Academic literature on the topic 'Moisture Loss'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Moisture Loss.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Moisture Loss"
Branson, Richard D. "Preventing Moisture Loss From Intubated Patients." Clinical Pulmonary Medicine 7, no. 4 (July 2000): 187–98. http://dx.doi.org/10.1097/00045413-200007040-00004.
Full textWang, J., R. K. Dhir, and M. Levitt. "Membrane curing of concrete: Moisture loss." Cement and Concrete Research 24, no. 8 (1994): 1463–74. http://dx.doi.org/10.1016/0008-8846(94)90160-0.
Full textMullinix, Benjamin, Bryan Maw, and Steve Lahue. "Modelling Moisture Loss of Onions in Storage Using Moisture Loss Information Obtained from Individually Measured Onions." HortScience 32, no. 4 (July 1997): 598A—598. http://dx.doi.org/10.21273/hortsci.32.4.598a.
Full textDINCER, IBRAHIM. "Moisture Loss from Wood Products During Drying—Part I: Moisture Diffusivities and Moisture Transfer Coefficients." Energy Sources 20, no. 1 (January 1998): 67–75. http://dx.doi.org/10.1080/00908319808970044.
Full textRao, Sudhakar M., and Monica Rekapalli. "Examining Thermodynamic Changes During Soil Moisture Loss." Geotechnical and Geological Engineering 39, no. 5 (February 17, 2021): 4009–16. http://dx.doi.org/10.1007/s10706-021-01739-6.
Full textSavel’ev, Yu A., O. N. Kuharev, N. P. Larjushin, P. A. Ishkin, and Yu M. Dobrynin. "Soil moisture loss reduction owing to evaporation." Agricultural machinery and technologies 12, no. 1 (March 16, 2018): 42–47. http://dx.doi.org/10.22314/2073-7599-2018-12-1-42-47.
Full textS. E. Prussia, R. L. Shewfelt, M. S. Chinnan, and R. B. Beverly. "MOISTURE LOSS EFFECTS ON SOUTHERN PEA COLOR." Transactions of the ASAE 33, no. 5 (1990): 1633. http://dx.doi.org/10.13031/2013.31519.
Full textMaw, B. W., and B. G. Mullinix. "Moisture loss of sweet onions during curing." Postharvest Biology and Technology 35, no. 2 (February 2005): 223–27. http://dx.doi.org/10.1016/j.postharvbio.2004.04.008.
Full textDINCER, IBRAHIM. "Moisture Loss from Wood Products During Drying—Part II: Surface Moisture Content Distributions." Energy Sources 20, no. 1 (January 1998): 77–83. http://dx.doi.org/10.1080/00908319808970045.
Full textHossain, MA, MA Awal, MR Ali, and MM Alam. "Use of moisture meter on the post-harvest loss reduction of rice." Progressive Agriculture 27, no. 4 (April 10, 2017): 511–16. http://dx.doi.org/10.3329/pa.v27i4.32141.
Full textDissertations / Theses on the topic "Moisture Loss"
Tickes, Barry R. "Moisture Loss from Uncovered Stored Alfalfa." College of Agriculture, University of Arizona (Tucson, AZ), 1990. http://hdl.handle.net/10150/201021.
Full textTheron, Jacobus Adriaan. "Moisture loss studies in Japanese plums (Prunus salicina Lindl.)." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97918.
Full textENGLISH ABSTRACT: The export of Japanese plums from South Africa is challenging. Exporting late season plums require fruit to last as long as 8 weeks in cold-storage. Prolonged storage periods can cause some cultivars to develop a shrivelled appearance due to moisture loss. Moisture loss from perishable commodities manifests mainly as shrivelling due to a loss in the turgidity of the surface cells of the fruit, or weight loss. ‘African DelightTM’ (highly susceptible to shrivel), ‘Laetitia’ (shrivel susceptible), ‘Sapphire’ (shrivel susceptible) and ‘Songold’ (not shrivel susceptible) plums were investigated by means of fluorescent microscopy for cracks and openings in the fruit peel. Only ‘African DelightTM’ had open hairline cracks in its peel, and fruit with wider cracks were associated with higher water vapour permeabilities. Open lenticels were found in the peels of ‘African DelightTM’, ‘Laetitia’ and ‘Sapphire’ plums. For ‘Songold’ no peel cracking or open lenticels were observed. The fact that the cuticle of this cultivar is mostly intact may be the reason why it is not susceptible to postharvest shrivel manifestation. The water vapour permeance of the fruit peel determines how easily fruit lose moisture. In this study it was determined to what extent fruit, trees, orchards, harvest date and cultivar contribute to the total variation in plum peel water vapour permeability. The permeabilities of ‘African DelightTM’, ‘Laetitia’, and ‘Songold’ were determined weekly from 4 weeks before harvest until post optimum maturity. Fruit to fruit variation made the largest contribution towards the total variation (> 45%), followed by harvest date (> 20%) and orchard (> 15%) effects. The permeability across all cultivars increased two-fold as fruit became over mature. The contribution of cultivar differences to fruit peel permeability varied greatly between seasons (42% in 2013/2014 and 5% in 2014/2015). Differences between cultivars may include cuticle thickness and composition, micro cracks in the peel and/or open lenticels. Current handling protocols suggest that fruit should be cooled as soon as possible after harvest, but this is not always possible. ‘African DelightTM’ plums were exposed to various handling scenarios in order to determine the handling protocol with the least risk of moisture loss. The control consisted of packaging and cooling the fruit within 6 h of harvest. Fruit quality was comparable or even better than the control when the fruit were pre-cooled to 0 °C and 15 °C for up to 72 h. High vapour pressure deficits caused fruit to lose more moisture, especially when fruit were exposed to ambient temperatures for 48 h and 72 h. It is recommended that handling protocols for plums should be followed stringently in order to reduce mass loss and shrivel manifestation. Since other studies found that silicate (Si) has positive effects on fruit quality, we applied potassium silicate preharvest to ‘African DelightTM’ trees. However, we did not find significant differences between treatments regarding crack width or crack incidence in the fruit peel, shrivel, decay, internal browning, gel breakdown or aerated tissue levels. Currently preharvest potassium silicate applications are not recommended to improve plum quality.
