validate the model with analytical solutions and illustrate the effect of canopy scattering. Our simulation results are consistent with both simulated and measured data published in the literature.
APA, Harvard, Vancouver, ISO, and other styles
41

Hain, Christopher R., Wade T. Crow, Martha C. Anderson, and M. Tugrul Yilmaz. "Diagnosing Neglected Soil Moisture Source–Sink Processes via a Thermal Infrared–Based Two-Source Energy Balance Model." Journal of Hydrometeorology 16, no. 3 (May 27, 2015): 1070–86. http://dx.doi.org/10.1175/jhm-d-14-0017.1.

Full text
Abstract:
Abstract In recent years, increased attention has been paid to the role of previously neglected water source (e.g., irrigation, direct groundwater extraction, and inland water bodies) and sink (e.g., tile drainage) processes on the surface energy balance. However, efforts to parameterize these processes within land surface models (LSMs) have generally been hampered by a lack of appropriate observational tools for directly observing the impact(s) of such processes on surface energy fluxes. One potential strategy for quantifying these impacts are direct comparisons between bottom-up surface energy flux predictions from a one-dimensional, free-drainage LSM with top-down energy flux estimates derived via thermal infrared remote sensing. The neglect of water source (and/or sink) processes in the bottom-up LSM can be potentially diagnosed through the presence of systematic energy flux biases relative to the top-down remote sensing retrieval. Based on this concept, the authors introduce the Atmosphere–Land Exchange Inverse (ALEXI) Source–Sink for Evapotranspiration (ASSET) index derived from comparisons between ALEXI remote sensing latent heat flux retrievals and comparable estimates obtained from the Noah LSM, version 3.2. Comparisons between ASSET index values and known spatial variations of groundwater depth, irrigation extent, inland water bodies, and tile drainage density within the contiguous United States verify the ability of ASSET to identify regions where neglected soil water source–sink processes may be impacting modeled surface energy fluxes. Consequently, ASSET appears to provide valuable information for ongoing efforts to improve the parameterization of new water source–sink processes within modern LSMs.
APA, Harvard, Vancouver, ISO, and other styles
42

Carreno-Luengo, Hugo, Guido Luzi, and Michele Crosetto. "Above-Ground Biomass Retrieval over Tropical Forests: A Novel GNSS-R Approach with CyGNSS." Remote Sensing 12, no. 9 (April 26, 2020): 1368. http://dx.doi.org/10.3390/rs12091368.

Full text
Abstract:
An assessment of the National Aeronautics and Space Administration NASA’s Cyclone Global Navigation Satellite System (CyGNSS) mission for biomass studies is presented in this work on rain, coniferous, dry, and moist tropical forests. The main objective is to investigate the capability of Global Navigation Satellite Systems Reflectometry (GNSS-R) for biomass retrieval over dense forest canopies from a space-borne platform. The potential advantage of CyGNSS, as compared to monostatic Synthetic Aperture Radar (SAR) missions, relies on the increasing signal attenuation by the vegetation cover, which gradually reduces the coherent scattering component σ coh , 0 . This term can only be collected in a bistatic radar geometry. This point motivates the study of the relationship between several observables derived from Delay Doppler Maps (DDMs) with Above-Ground Biomass (AGB). This assessment is performed at different elevation angles θ e as a function of Canopy Height (CH). The selected biomass products are obtained from data collected by the Geoscience Laser Altimeter System (GLAS) instrument on-board the Ice, Cloud, and land Elevation Satellite (ICESat-1). An analysis based on the first derivative of the experimentally derived polynomial fitting functions shows that the sensitivity requirements of the Trailing Edge TE and the reflectivity Γ reduce with increasing biomass up to ~ 350 and ~ 250 ton/ha over the Congo and Amazon rainforests, respectively. The empirical relationship between TE and Γ with AGB is further evaluated at optimum angular ranges using Soil Moisture Active Passive (SMAP)-derived Vegetation Optical Depth ( VOD ), and the Polarization Index ( PI ). Additionally, the potential influence of Soil Moisture Content (SMC) is investigated over forests with low AGB.
APA, Harvard, Vancouver, ISO, and other styles
43

Heistermann, Maik, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, et al. "Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach." Earth System Science Data 14, no. 5 (June 1, 2022): 2501–19. http://dx.doi.org/10.5194/essd-14-2501-2022.

