Academic literature on the topic 'Moduli spaces, framed sheaves, instantons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Moduli spaces, framed sheaves, instantons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Moduli spaces, framed sheaves, instantons"

1

HENNI, ABDELMOUBINE AMAR, MARCOS JARDIM, and RENATO VIDAL MARTINS. "ADHM CONSTRUCTION OF PERVERSE INSTANTON SHEAVES." Glasgow Mathematical Journal 57, no. 2 (December 18, 2014): 285–321. http://dx.doi.org/10.1017/s0017089514000305.

Full text
Abstract:
AbstractWe present a construction of framed torsion free instanton sheaves on a projective variety containing a fixed line which further generalises the one on projective spaces. This is done by generalising the so called ADHM variety. We show that the moduli space of such objects is a quasi projective variety, which is fine in the case of projective spaces. We also give an ADHM categorical description of perverse instanton sheaves in the general case, along with a hypercohomological characterisation of these sheaves in the particular case of projective spaces.
APA, Harvard, Vancouver, ISO, and other styles
2

Scalise, Jacopo Vittorio. "Framed symplectic sheaves on surfaces." International Journal of Mathematics 29, no. 01 (January 2018): 1850007. http://dx.doi.org/10.1142/s0129167x18500076.

Full text
Abstract:
A framed symplectic sheaf on a smooth projective surface [Formula: see text] is a torsion-free sheaf [Formula: see text] together with a trivialization on a divisor [Formula: see text] and a morphism [Formula: see text] satisfying some additional conditions. We construct a moduli space for framed symplectic sheaves on a surface, and present a detailed study for [Formula: see text]. In this case, the moduli space is irreducible and admits an ADHM-type description and a birational proper map onto the space of framed symplectic ideal instantons.
APA, Harvard, Vancouver, ISO, and other styles
3

HAUZER, MARCIN, and ADRIAN LANGER. "MODULI SPACES OF FRAMED PERVERSE INSTANTONS ON ℙ3." Glasgow Mathematical Journal 53, no. 1 (August 25, 2010): 51–96. http://dx.doi.org/10.1017/s0017089510000558.

Full text
Abstract:
AbstractWe study moduli spaces of framed perverse instantons on ℙ3. As an open subset, it contains the (set-theoretical) moduli space of framed instantons studied by I. Frenkel and M. Jardim in [9]. We also construct a few counter-examples to earlier conjectures and results concerning these moduli spaces.
APA, Harvard, Vancouver, ISO, and other styles
4

Bartocci, Claudio, Valeriano Lanza, and Claudio L. S. Rava. "Moduli spaces of framed sheaves and quiver varieties." Journal of Geometry and Physics 118 (August 2017): 20–39. http://dx.doi.org/10.1016/j.geomphys.2016.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Toda, Yukinobu. "Non-commutative thickening of moduli spaces of stable sheaves." Compositio Mathematica 153, no. 6 (April 26, 2017): 1153–95. http://dx.doi.org/10.1112/s0010437x17007047.

Full text
Abstract:
We show that the moduli spaces of stable sheaves on projective schemes admit certain non-commutative structures, which we call quasi-NC structures, generalizing Kapranov’s NC structures. The completion of our quasi-NC structure at a closed point of the moduli space gives a pro-representable hull of the non-commutative deformation functor of the corresponding sheaf developed by Laudal, Eriksen, Segal and Efimov–Lunts–Orlov. We also show that the framed stable moduli spaces of sheaves have canonical NC structures.
APA, Harvard, Vancouver, ISO, and other styles
6

Ben-Zvi, David, and Thomas Nevins. "Perverse bundles and Calogero–Moser spaces." Compositio Mathematica 144, no. 6 (November 2008): 1403–28. http://dx.doi.org/10.1112/s0010437x0800359x.

Full text
Abstract:
AbstractWe present a simple description of moduli spaces of torsion-free 𝒟-modules (𝒟-bundles) on general smooth complex curves, generalizing the identification of the space of ideals in the Weyl algebra with Calogero–Moser quiver varieties. Namely, we show that the moduli of 𝒟-bundles form twisted cotangent bundles to moduli of torsion sheaves on X, answering a question of Ginzburg. The corresponding (untwisted) cotangent bundles are identified with moduli of perverse vector bundles on T*X, which contain as open subsets the moduli of framed torsion-free sheaves (the Hilbert schemes T*X[n] in the rank-one case). The proof is based on the description of the derived category of 𝒟-modules on X by a noncommutative version of the Beilinson transform on P1.
APA, Harvard, Vancouver, ISO, and other styles
7

NEVINS, THOMAS A. "MODULI SPACES OF FRAMED SHEAVES ON CERTAIN RULED SURFACES OVER ELLIPTIC CURVES." International Journal of Mathematics 13, no. 10 (December 2002): 1117–51. http://dx.doi.org/10.1142/s0129167x02001599.

Full text
Abstract:
Fix a ruled surface S obtained as the projective completion of a line bundle L on a complex elliptic curve C; we study the moduli problem of parametrizing certain pairs consisting of a sheaf ℰ on S and a map of ℰ to a fixed reference sheaf on S. We prove that the full moduli stack for this problem is representable by a scheme in some cases. Moreover, the moduli stack admits an action by the group C*, and we determine its fixed-point set, which leads to explicit formulas for the rational homology of the moduli space.
APA, Harvard, Vancouver, ISO, and other styles
8

Sala, Francesco. "Symplectic structures on moduli spaces of framed sheaves on surfaces." Central European Journal of Mathematics 10, no. 4 (May 2, 2012): 1455–71. http://dx.doi.org/10.2478/s11533-012-0063-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

von Flach, Rodrigo A., and Marcos Jardim. "Moduli spaces of framed flags of sheaves on the projective plane." Journal of Geometry and Physics 118 (August 2017): 138–68. http://dx.doi.org/10.1016/j.geomphys.2017.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Szabo, Richard J. "Instantons, Topological Strings, and Enumerative Geometry." Advances in Mathematical Physics 2010 (2010): 1–70. http://dx.doi.org/10.1155/2010/107857.

Full text
Abstract:
We review and elaborate on certain aspects of the connections between instanton counting in maximally supersymmetric gauge theories and the computation of enumerative invariants of smooth varieties. We study in detail three instances of gauge theories in six, four, and two dimensions which naturally arise in the context of topological string theory on certain noncompact threefolds. We describe how the instanton counting in these gauge theories is related to the computation of the entropy of supersymmetric black holes and how these results are related to wall-crossing properties of enumerative invariants such as Donaldson-Thomas and Gromov-Witten invariants. Some features of moduli spaces of torsion-free sheaves and the computation of their Euler characteristics are also elucidated.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Moduli spaces, framed sheaves, instantons"

1

Sala, Francesco. "Some topics in the geometry of framed sheaves and their moduli spaces." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10076/document.

Full text
Abstract:
La thèse est consacrée à l'étude des faisceaux encadrés sur des variétés non-singulières projectives et des propriétés géométriques de leurs espaces de modules. En particulier, on donne une généralisation au cas encadré des résultats connus pour les faisceaux (semi)stables sans torsion non-encadrés, comme l'existence de la filtration de Harder-Narasimhan (relative), théorèmes de restriction de Mehta-Ramanathan, compactification de Donaldson-Uhlenbeck, la définition de la classe d'Atiyah relative et la description de l'application de Kodaira-Spencer via la classe d'Atiyah relative, l'existence d'une structure symplectique holomorphe, dans certains cas, sur les espaces de modules de faisceaux encadrés
The thesis is concerned with the study of framed sheaves on nonsingular projective varieties and the geometrical properties of their moduli spaces. In particular, it deals with a generalization to the framed case of known results for (semi)stable torsion free nonframed sheaves, such as the existence of the (relative) Harder-Narasimhan filtration, Mehta-Ramanathan restriction theorems, Uhlenbeck-Donaldson compactification, the definition of the relative Atiyah class and the description of the Kodaira-Spencer map in terms of the relative Atiyah class, the existence of a symplectic structure, in certain cases, on the moduli spaces of framed sheaves
APA, Harvard, Vancouver, ISO, and other styles
2

Choy, Jaeyoo. "Moduli spaces of framed symplectic and orthogonal bundles on P2 and the K-theoretic Nekrasov partition functions." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/198873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nevins, Thomas A. "Moduli spaces of framed sheaves on ruled surfaces /." 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9965126.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Moduli spaces, framed sheaves, instantons"

1

editor, Donagi Ron, Katz Sheldon 1956 editor, Klemm Albrecht 1960 editor, and Morrison, David R., 1955- editor, eds. String-Math 2012: July 16-21, 2012, Universität Bonn, Bonn, Germany. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Moduli spaces, framed sheaves, instantons"

1

Flenner, Hubert, and Martin Lübke. "Analytic Moduli Spaces of Simple (Co)Framed Sheaves." In Complex Geometry, 99–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56202-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography