Dissertations / Theses on the topic 'Modular representation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Modular representation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rahm, Jonas. "Biologically plausible visual representation of modular decomposition." Thesis, University of Skövde, School of Humanities and Informatics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-953.
Full textModular decompositions of protein interaction networks can be used to identify modules of cooperating proteins. The biological plausibility off these modules might be questioned though. This report describes how a modular decomposition can be completed with semantic information in the visual representation. Possible methods for creating modules of functionally related proteins are also proposed in this work. The results show that such modules, with advantage can be combined with modules from a graph decomposition, to find proteins that are likely to cooperate to perform certain functions in organisms
MacQuarrie, John William. "The modular representation theory of profinite groups." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496232.
Full textRubio, y. Degrassi L. "On Hochschild cohomology and modular representation theory." Thesis, City, University of London, 2016. http://openaccess.city.ac.uk/18406/.
Full textMartin, Stuart. "Quivers and the modular representation theory of finite groups." Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:59d4dc72-60e5-4424-9e3c-650eb2b1d050.
Full textPower, David James. "A library for parallel arithmetic using a modular representation." Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341640.
Full textCarlisle, D. P. "The modular representation theory of GL(n,p) and applications." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374790.
Full textSuter, Rudolf. "First part: Representation rings and modular transformations ; Second part: Tensor products of simple Uq₍sl₂)-modules /." Zürich, 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10878.
Full textHauge, Martin. "Triangulated categories in modular representation theory and their direct sum decompositions." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723477.
Full textDunn-Davies, Hywel. "A Diagrammatic Formalism for the Modular Representation of Agent Interaction Protocols." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511872.
Full textWang, Tsomg-Niang 1953. "A modular prolog representation of a TCP protocol finite state machine." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276580.
Full textNguyen, Christopher Dinh. "Fast modular exponentiation using residue domain representation| A hardware implementation and analysis." Thesis, University of Maryland, Baltimore County, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1551346.
Full textUsing modular exponentiation as an application, we engineered on FPGA fabric and analyzed the first implementation of two arithmetic algorithms in Reduced-Precision Residue Number Systems (RP-RNS): the partial-reconstruction algorithm and quotient-first scaling algorithm. Residue number systems (RNS) provide an alternative representation to the binary system for computation. They offer full parallel computation for addition, subtraction, and multiplication. However, base extension, division, and sign detection become harder operations. Phatak's RP-RNS uses a time-memory trade-off to achieve O(lg N) running time for base extension and scaling, where N is the bit-length of the operands, compared with Kawamura's Cox-Rower architecture and its derivatives, which appear to take O(N) steps and therefore O(N) delay to the best of our knowledge. We implemented the fully parallel RP-RNS architecture based on Phatak's description and architecture diagrams. Our design decisions included distributing the lookup tables among each channel, removing the adder trees, and removing the parallel table access thus trading size for speed. In retrospect, we should have hosted the tables in memory off the FPGA. We measured the FPGA utilization, storage size, and cycle counts. The data we present, though less than optimal, confirms the theoretical trends calculated by Phatak. FPGA utilization grows proportional K log(K) where K is the number of hardware channels. Storage grows proportional to O(N
3 lg lg N). When using Phatak's recommendations,cycle count grows proportional to O(lg N). Our contributions include documentation of our design, architecture, and implementation; a detailed testing methodology; and performance data based on our implementation to enable others to replicate our implementation and findings.
高木, 直史, and Naofumi Takagi. "A hardware algorithm for modular multiplication/division." IEEE, 2005. http://hdl.handle.net/2237/5293.
Full textHazi, Amit. "Semisimple filtrations of tilting modules for algebraic groups." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271774.
Full textPedrotti, Vagner 1980. "Decomposição modular de grafos não orientados." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276072.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-08T21:07:02Z (GMT). No. of bitstreams: 1 Pedrotti_Vagner_M.pdf: 1466848 bytes, checksum: 52ed7d36d9f4f7cb6bee307b689f5f78 (MD5) Previous issue date: 2007
Resumo: Um modulo de um grafo é um subconjunto de seus vertices que não é diferenciado, em relação à adjancencia peços demais vertices do mesmo grafo. Dado um mpodulo M de um grafo G, se todo módulo de G que intercepta M está contido nele ou o contém. M é denominado módulo forte¿Observação: O resumo, na íntegra poderá ser visualizado no texto completo da tese digital
Abstract: A module of a graph is a non distinguishable subset of nodes, regarding the nodes adjacency. Let M denote any module of a graph G. If every module of G wich overlaps M either contains M or is included in it, M is called a strong module...Note: The complete abstract is available with the full electronic digital thesis or dissertations
Mestrado
Teoria da Computação
Mestre em Ciência da Computação
Ko, W. Y. Albert, and 高永賢. "The design of a representation and analysis method for modular self-reconfigurable robots." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29513807.
Full textRen-He, Su. "The Kohnen plus space for Hilbert-Siegel modular forms." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215374.
Full textMcCorkindale, Jane. "The 2-modular representation theory of PSUâ†3(q), q #ident to# 3(mod 4)." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279980.
Full textYuliawan, Fajar Verfasser], and Henning [Akademischer Betreuer] [Krause. "Actions of Hochschild Cohomology and Local Duality in Modular Representation Theory / Fajar Yuliawan ; Betreuer: Henning Krause." Bielefeld : Universitätsbibliothek Bielefeld, 2017. http://d-nb.info/115018177X/34.
Full textCHINELLO, GIANMARCO. "Représentations l-modulaires des groupes p-adiques. Décomposition en blocs de la catégorie des représentations lisses de GL(m,D), groupe métaplectique et représentation de Weil." Doctoral thesis, Université de Versailles St-Quentin-en-Yvelines, 2015. http://hdl.handle.net/10281/123569.
Full textCette thèse traite deux problèmes concernant la théorie des représentations l-modulaires d’un groupe p-adique. Soit F un corps local non archimédien de caractéristique résiduelle p différente de l. Dans la première partie, on étudie la décomposition en blocs de la catégorie des représentations lisses `-modulaires de GL(n; F) et de ses formes intérieures. On veut ramener la description d’un bloc de niveau positif à celle d’un bloc de niveau 0 (d’un autre groupe du même type) en cherchant des équivalences de catégories. En utilisant la théorie des types de Bushnell-Kutzko dans le cas modulaire et un théorème de la théorie des catégories, on se ramene à trouver un isomorphisme entre deux algèbres d’entrelacement. La preuve de l’existence d’un tel isomorphisme n’est pas complète car elle repose sur une conjecture qu’on énonce et qui est prouvée pour plusieurs cas. Dans une deuxième partie on généralise la construction du groupe métaplectique et de la représentation de Weil dans le cas des représentations sur un anneau intègre. On construit une extension centrale du groupe symplectique sur F par le groupe multiplicatif d’un anneau intègre et on prouve qu’il satisfait les mêmes propriétés que dans le cas des représentations complexes.
Turchetti, Danièle. "Contributions to arithmetic geometry in mixed characteristic : lifting covers of curves, non-archimedean geometry and the l-modular Weil representation." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0022/document.
Full textIn this thesis, we study the interplay between positive and zero characteristic. In a first instance, we deal with the local lifting problem of lifting actions of curves. We show necessary conditions for the existence of liftings of some actions of Z/pZ x Z/pZ. Then, for an action of a general finite group, we study the associated Hurwitz tree, showing that every Hurwitz tree has a canonical metric embedding in the Berkovich closed unit disc, and that the Hurwitz data can be described analytically.In the last chapter, we define an analog of the Weil representation with coefficients in an integral domain, showing that such representation satisfies the same properties than in the case with complex coefficients
Wild, Marcel Wolfgang. "Dreieckverbande : lineare und quadratische darstellungstheorie." Thesis, University of Zurich, 1987. http://hdl.handle.net/10019.1/70322.