Full text
Abstract:
Abstract. Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, Chenyang, John J. Qu, Xianjun Hao, and Di Wu. "Monitoring Surface Soil Moisture Content over the Vegetated Area by Integrating Optical and SAR Satellite Observations in the Permafrost Region of Tibetan Plateau." Remote Sensing 12, no. 1 (January 3, 2020): 183. http://dx.doi.org/10.3390/rs12010183.

Full text
Abstract:
Surface soil moisture (SSM), the average water content of surface soil (up to 5 cm depth), plays a key role in the energy exchange within the ecosystem. We estimated SSM in areas with vegetation cover (grassland) by combining microwave and optical satellite measurements in the central Tibetan Plateau (TP) in 2015. We exploited TERRA moderate resolution imaging spectroradiometer (MODIS) and Sentinel-1A synthetic aperture radar (SAR) observations to estimate SSM through a simplified water-cloud model (sWCM). This model considers the impact of vegetation water content (VWC) to SSM retrieval by integrating the vegetation index (VI), the normalized difference water index (NDWI), or the normalized difference infrared index (NDII). Sentinel-1 SAR C-band backscattering coefficients, incidence angle, and NDWI/NDII were assimilated in the sWCM to monitor SSM. The soil moisture and temperature monitoring network on the central TP (CTP-SMTMN) measures SSM within the study area, and ground measurements were applied to train and validate the model. Via the proposed methods, we estimated the SSM in vegetated area with an R2 of 0.43 and a ubRMSE of 0.06 m3/m3 when integrating the NDWI and with an R2 of 0.45 and a ubRMSE of 0.06 m3/m3 when integrating the NDII.
APA, Harvard, Vancouver, ISO, and other styles
45

Quast, Raphael, Clément Albergel, Jean-Christophe Calvet, and Wolfgang Wagner. "A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations." Remote Sensing 11, no. 3 (February 1, 2019): 285. http://dx.doi.org/10.3390/rs11030285.

Full text
Abstract:
We present the application of a generic, semi-empirical first-order radiative transfer modelling approach for the retrieval of soil- and vegetation related parameters from coarse-resolution space-borne scatterometer measurements ( σ 0 ). It is shown that both angular- and temporal variabilities of ASCAT σ 0 measurements can be sufficiently represented by modelling the scattering characteristics of the soil-surface and the covering vegetation-layer via linear combinations of idealized distribution-functions. The temporal variations are modelled using only two dynamic variables, the vegetation optical depth ( τ ) and the nadir hemispherical reflectance (N) of the chosen soil-bidirectional reflectance distribution function ( B R D F ). The remaining spatial variabilities of the soil- and vegetation composition are accounted for via temporally constant parameters. The model was applied to series of 158 selected test-sites within France. Parameter estimates are obtained by using ASCAT σ 0 measurements together with auxiliary Leaf Area Index ( L A I ) and soil-moisture ( S M ) datasets provided by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land-surface model within the SURFEX modelling platform for a time-period from 2007–2009. The resulting parametrization was then used used to perform S M and τ retrievals both with and without the incorporation of auxiliary L A I and S M datasets for a subsequent time-period from 2010 to 2012.
APA, Harvard, Vancouver, ISO, and other styles
46

Royer, Alain, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois. "Review article: Performance assessment of radiation-based field sensors for monitoring the water equivalent of snow cover (SWE)." Cryosphere 15, no. 11 (November 4, 2021): 5079–98. http://dx.doi.org/10.5194/tc-15-5079-2021.

Full text
Abstract:
Abstract. Continuous and spatially distributed data of snow mass (water equivalent of snow cover, SWE) from automatic ground-based measurements are increasingly required for climate change studies and for hydrological applications (snow hydrological-model improvement and data assimilation). We present and compare four new-generation sensors, now commercialized, that are non-invasive and based on different radiations that interact with snow for SWE monitoring: cosmic-ray neutron probe (CRNP), gamma ray monitoring (GMON) scintillator, frequency-modulated continuous-wave radar (FMCW radar) at 24 GHz and global navigation satellite system (GNSS) receivers (GNSSr). All four techniques have relatively low power requirements, provide continuous and autonomous SWE measurements, and can be easily installed in remote areas. A performance assessment of their advantages, drawbacks and uncertainties is discussed from experimental comparisons and a literature review. Relative uncertainties are estimated to range between 9 % and 15 % when compared to manual in situ snow surveys that are also discussed. Results show the following. (1) CRNP can be operated in two modes of functioning: beneath the snow, it is the only system able to measure very deep snowpacks (> 2000 mm w.e.) with reasonable uncertainty across a wide range of measurements; CRNP placed above the snow allows for SWE measurements over a large footprint (∼ 20 ha) above a shallow snowpack. In both cases, CRNP needs ancillary atmospheric measurements for SWE retrieval. (2) GMON is the most mature instrument for snowpacks that are typically up to 800 mm w.e. Both CRNP (above snow) and GMON are sensitive to surface soil moisture. (3) FMCW radar needs auxiliary snow-depth measurements for SWE retrieval and is not recommended for automatic SWE monitoring (limited to dry snow). FMCW radar is very sensitive to wet snow, making it a very useful sensor for melt detection (e.g., wet avalanche forecasts). (4) GNSSr allows three key snowpack parameters to be estimated simultaneously: SWE (range: 0–1000 mm w.e.), snow depth and liquid water content, according to the retrieval algorithm that is used. Its low cost, compactness and low mass suggest a strong potential for GNSSr application in remote areas.
APA, Harvard, Vancouver, ISO, and other styles
47

DeSouza-Machado, Sergio, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang. "Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm." Atmospheric Measurement Techniques 11, no. 1 (January 25, 2018): 529–50. http://dx.doi.org/10.5194/amt-11-529-2018.

Full text
Abstract:
Abstract. One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.
APA, Harvard, Vancouver, ISO, and other styles
48

Min, Xiaoxiao, Yulin Shangguan, Jingyi Huang, Hongquan Wang, and Zhou Shi. "Relative Strengths Recognition of Nine Mainstream Satellite-Based Soil Moisture Products at the Global Scale." Remote Sensing 14, no. 12 (June 7, 2022): 2739. http://dx.doi.org/10.3390/rs14122739.

Full text
Abstract:
Soil moisture (SM) is a crucial driving variable for the global land surface-atmosphere water and energy cycle. There are now many satellite-based SM products available internationally and it is necessary to consider all available SM products under the same context for comprehensive assessment and inter-comparisons at the global scale. Moreover, product performances varying with dynamic environmental factors, especially those closely related to retrieval algorithms, were less investigated. Therefore, this study evaluated and identified the relative strengths of nine mainstream satellite-based SM products derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2), Chinese Fengyun-3B (FY3B), the Soil Moisture Active Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), and the European Space Agency (ESA) Climate Change Initiative (CCI) by using the Pearson correlation coefficient (R), R of SM seasonal anomalies (Ranom), unbiased Root Mean Square Error (ubRMSE), and bias metrics against ground observations from the International Soil Moisture Network (ISMN), as well as the Global Land Data Assimilation System (GLDAS) Noah model simulations, overall and under three dynamic (Land Surface Temperature (LST), SM, and Vegetation Optical Depth (VOD)) conditions. Results showed that the SMOS-INRA-CESBIO (IC) product outperformed the SMOSL3 product in most cases, especially in Australia, but it exhibited greater variability and higher random errors in Asia. ESA CCI products outperformed other products in capturing the spatial dynamics of SM seasonal anomalies and produced significantly high accuracy in croplands. Although the Chinese FY3B presented poor skills in most cases, it had a good ability to capture the temporal dynamics of the original SM and SM seasonal anomalies in most regions of central Africa. Under various land cover types, with the changes in LST, SM, and VOD, different products exhibited distinctly dynamic error characteristics. Generally, all products tended to overestimate the low in-situ SM content but underestimate the high in-situ SM content. It is expected that these findings can provide guidance and references for product improvement and application promotions in water exchange and land surface energy cycle.
APA, Harvard, Vancouver, ISO, and other styles
49

Hu, Jiheng, Yuyun Fu, Peng Zhang, Qilong Min, Zongting Gao, Shengli Wu, and Rui Li. "Satellite Retrieval of Microwave Land Surface Emissivity under Clear and Cloudy Skies in China Using Observations from AMSR-E and MODIS." Remote Sensing 13, no. 19 (October 5, 2021): 3980. http://dx.doi.org/10.3390/rs13193980.