AFRIKAANSE OPSOMMING: Die uitvoer van die Japanese pruime uit Suid-Afrika is 'n uitdaging, omrede daar verwag word dat laatseisoen kultivars tot 8 weke in koelopberging moet bly. Lang opbergingsperiodes veroorsaak dat sommige kultivars 'n verrimpelde voorkoms ontwikkel a.g.v. vogverlies. Vogverlies uit vars produkte manifesteer hoofsaaklik as verrimpeling a.g.v. 'n verlies in die turgiditeit van die selle in en onder die vrugskil, en as massaverlies. ‘African DelightTM’ (hoogs vatbaar vir verrimpeling), ‘Laetitia’ (vatbaar vir verrimpeling), ‘Sapphire’ (vatbaar vir verrimpeling) en ‘Songold’ (nie vatbaar vir verrimpeling) pruime is ondersoek deur middel van fluoressensie mikroskopie vir krake en openinge in die vrugskil. Slegs ‘African DelightTM’ het oop haarlyn krake in sy skil gehad en vrugte met wyer krake het ʼn hoër waterdamp deurlaatbaarheid gehad. Oop lentiselle is gevind in die skille van ‘African DelightTM’, ‘Laetitia’ en ‘Sapphire’ pruime. ‘Songold’ het geen krake of oop lentiselle getoon nie. Die feit dat ‘Songold’ se kutikula meestal ongeskonde was, mag die rede wees waarom hierdie kultivar nie vatbaar vir verrimpeling is nie. Die waterdamp deurlaatbaarheid van 'n vrugskil bepaal hoe maklik vrugte vog verloor. In hierdie studie is bepaal tot watter mate vrugte, bome, boorde, oesdatum en kultivar bydra tot die totale variasie in die pruimskil se waterdamp deurlaatbaarheid. Die deurlaatbaarheid van ‘African DelightTM’, ‘Laetitia’, en ‘Songold’ is weekliks bepaal vanaf 4 weke voor die verwagte oesdatum tot die vrugte oorryp was. Vrug tot vrug variasie het die grootste bydrae tot die totale variasie gemaak (> 45%), gevolg deur oesdatum (> 20%) en boord (> 15%). Die skildeurlaatbaarheid van al die kultivars het verdubbel in die tyd van net voor oes tot die vrugte oorryp was. Die kultivar se bydrae tot die deurlaatbaarheid van die vrugskil het baie gewissel tussen seisoene (42% in 2013/2014 en 5% in 2014/2015). Verskille in skil-deurlaatbaarheid tussen kultivars kan kutikula-dikte en -samestelling, mikro-krake in die skil en/of oop lentiselle insluit. Huidige hanteringsprotokolle stel voor dat vrugte so spoedig moontlik afgekoel word na oes, maar dit is nie altyd moontlik nie. In hierdie studie is 'African DelightTM' pruime is blootgestel aan verskeie hantering scenario's om die hanteringsprotokol met die laagste risiko vir vogverlies te bepaal. Die kontrole vrugte is gepak en onder geforseerde verkoeling geplaas binne 6 ure na oes. Vrugkwaliteit was vergelykbaar of selfs beter in vergelyking met die kontrole wanneer die vrugte voorverkoel is tot 0 °C en 15 °C vir tot 72 uur. Hoë dampdrukverskille het veroorsaak dat vrugte meer vog verloor, veral wanneer vrugte aan kamertemperatuur blootgestel was vir 48 h en 72 h na oes. Dit word aanbeveel dat hanteringsprotokolle vir pruime streng gevolg moet word om massaverlies en verrimpeling te beperk. Aangesien ander studies gevind het dat silikaat (Si) ‘n positiewe uitwerking op vrugkwaliteit het, het ons kaliumsilikaat vooroes aan ‘African DelightTM’ bome toegedien. Daar was egter geen beduidende verskille tussen behandelings met betrekking tot kraakbreedte of kraakvoorkoms in die vrugskil of t.o.v. gehalte eienskappe soos die voorkoms van verrimpeling, bederf, interne verbruining, gelverval of deurlugte weefsel nie. Tans word voor-oes kaliumsilikaat spuite nie aanbeveel om pruimkwaliteit te verbeter nie.
Bellett-Travers, David Marcus. "Water relations and soil moisture requirements of transplanted amenity trees during establishment." Thesis, University of Hertfordshire, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251544.
Full textBell, P. "Heat and moisture transfer through cavity wall constructions under simulated winter conditions." Thesis, University of Salford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374500.
Full textArepalli, Uma Maheswar. "A Study of Moisture Induced Material Loss of Hot Mix Asphalt (HMA)." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/409.
Full textAbdullah, Wan Mohammad H. W. "The effect of moisture loss on the mechanical and sensory properties of carrots." Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239066.
Full textNgcobo, Mduduzi Elijah Khulekani. "Resistance to airflow and moisture loss of table grapes inside multi-scale packaging." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80192.
Full textENGLISH ABSTRACT: Postharvest quality of fresh table grapes is usually preserved through cooling using cold air. However, cooling efficiencies are affected by the multi-scale packaging that is commercially used for handling grapes after harvest. There is usually spatial temperature variability of grapes that often results in undesirable quality variations during postharvest handling and marketing. This heterogeneity of grape berry temperature inside multi-packages is largely due to uneven cold airflow patterns that are caused by airflow resistance through multi-package components. The aims of this study were therefore to conduct an in-depth experimental investigation of the contribution of grape multi-packaging components to total airflow resistance, cooling rates and patterns of grapes inside the different commercially used multi-packages, and to assess the effects of these multi-packages on table grape postharvest quality attributes. A comprehensive study of moisture loss from grapes during postharvest storage and handling, as well as a preliminary investigation of the applicability of computational fluid dynamics (CFD) modeling in predicting the transport phenomena of heat and mass transfer of grapes during cooling and cold storage in multi-packages were included in this study. Total pressure drop through different table grapes packages were measured and the percentage contribution of each package component and the fruit bulk were determined. The liner films contributed significantly to total pressure drop for all the package combinations studied, ranging from 40.33±1.15% for micro-perforated liner film to 83.34±2.13 % for non-perforated liner film. The total pressure drop through the grape bulk (1.40±0.01 % to 9.41±1.23 %) was the least compared to the different packaging combinations with different levels of liner perforation. The cooling rates of grapes in the 4.5 kg multi-packaging were significantly (P<0.05) slower than that of grapes in 5 kg punnet multi-packaging, where the 4.5 kg box resulted in a seven-eighths cooling time of 30.30-46.14% and 12.69-25.00% more than that of open-top and clamshell punnet multi-packages, respectively. After 35 days in cold storage at -0.5°C, grape bunches in the 5 kg punnet box combination (open-top and clamshell) had weight loss of 2.01 – 3.12%, while the bunches in the 4.5 kg box combination had only 1.08% weight loss. During the investigation of the effect of different carton liners on the cooling rate and quality attributes of ‘Regal seedless’ table grapes in cold storage, the non-perforated liner films maintained relative humidity (RH) close to 100 %. This high humidity inside non-perforated liner films resulted in delayed loss of stem quality but significantly (P ≤ 0.05) increased the incidence of SO2 injury and berry drop during storage compared to perforated liners. The perforated liners improved fruit cooling rates but significantly (P ≤ 0.05) reduced RH. The low RH in perforated liners also resulted in an increase in stem dehydration and browning compared to non-perforated liners. The moisture loss rate from grapes packed in non-perforated liner films was significantly (P<0.05) lower compared to the moisture loss rate from grapes packed in perforated liner films (120 x 2 mm and 36 x 4 mm). The effective moisture diffusivity values for stem parts packed in non-perforated liner films were lower than the values obtained for stem parts stored without packaging liners, and varied from 5.06x10-14 to 1.05x10-13 m2s-1. The dehydration rate of stem parts was inversely proportional to the size (diameter) of the stem parts. Dehydration rate of stems exposed (without liners) to circulating cold air was significantly (P<0.05) higher than the dehydration rates of stems packed in non-perforated liner film. Empirical models were successfully applied to describe the dehydration kinetics of the different parts of the stem. The potential of cold storage humidification in reducing grape stem dehydration was investigated. Humidification delayed and reduced the rate of stem dehydration and browning; however, it increased SO2 injury incidence on table grape bunches and caused wetting of the packages. The flow phenomenon during cooling and handling of packed table grapes was also studied using a computational fluid dynamic (CFD) model and validated using experimental results. There was good agreement between measured and predicted results. The result demonstrated clearly the applicability of CFD models to determine optimum table grape packaging and cooling procedures.
AFRIKAANSE OPSOMMING: Naoes kwaliteit van vars tafeldruiwe word gewoonlik behou deur middel van verkoeling van die produk met koue lug. Ongelukkig word die effektiwiteit van dié verkoeling beïnvloed deur die multivlakverpakking wat kommersieel gebruik word vir die naoes hantering van druiwe. Daar is gewoonlik ruimtelike variasie in die temperatuur van die druiwe wat ongewenste variasie in die kwaliteit van die druiwe veroorsaak tydens naoes hantering en bemarking. Die heterogene druiwetemperature binne die multivlakverpakkings word grootliks veroorsaak deur onegalige lugvloeipatrone van die koue lug as gevolg van die weerstand wat die verskillende komponente van die multivlakverpakkings teen lugvloei bied. Die doel van hierdie studie was dus om ‘n indiepte eksperimentele ondersoek te doen om die bydrae van multivlakverpakking op totale lugvloeiweerstand, verkoelingstempo’s en –patrone van druiwe binne kommersieël gebruikte multivlakverpakkings te ondersoek, asook die effek van die multivalkverpakking op die naoes kwaliteit van druiwe te bepaal. ‘n Omvattende studie van vogverlies van druiwe tydens naoes opberging en hantering, asook ‘n voorlopige ondersoek na die bruikbaarheid van ‘n berekende vloei dinamika (BVD) model om die bewegingsfenomeen van hitte en massa oordrag van druiwe tydens verkoeling en koelopberging in multivlakverpakkings te voorspel, was ook by die studie ingesluit. Die totale drukverskil deur verskillende tafeldruif verpakkingssisteme is gemeet en die persentasie wat deur elke verpakkingskomponent en die vruglading bygedra is, is bereken. Van al die verpakkingskombinasies wat gemeet is, het die voeringfilms betekenisvol tot die totale drukverskil bygedra, en het gewissel van 40.33±1.15% vir die mikro geperforeerde voeringfilm tot 83.34±2.13 % vir die nie-geperforeerde voeringfilm. Die totale drukverskil oor die druiflading (1.40±0.01 % to 9.41±1.23 %) was die minste in vergelyking met die verskillende verpakkingskombinasies met die verskillende vlakke van voeringperforasies. Die verkoelingstempos van die druiwe in die 4.5 kg multiverpakking was betekenisvol (P<0.05) stadiger as vir die druiwe in die 5 kg handmandjie (‘punnet’) multiverpakking. Die 4.5 kg karton het ‘n seweagstes verkoelingstyd van 30.30-46.14% en 12.69-25.00% langer, respektiewelik, as oop-vertoon en toeslaan-‘punnet’ multiverpakkings gehad. Na 35 dae van koelopberging by -0.5°C het druiwetrosse in die 5 kg ‘punnet’-kartonkombinasies (oop-vertoon en toeslaan-’punnet’) ‘n massaverlies van 2.01 – 3.12% gehad, terwyl die trosse in die 4.5 kg kartonkombinasie slegs ‘n 1.08% massaverlies gehad het. In die ondersoek na die effek van verskillende kartonvoerings op die verkoelingstempo en kwaliteitseienskappe van ‘Regal seedless’ tafeldruiwe tydens koelopbering, het die nie-geperforeerde kartonvoerings ‘n relatiewe humiditeit (RH) van byna 100 % gehandhaaf. Hierdie hoë humiditeit in die nie-geperforeerde voeringfilms het ‘n verlies in stingelkwaliteit vertraag, maar het die voorkoms van SO2-skade en loskorrels betekenisvol (P < 0.05) verhoog in vergelyking met geperforeerde voerings. Die geperforeerde voerings het vrugverkoelingstempos verbeter, maar het die RH betekenisvol (P ≤ 0.05) verlaag. Die lae RH in die geperforeerde voerings het gelei tot ‘n verhoging in stingeluitdroging en –verbruining in vergelyking met die nie-geperforeerde voerings. Die vogverliestempo uit druiwe verpak in nie-geperforeerde voeringfilms was betekenisvol (P<0.05) stadiger in vergelyking met druiwe verpak in geperforeerde voeringfilms (120 x 2 mm and 36 x 4 mm). Die effektiewe vogdiffusiewaardes vir stingelgedeeltes verpak in nie-geperforeerde voeringfilms was stadiger as vir stingelgedeeltes wat verpak is sonder verpakkingsvoerings, en het gevarieer van 5.06x10-14 – 1.05x10-13 m2s-1. Die uitdrogingstempo van stingelgedeeltes was omgekeerd eweredig aan die grootte (deursnit) van die stingelgedeeltes. Die uitdrogingstempo van stingels wat blootgestel was (sonder voerings) aan sirkulerende koue lug was betekenisvol (P<0.05) hoër as die uitdrogingstempos van stingels wat verpak was in nie-geperforeerde voeringfilms. Empiriese modelle is gebruik om die uitdrogingskinetika van die verskillende stingelgedeeltes te beskryf. Die potensiaal van koelkamer humidifisering in die vermindering van die uitdroging van druifstingels is ondersoek. Humidifisering het stingeluitdroging vertraag en het die tempo van stingeluitdroging en -verbruining verminder, maar dit het die voorkoms van SO2-skade op die tafeldruiftrosse verhoog en het die verpakkings laat nat word. Die bewegingsfenomeen tydens verkoeling en hantering van verpakte tafeldruiwe is ook ondersoek deur gebruik te maak van ‘n BVD model en is bevestig met eksperimentele resultate. Daar was goeie ooreenstemming tussen gemete en voorspelde resultate. Die resultaat demonstreer duidelik die toepaslikheid van BVD-modelle om die optimum tafeldruifverpakkings- en verkoelingsprosedures te bepaal.
PPECB and Postharvest Innovation Programme (PHI-2) for their financial support
McCafferty, John. "Respiratory heat and moisture loss in health, asthma and chronic obstructive pulmonary disease (COPD)." Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/29259.
Full textNguyen, Gia Huynh Truong. "Evaluating soil erodibility parameters with mini-JET under various soil moisture conditions." Kansas State University, 2016. http://hdl.handle.net/2097/34526.
Full textDepartment of Biological & Agricultural Engineering
Aleksey Y. Sheshukov
Soil erosion is one of the main reasons for agricultural land degradation in the world. Losses of land because of high soil erosion rates and rapidly expanding population result in significant reduction of cultivated land area per capita, and shortage of food on the global scale. Soil erosion can be a major source of sediment in the aquatic systems leading to reduction of organism population and poor water quality. Many factors affect soil erodibility, such as, soil properties, rainfall, topographic features, land use, and management practices, among others. The impacts of soil moisture content, however, are not well understood and. therefore, the primary goal of this study was to quantify two soil erodibility parameters, the erodibility coefficient and critical shear stress, under different soil moisture conditions using the jet erosion test (JET). The JET test uses the apparatus (called mini-JET) that creates an impinging jet of water into the soil and records the resulting scour depth over time. The scour depth time series are then fitted into a non-linear soil erosion equation, yielding the sought values of erodibility parameters. For this study, more than 40 soil samples were collected from several sites in Kansas, processed, and prepared to conduct JET tests in the lab setting. The effects of tillage and soil moisture content were of interest to this study. The results showed varied effects of soil type and sample soil moisture condition on the scour depth development and parameters sensitivity. The critical shear stress decreased and the erodibility coefficient increased with the increase of initial moisture content for clay loam soil, while critical shear stress did not change for sandy loam soil. The study also revealed higher erosive properties of soil collected from the tilled field compared to the no-till field.
Gregorich, Jenna L. "Effects of Induced Moisture Loss on Broiler Chicks Immune Response Post Salmonella enteritidis Lipopolysaccharide Challenge." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu149985847613047.
Full textBooks on the topic "Moisture Loss"
Morison, William Donald. The effects of moisture loss and elevated temperature upon the material damping of fibre reinforced polymer matrix composites. Downsview, Ont: Institute for Aerospace Studies, 1988.
Find full textMorison, William Donald. The effects of moisture loss and elevated temperature upon the material damping of fibre reinforced polymer matrix composites. [Downsview, Ont.]: [Institute for Aerospace Studies], 1987.
Find full textMurdoch, Christopher. Detection system to identify wetwood in standing living trees and in cut logs and boards. Beltsville, MD: U.S. Dept. of Agriculture, National Agricultural Library, Technology Transfer Information Center, 1992.
Find full textHosang, Jürg. Wasser- und Stoffhaushalt von Lössböden im Niederen Sundgau (Region Basel): Messung und Modellierung. Basel: In Kommission beim Verlag Wepf, 1995.
Find full textMorison, William Donald. The effects of moisture loss and elevated temperature upon the material damping of fibre reinforced polymer matrix composites. 1987.
Find full textInstitution, British Standards, ed. Methods of test for coffee and coffee products. Part 13. Roasted ground coffee: Determination of moisture content (loss in mass at 103 degrees Centigrade (routine method)).. London: British Standards Institution, 1995.
Find full text1944-, Green David W., and Forest Products Laboratory (U.S.), eds. Moisture content and the properties of lodgepole pine logs in bending and compression parallel to the grain. [Madison, WI?]: USDA, Forest Service, Forest Products Laboratory, 2007.
Find full textGreenleatherr. Apple Cider Vinegar Therapy : Detoxify Your Body, Lose Weight, Moisturize, Exfoliate Skin + Dry Fasting: Guide to Miracle of Fasting. Independently Published, 2019.
Find full textBenestad, Rasmus. Climate in the Barents Region. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.655.
Full textBook chapters on the topic "Moisture Loss"
Jeżowski, S., S. Ornatowski, J. Finnan, Z. Kaczmarek, and J. Cerazy. "Moisture Loss Rate in Grass Cut at Anthesis: Variation Among Selected Traditional Species." In Perennial Biomass Crops for a Resource-Constrained World, 199–206. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44530-4_17.
Full textSikora, Richard A., Jon Padgham, and Johan Desaeger. "The unpredictability of adapting integrated nematode management to climate variability." In Integrated nematode management: state-of-the-art and visions for the future, 463–71. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247541.0064.
Full textDezhina, I. Yu. "Problem-Solving for Moisture Transport in Loess." In Proceedings of the 5th International Conference on Construction, Architecture and Technosphere Safety, 211–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91145-4_21.
Full textGuo, Anbang, Wuyu Zhang, Lingxiao Liu, and Yanxia Ma. "Study on the Influence of Moisture Content on Mechanical Properties of Intact Loess in Qinghai, China." In Springer Series in Geomechanics and Geoengineering, 519–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97112-4_116.
Full textChen, Zhifeng, Hui Li, Ningshan Jiang, and Chengkui Liu. "Experimental study on the shear strength of reinforced loess with purple locust under freeze-thaw process at different moisture contents." In Advances in Energy Materials and Environment Engineering, 116–23. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003332664-18.
Full textBronger, A. "Argillic Horizons in Modern Loess Soils in an Ustic Soil Moisture Regime: Comparative Studies in Forest-Steppe and Steppe Areas from Eastern Europe and the United States." In Advances in Soil Science, 41–90. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3030-4_2.
Full textRoudaut, G., and F. Debeaufort. "Moisture loss, gain and migration in foods." In Food and Beverage Stability and Shelf Life, 63–105. Elsevier, 2011. http://dx.doi.org/10.1533/9780857092540.1.63.
Full textVerstreken, E., J. De Baerdemaeker, J. L. García, and M. Ruiz-Altisent. "CONTROLLING MOISTURE LOSS AS A TOOL TO REDUCE BRUISE SUSCEPTIBILITY." In Control Applications in Post-Harvest and Processing Technology 1995, 247–54. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-08-042598-6.50040-0.
Full textJolly, W. Matt, and Elliott T. Conrad. "A mechanistic live fuel moisture model." In Advances in Forest Fire Research 2022, 32–35. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_3.
Full textHadden, Rory M., Zakary Campbell-Lochrie, Vasileios Koutsomarkos, Carlos Walker-Ravena, Eric V. Mueller, Andy F. S. Taylor, and I. Jason Owen. "The effects of fuel moisture on fire spread in shrub vegetation typical of upland heath systems in northern latitudes." In Advances in Forest Fire Research 2022, 1323–29. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_200.
Full textConference papers on the topic "Moisture Loss"
Barker, R., and E. Russell. "Variation of Clay Resistivity with Moisture Loss." In Near Surface 2004 - 10th EAGE European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2004. http://dx.doi.org/10.3997/2214-4609-pdb.10.p056.
Full textBerke, N. "Early age shrinkage and moisture loss of concrete." In International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur. RILEM Publications SARL, 2004. http://dx.doi.org/10.1617/2912143586.021.
Full textJ Alex Thomasson, Brandon E Hartley, John D Gibson, and Stephen W Searcy. "Moisture Loss and Ash Characterization of High-Tonnage Sorghum." In 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.39554.
Full textFACEY, T., N. DEFILIPPIS, and P. YOUNG. "Moisture loss from graphite structures for the Hubble Space Telescope." In Shuttle Environment and Operations II Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-6057.
Full textGuo, T., W. J. Sumner, and D. C. Hofer. "Development of Highly Efficient Nuclear HP Steam Turbines Using Physics Based Moisture Loss Models." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27960.
Full textAishwarya, G., and Dhivya Raj. "Moisture-loss prediction system in withering of pepper using machine learning." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROELECTRONICS, SIGNALS AND SYSTEMS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0004202.
Full textCampu, Vasile Razvan. "MASS LOSS AND THE MEASUREMENT OF BEECH AND OAK PULPWOOD MOISTURE CONTENT." In 14th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b32/s14.054.
Full textTrevisan, Lucas R., Mary-Grace C. Danao, Richard S. Gates, and Kent D. Rausch. "Variability of dry matter loss rates of 18% moisture soybeans at 35oC." In 2017 Spokane, Washington July 16 - July 19, 2017. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2017. http://dx.doi.org/10.13031/aim.201700991.
Full textSingh, Prabjit, and Michael Ellsworth. "Measuring Moisture Leakage Out of Water Cooling Hardware." In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48154.
Full textMadduri, Sushma, William Infantolino, Bahgat G. Sammakia, Seungbae Park, Haojun Zhang, and Satish C. Chaparala. "Moisture Concentration and Temperature Dependence of the Coefficient of Hygroscopic Swelling (CHS)." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12243.
Full textReports on the topic "Moisture Loss"
Reyes, Julian, Jeb Williamson, and Emile Elias. Spatio-temporal analysis of Federal crop insurance cause of loss data: A roadmap for research and outreach effort. U.S. Department of Agriculture, April 2018. http://dx.doi.org/10.32747/2018.7202608.ch.
Full textKerber, Steve, and Robin Zevotek. Fire Service Summary Report: Study of Residential Attic Fire Mitigation Tactics and Exterior Fire Spread Hazards on Firefighter Safety. UL Firefighter Safety Research Institute, November 2014. http://dx.doi.org/10.54206/102376/pxtq2256.
Full textKerber, Steve, and Robin Zevotek. Study of Residential Attic Fire Mitigation Tactics and Exterior Fire Spread Hazards on Firefighter Safety Released. UL Firefighter Safety Research Institute, November 2014. http://dx.doi.org/10.54206/102376/lihb1439.
Full textLevitt, Daniel G., Kay Hanson Birdsell, Terry L. Jennings, and Sean B. French. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1188170.
Full textPalaz, I. Application of geophysical logs to estimate moisture-content profiles in unsaturated tuff, Yucca Mountain, Nevada. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/59847.
Full textGeddis, A. M. Preliminary modeling of moisture movement in the tuff beneath Mortandad Canyon, Los Alamos National Laboratory. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/139787.
Full textLevitt, Daniel Glenn, Kay Hanson Birdsell, Terry L. Jennings, and Sean B. French. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1340939.
Full textGreen, David W., Thomas M. Gorman, Joseph F. Murphy, and Matthew B. Wheeler. Moisture content and the properties of lodgepole pine logs in bending and compression parallel to the grain. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2007. http://dx.doi.org/10.2737/fpl-rp-639.
Full textDai, Zhenxue, Kay Hanson Birdsell, Philip H. Stauffer, and Brent David Newman. Simulations of Moisture Movement through Pits 37 and 38 at Los Alamos National Laboratory Technical Area 54, Area G. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1438349.
Full textShmulevich, Itzhak, Shrini Upadhyaya, Dror Rubinstein, Zvika Asaf, and Jeffrey P. Mitchell. Developing Simulation Tool for the Prediction of Cohesive Behavior Agricultural Materials Using Discrete Element Modeling. United States Department of Agriculture, October 2011. http://dx.doi.org/10.32747/2011.7697108.bard.
Full text