Full textThe original works can be found at http://www.hbz.uzh.ch/
ABSTRACT: A linear representation of a modular lattice L is a homomorphism from L into the lattice Sub(V) of all subspaces of a vector space V. The representation theory of lattices was initiated by the Darmstadt school (Wille, Herrmann, Poguntke, et al), to large extent triggered by the linear representations of posets (Gabriel, Gelfand-Ponomarev, Nazarova, Roiter, Brenner, et al). Even though posets are more general than lattices, none of the two theories encompasses the other. In my thesis a natural type of finite lattice is identified, i.e. triangle lattices, and their linear representation theory is advanced. All of this was triggered by a more intricate setting of quadratic spaces (as opposed to mere vector spaces) and the question of how Witt’s Theorem on the congruence of finite-dimensional quadratic spaces lifts to spaces of uncountable dimensions. That issue is dealt with in the second half of the thesis.
Juteau, Daniel. "Correspondance de Springer modulaire et matrices de décomposition." Phd thesis, Université Paris-Diderot - Paris VII, 2007. http://tel.archives-ouvertes.fr/tel-00355559.
Full textTowers, Matthew John. "Modular representations of p-groups." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427611.
Full textBuzzard, Kevin. "The levels of modular representations." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362978.
Full textWildon, Mark. "Modular representations of symmetric groups." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403775.
Full textTrias, Justin. "Correspondance thêta locale ℓ-modulaire." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS380.
Full textLet F be a local non archimedean field of characteristic not 2 and residual characteristic p. The local theta correspondence over F gives a bijection between some subsets of irreductible smooth complex reprensentations of a first reductive group H and a second reductive group H0, where (H,H0) is a dual pair in a symplectic group. Let R be a field of characteristic ℓ different from p. In this thesis, we give minimal conditions on R so thatStone-von Neumann’s theorem can be generalised in the setting of modular representation theory, which means when the coefficient field is R. This generalisation enables to define a modular Weil representation which verifies analogous properties to that of the complex case [MVW87]. When R is algebraically closed, we generalise the proof of the classical correspondence for non quaternionic dual pairs [GT16] under two assumptions. Firstly,the characteristic ℓ has to be greater than a certain explicit bound which depends on the pro-orders of H1 and H2. The second hypothesis have a deep connection to the theory of intertwining and would result from a better understanding of that theory in the modular setting
Russell, Lee. "Modular representations of the symmetric group." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627178.
Full textYaseen, Abdul Kareem Abdul Rahman. "Modular spin representations of the symmetric group." Thesis, Aberystwyth University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491551.
Full textTsaknias, Panagiotis I. "On higher congruences of modular Galois representations." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522367.
Full textJarvis, Ashley Frazer. "On Galois representations associated to Hilbert modular forms." Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/251724.
Full textCampbell, Peter Steven. "Permutation modules and representation theory." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ60107.pdf.
Full textSin, P. K. W. "Some problems on induced modular representations of finite groups." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375304.
Full textTickner, Suzanne. "Projective modular representations of certain classes of finite groups." Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317291.
Full textParsons, Christopher M. "Modular representations and invariants of elementary abelian p-groups." Thesis, University of Kent, 2018. https://kar.kent.ac.uk/69138/.
Full textPhillips, Aaron M. "Restricting modular spin representations of symmetric and alternating groups /." view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3095271.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 69-71). Also available for download via the World Wide Web; free to University of Oregon users.
Larsson, Christian. "Application development for automated positioning of 3D-representations of a modularized product." Thesis, Linköpings universitet, Programvara och system, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-95466.
Full textDetta examensarbete presenterar en applikation som positionerar moduler automatiskt med hjälp av given data för varje modul, samt utvecklingen av applikationen. Applikationen bygger på kod från ett tidigare examensarbete. Ovanpå den koden har flera egenskaper och felhanteringar lagts till, samt har olika buggar fixats. Ett stresstest har också utförts och framtida utvecklingsmöjligheter presenteras. Examensarbetet genomfördes på Toyota Material Handling Mjölby (TMH) och gjordes parallellt med ett annat examensarbete av Fredrik Holden som genererade data för applikationen. För en fullständig förståelse angående teorin bakom samt bakgrunden till examensarbetet, vänligen läs också Holdens rapport ”Developmentof method for automated positioning of 3D-representations of a modularized product”, samt rapporten från föregeånde examensarbetet ”Analysis for Automated Positioning of 3D-representation of a Modularized product”.
Taixés, Ventosa Xavier. "Theoretical and algorithmic aspects of congruences between modular Galois representations." kostenfrei, 2009. http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=20515.
Full textWilliams, Adrian Leonard. "Some more decomposition numbers for modular representations of symmetric groups." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313541.
Full textLow, Gordan MacLaren. "Injective modules and representational repleteness." Thesis, University of Glasgow, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319776.
Full textBaland, Shawn. "Some results on modules of constant Jordan type for elementary abelian-ρ-group." Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=192251.
Full textAmorós, Carafí Laia. "Images of Galois representations and p-adic models of Shimura curves." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/471452.
Full textCitro, Craig Louis. "L-invariants of adjoint square Galois representations coming from modular forms." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1872905031&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textCui, Peiyi. "Modulo l-representations of p-adic groups SL_n(F)." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S050/document.
Full textFix a prime number p. Let k be an algebraically closed field of characteristic l different than p. We construct maximal simple cuspidal k-types of Levi subgroups M' of SL_n(F), where F is a non-archimedean locally compact field of residual characteristic p. And we show that the supercuspidal support of irreducible smooth k-representations of Levi subgroups M' of SL_n(F) is unique up to M'-conjugation, when F is either a finite field of characteristic p or a non-archimedean locally compact field of residual characteristic p
Vienney, Mathieu. "Construction de (phi,gamma)-modules en caractéristique p." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00763785.
Full textForrester-Barker, Magnus. "Representations of crossed modules and cat¹-groups." Thesis, Bangor University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401882.
Full textKurinczuk, Robert James. "Smooth ℓ-modular representations of unramified p-ADIC U(2,1)(E/F)." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/41947/.
Full textSteinberg, David. "Homological Properties of Standard KLR Modules." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22292.
Full textLacabanne, Abel. "Catégorification de données Z-modulaires et groupes de réflexions complexes." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS045/document.
Full textThis work is a contribution to the categorification of $mathbb{Z}$-modular data and deals mainly with $mathbb{Z}$-modular data arising from complex reflection groups, as well as cellular characters for these groups. In his classification of representations of finite groups of Lie type, Lusztig defines a nonabelian Fourier transform, and associate a $mathbb{N}$-modular datum to each family of unipotent characters. In a generalization of Lusztig's theory to Spetses, Broué, Malle and Michel construct $mathbb{Z}$-modular data associated to some complex reflection groups. We first give a categorical explanation of some of these $mathbb{Z}$-modular data in terms of representation of the Drinfeld double of a finite group. We had to endow the category of representations with a non-spherical structure. The study of slightly degenerate categories shows that they naturally give rise to $mathbb{Z}$-modular data. In order to construct some examples, we consider an extension of the fusion categories associated to $qgrroot{mathfrak{g}}$, where $mathfrak{g}$ is a simple Lie algebra and $xi$ a root of unity. These categories are constructed as semisimplification of the category of tilting modules of $qdblroot{mathfrak{g}}$, which is a central extension of $qgrroot{mathfrak{g}}$. If $mathfrak{s}=mathfrak{sl}_{n+1}$, we show that this category is related to some $mathbb{Z}$-modular data associated to the complex reflection group $Gleft(d,1,frac{n(n+1)}{2}right)$. Exceptional complex reflection groups are also considered and many different categories appear in the categorification of the associated $mathbb{Z}$-modular data : modules categories over twisted Drinfeld doubles as well as some subcategories of fusion categories of tilting modules over $qdblroot{mathfrak{g}}$ in type $A$ and $B$
Ruff, Oliver. "Completely splittable representations of symmetric groups and affine Hecke algebras /." view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3190545.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 44-45). Also available for download via the World Wide Web; free to University of Oregon users.
Wang, Erickson Carl William. "Moduli of Galois Representations." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10933.
Full textMathematics