Full text
Abstract:
Microwave land surface emissivity (MLSE) is an important geophysical parameter to determine the microwave radiative transfer over land and has broad applications in satellite remote sensing of atmospheric parameters (e.g., precipitation, cloud properties), land surface parameters (e.g., soil moisture, vegetation properties), and the parameters of interactions between atmosphere and terrestrial ecosystem (e.g., evapotranspiration rate, gross primary production rate). In this study, MLSE in China under both clear and cloudy sky conditions was retrieved using satellite passive microwave measurements from Aqua Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), combined with visible/infrared observations from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere reanalysis dataset of ERA-20C. Attenuations from atmospheric oxygen and water vapor, as well as the emissions and scatterings from cloud particles are taken into account using a microwave radiation transfer model to do atmosphere corrections. All cloud parameters needed are derived from MODIS visible and infrared instantaneous measurements. Ancillary surface skin temperature as well as atmospheric temperature-humidity profiles are collected from ECMWF reanalysis data. Quality control and sensitivity analyses were conducted for the input variables of surface skin temperature, air temperature, and atmospheric humidity. The ground-based validations show acceptable biases of primary input parameters (skin temperature, 2 m air temperature, near surface relative humidity, rain flag) for retrieving using. The subsequent sensitivity tests suggest that 10 K bias of skin temperature or observed brightness temperature may result in a 4% (~0.04) or 7% (0.07) retrieving error in MLSE at 23.5 GHz. A nonlinear sensitivity in the same magnitude is found for air temperature perturbation, while the sensitivity is less than 1% for 300 g/m2 error in cloud water path. Results show that our algorithm can successfully retrieve MLSE over 90% of the satellite detected land surface area in a typical cloudy day (cloud fraction of 64%), which is considerably higher than that of the 29% area by the clear-sky only algorithms. The spatial distribution of MLSE in China is highly dependent on the land surface types and topography. The retrieved MLSE is assessed by compared with other existing clear-sky AMSR-E emissivity products and the vegetation optical depth (VOD) product. Overall, high consistencies are shown for the MLSE retrieved in this study with other AMSR-E emissivity products across China though noticeable discrepancies are observed in Tibetan Plateau and Qinling-Taihang Mountains due to different sources of input skin temperature. In addition, the retrieved MLSE exhibits strong positive correlations in spatial patterns with microwave vegetation optical depth reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
50

Moesinger, Leander, Wouter Dorigo, Richard de Jeu, Robin van der Schalie, Tracy Scanlon, Irene Teubner, and Matthias Forkel. "The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)." Earth System Science Data 12, no. 1 (January 30, 2020): 177–96. http://dx.doi.org/10.5194/essd-12-177-2020.

Full text
Abstract:
Abstract. Since the late 1970s, space-borne microwave radiometers have been providing measurements of radiation emitted by the Earth’s surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-based indicator related to the density, biomass, and water content of vegetation. Because of its high temporal resolution and long availability, VOD can be used to monitor short- to long-term changes in vegetation. However, studying long-term VOD dynamics is generally hampered by the relatively short time span covered by the individual microwave sensors. This can potentially be overcome by merging multiple VOD products into a single climate data record. However, combining multiple sensors into a single product is challenging as systematic differences between input products like biases, different temporal and spatial resolutions, and coverage need to be overcome. Here, we present a new series of long-term VOD products, the VOD Climate Archive (VODCA). VODCA combines VOD retrievals that have been derived from multiple sensors (SSM/I, TMI, AMSR-E, WindSat, and AMSR2) using the Land Parameter Retrieval Model. We produce separate VOD products for microwave observations in different spectral bands, namely the Ku-band (period 1987–2017), X-band (1997–2018), and C-band (2002–2018). In this way, our multi-band VOD products preserve the unique characteristics of each frequency with respect to the structural elements of the canopy. Our merging approach builds on an existing approach that is used to merge satellite products of surface soil moisture: first, the data sets are co-calibrated via cumulative distribution function matching using AMSR-E as the scaling reference. To do so, we apply a new matching technique that scales outliers more robustly than ordinary piecewise linear interpolation. Second, we aggregate the data sets by taking the arithmetic mean between temporally overlapping observations of the scaled data. The characteristics of VODCA are assessed for self-consistency and against other products. Using an autocorrelation analysis, we show that the merging of the multiple data sets successfully reduces the random error compared to the input data sets. Spatio-temporal patterns and anomalies of the merged products show consistency between frequencies and with leaf area index observations from the MODIS instrument as well as with Vegetation Continuous Fields from the AVHRR instruments. Long-term trends in Ku-band VODCA show that since 1987 there has been a decline in VOD in the tropics and in large parts of east-central and north Asia, while a substantial increase is observed in India, large parts of Australia, southern Africa, southeastern China, and central North America. In summary, VODCA shows vast potential for monitoring spatial–temporal ecosystem changes as it is sensitive to vegetation water content and unaffected by cloud cover or high sun zenith angles. As such, it complements existing long-term optical indices of greenness and leaf area. The VODCA products (Moesinger et al., 2019) are open access and available under Attribution 4.0 International at https://doi.org/10.5281/zenodo.2575599.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography