Academic literature on the topic 'Modular multilevel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modular multilevel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Modular multilevel"

1

Pou, Josep, Marcelo A. Perez, and Ricardo P. Aguilera. "Modular Multilevel Converters." IEEE Transactions on Industrial Electronics 66, no. 3 (March 2019): 2204–6. http://dx.doi.org/10.1109/tie.2018.2872631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gontijo, Gustavo, Songda Wang, Tamas Kerekes, and Remus Teodorescu. "Performance Analysis of Modular Multilevel Converter and Modular Multilevel Series Converter under Variable-Frequency Operation Regarding Submodule-Capacitor Voltage Ripple." Energies 14, no. 3 (February 2, 2021): 776. http://dx.doi.org/10.3390/en14030776.

Full text
Abstract:
The modular multilevel converter is capable to reach high-voltage levels with high flexibility, high reliability, and high power quality as it became the standard solution for high-power high-voltage applications that operate with fixed frequency. However, in machine-drive applications, the modular multilevel converter shows critical problems since an extremely high submodule-capacitor voltage ripple occurs in the machine start-up and at low-speed operation, which can damage the converter. Recently, a new converter solution named modular multilevel series converter was proposed as a promising alternative for high-power machine-drive applications since it presented many important structural and operational advantages in relation to the modular multilevel converter such as the reduced number of submodule capacitors and the low submodule-capacitor voltage ripple at low frequencies. Even though the modular multilevel series converter presented a reduced number of capacitors, the size of these capacitors was not analyzed. This paper presents a detailed comparison analysis of the performance of the modular multilevel converter and the modular multilevel series converter at variable-frequency operation, which is based on the proposed analytical description of the submodule-capacitor voltage ripple in such topologies. This analysis concludes that the new modular multilevel series converter can be designed with smaller capacitors in comparison to the modular multilevel converter if these converters are used to drive electrical machines that operate within a range of low-frequency values. In other words, the modular multilevel series converter experiences extremely low submodule-capacitor voltage ripple at very low frequencies, which means that this converter solution presents high performance in the electrical machine start-up and at low-speed operation.
APA, Harvard, Vancouver, ISO, and other styles
3

ThinhQuach, Ngoc, Sang Heon Chae, Seungmin Lee, Ho-Chan Kim, and Eel-Hwan Kim. "Analyzing Modulation Techniques for the Modular Multilevel Converter." International Journal of Computer and Electrical Engineering 8, no. 4 (2016): 259–71. http://dx.doi.org/10.17706/ijcee.2016.8.4.259-271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vozikis, Dimitrios, Fahad Alsokhiry, Grain Philip Adam, and Yusuf Al-Turki. "Novel Enhanced Modular Multilevel Converter for High-Voltage Direct Current Transmission Systems." Energies 13, no. 9 (May 4, 2020): 2257. http://dx.doi.org/10.3390/en13092257.

Full text
Abstract:
This paper proposes an enhanced modular multilevel converter as an alternative to the conventional half-bridge modular multilevel converter that employs a reduced number of medium-voltage cells, with the aim of improving waveforms quality in its AC and DC sides. Each enhanced modular multilevel converter arm consists of high-voltage and low-voltage chain-links. The enhanced modular multilevel converter uses the high-voltage chain-links based on medium-voltage half-bridge cells to synthesize the fundamental voltage using nearest level modulation. Although the low-voltage chain-links filter out the voltage harmonics from the voltage generated by the high-voltage chain-links, which are rough and stepped approximations of the fundamental voltage, the enhanced modular multilevel converter uses the nested multilevel concept to dramatically increase the number of voltage levels per phase compared to half-bridge modular multilevel converter. The aforementioned improvements are achieved at the cost of a small increase in semiconductor losses. Detailed simulations conducted in EMPT-RV and experimental results confirm the validity of the proposed converter.
APA, Harvard, Vancouver, ISO, and other styles
5

Steiks, Ingars, and Leonids Ribickis. "Voltage Monitoring on Capacitor of Modular Multilevel Converter." Scientific Journal of Riga Technical University. Power and Electrical Engineering 25, no. 25 (January 1, 2009): 145–50. http://dx.doi.org/10.2478/v10144-009-0031-1.

Full text
Abstract:
Voltage Monitoring on Capacitor of Modular Multilevel ConverterA modular multilevel converter is an attractive solution for power conversion without transformers. As modular multilevel converter consists of cascade connections and floating dc capacitors, it requires continuous voltage monitoring. This paper represents voltage measurement circuit of a DC-storage capacitor including power supply with results of experiments.
APA, Harvard, Vancouver, ISO, and other styles
6

Dr. Sujatha Balaraman,, P. Yogini. "Three Phase Eleven Level Modular Multilevel Inverter with PD-PWM for Grid Connected System." International Journal for Modern Trends in Science and Technology, no. 8 (August 7, 2020): 86–91. http://dx.doi.org/10.46501/ijmtst060816.

Full text
Abstract:
The prominence of Modular Multilevel Inverters (MMI) is rising owing their merits of simple mechanical construction and good voltage sharing for semiconductor devices. Mostly Multilevel Inverters use more than one source; however, the effective use of all the sources at all levels is rare. Conventional Multilevel Inverters will diminish the energy efficiency of the conversion system. When compared to conventional multilevel inverter, Modular Multilevel Inverter with a high numbers of voltage levels seem to be the most suitable because of the use of an isolated dc source. This paper explores a three-phase eleven level modular multilevel inverter with phase disposition pulse width modulation technique (PD-PWM) that can extract power from all the sources at all the levels. Besides, this paper develops a synchronous d-q reference frame controller to control the current of 11kV. When compared with Reduced Switch Count based Multilevel Inverter Series/Parallel switching topologies, the Modular Multilevel Inverter provides better Total Harmonic Distortion (THD) of output voltage and utilization factor.
APA, Harvard, Vancouver, ISO, and other styles
7

Ali, Salman, Santiago Bogarra, Muhammad Mansooor Khan, Ahmad Taha, Pyae Pyae Phyo, and Yung-Cheol Byun. "Prospective Submodule Topologies for MMC-BESS and Its Control Analysis with HBSM." Electronics 12, no. 1 (December 21, 2022): 20. http://dx.doi.org/10.3390/electronics12010020.

Full text
Abstract:
Battery energy storage systems and multilevel converters are the most essential constituents of modern medium voltage networks. In this regard, the modular multilevel converter offers numerous advantages over other multilevel converters. The key feature of modular multilevel converter is its capability to integrate small battery packs in a split manner, given the opportunity to submodules to operate at considerably low voltages. In this paper, we focus on study of potential SMs for modular multilevel converter based battery energy storage system while, keeping in view the inconsistency of secondary batteries. Although, selecting a submodule for modular multilevel converter based battery energy storage system, the state of charge control complexity is a key concern, which increases as the voltage levels increase. This study suggests that the half-bridge, clamped single, and full-bridge submodules are the most suitable submodules for modular multilevel converter based battery energy storage system since, they provide simplest state of charge control due to integration of one battery pack along with other advantages among all 24 submodule topologies. Depending on submodules analysis, the modular multilevel converter based battery energy storage system based on half-bridge submodules is investigated by splitting it into AC and DC equivalent circuits to acquire the AC and DC side power controls along with an state of charge control. Subsequently, to validate different control modes, a downscaled laboratory prototype has been developed.
APA, Harvard, Vancouver, ISO, and other styles
8

B B, Thool, and Awate S P. "Modular Multilevel Converter Based Statcom." International Journal of Electrical and Electronics Engineering 2, no. 1 (January 25, 2015): 6–9. http://dx.doi.org/10.14445/23488379/ijeee-v2i1p103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ferreira, Jan A. "The Multilevel Modular DC Converter." IEEE Transactions on Power Electronics 28, no. 10 (October 2013): 4460–65. http://dx.doi.org/10.1109/tpel.2012.2237413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

R, Dr Devarajan. "Design of Intelligent Modular Multilevel Converters for HVDC System." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 1769–74. http://dx.doi.org/10.5373/jardcs/v12sp7/20202287.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Modular multilevel"

1

Elgenedy, Mohamed Atef. "High-voltage pulse generators incorporating modular multilevel converter sub-modules." Thesis, University of Strathclyde, 2018. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=29620.

Full text
Abstract:
Recent research established the effectiveness of applying a pulsed electric field to deactivate harmful microorganisms (such as bacteria and E. coli). Successful deactivation is achieved by lethal electroporation; a process that produces electric pores in the biological cell membrane of the harmful microorganisms when subjected to high-voltage (HV) pulses. The HV pulses are designed to create pores beyond a critical size at which the biological cell can reseal. In contrast when applying non-lethal electroporation, the cell-membrane survives after the electroporation process. This is required, for example, when inserting protein cells in the cell-membrane. In both lethal and non-lethal electroporation, HV pulses in the kilo-Volt range (1-100 kV) with durations ranging between nanoseconds and milliseconds are required. This thesis proposes nine pulse generator (PG) topologies based on power electronic devices and modular multilevel converter sub-modules. The proposed topologies are divided into two main groups namely: PGs fed from a HV DC supply and PGs fed from an LV DC supply. The first group presents a new family of HV DC fed topologies that improve the performance of existing HV DC fed PGs, such as flexible pulse-waveform generation and full utilisation of the DC link voltage. The second group is dedicated to a new family of LV DC fed PG topologies which have flexible pulse-waveform generation, controlled operation efficiency, and high voltage gain. All the proposed PG topologies share the important aspect in the newly developed HV PGs, that is modularity, which offers redundancy and robust pulse generation operation. The presented PG topologies are supported by theoretical analysis, simulations, and experimentation.
APA, Harvard, Vancouver, ISO, and other styles
2

Zabihinejad, Amin. "Optimal sizing of modular multilevel converters." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27918.

Full text
Abstract:
L’électronique de puissance a pénétré depuis quelques décennies les applications à forte puissance dans de nombreux domaines de l’industrie électrique. Au-delà de l’apparition des technologies d’interrupteur à forte puissance commutable en moyenne tension, ces applications imposaient également des avancées dans le domaine des topologies de convertisseurs statiques : les principaux défis à affronter concernaient l’atteinte de niveaux de tension compatibles avec le domaine de puissance des applications, l’augmentation de la fréquence de commutation apparente en sortie afin d’augmenter la bande passante de la commande, de réduire la taille des éléments de filtrage et de limiter les harmoniques de courant injectés dans le réseau d’alimentation. Les topologies de convertisseurs modulaires multiniveaux (MMC) sont issues de cette problématique de recherche : elles permettent grâce à l’association de cellules de commutation d’atteindre des niveaux de tension exploitables en grande puissance avec les technologies d’interrupteurs existantes, de limiter les fréquences et les pertes de commutation des interrupteurs élémentaires tout en maîtrisant la distorsion harmonique totale (THD). La modularité, la redondance, les degrés de liberté et les fonctionnalités des MMC leur permettent aussi d’augmenter la tolérance aux défauts. Ils pénètrent à présent une large gamme d'applications comme le transport à courant continu en haute tension (HVDC), les systèmes d'énergie renouvelable, les entraînements à vitesse variables de grande puissance, la traction ferroviaire et maritime ainsi que des applications spécifiques très contraignantes en matière de performance dynamique comme les systèmes d’alimentation des électro-aimants dans les accélérateurs de particules. Les topologies MMC sont composées de cellules de commutation élémentaires utilisant des interrupteurs électroniques tels que le Thyristor à Commande Intégrée (IGCT) standard ou les dernières génération d’IGBT. Les convertisseurs MMC ont fait l’objet de nombreux travaux de recherche et de développement en ce qui concerne les topologies, la modélisation et le calcul du fonctionnement en régime permanent et transitoire, le calcul des pertes, le contenu harmonique des grandeurs électriques et les systèmes de commande et de régulation. Par contre le dimensionnement de ces structures est rarement abordé dans les travaux publiés. Comme la grande majorité des topologies de convertisseurs statiques, les convertisseurs MMC sont composés non seulement d’interrupteurs mais aussi d’organes de stockage d’énergie de type composants diélectriques (condensateurs) et magnétiques (inductances, coupleurs) qui sont essentiels pour assurer la conversion des grandeurs électriques en entrée et en sortie. Ces composants ont une forte influence sur la taille, le volume et le rendement des convertisseurs et le dimensionnement optimal de ces derniers résulte souvent de compromis entre la taille des composants passifs, la fréquence et la puissance commutable par les interrupteurs élémentaires. Le travail de recherche présenté dans ce mémoire concerne le développement d’une méthodologie de dimensionnement optimal et global des MMC intégrant les composants actifs et passifs, respectant les contraintes des spécifications de l’application et maximisant certains objectifs de performance. Cette méthodologie est utilisée pour analyser divers compromis entre le rendement global du convertisseur et sa masse, voire son volume. Ces divers scénarios peuvent être également traduits en termes de coût si l’utilisateur dispose du prix des composants disponibles. Diverses solutions concurrentes mettant en œuvre un nombre de cellules spécifique adaptées à des interrupteurs de caractéristiques différentes en termes de calibre de tension, de courant et de pertes associés peuvent ainsi être comparées sur la base de spécifications d’entrée-sortie identiques. La méthodologie est appliquée au dimensionnement d’un convertisseur MMC utilisé comme étage d’entrée (« Active Front-end » : AFE) d’une alimentation d’électro-aimant pulsée de grande puissance. Dans une première partie, une méthode de calcul rapide, précise et générique du régime permanent du convertisseur MMC est développée. Elle présente la particularité de prendre en compte la fréquence de commutation contrairement aux approches conventionnelles utilisant la modélisation en valeurs moyennes. Cet outil se révèle très utile dans l’évaluation du contenu harmonique qui est contraint par les spécifications, il constitue le cœur de l’environnement de conception du convertisseur. Contrairement aux convertisseurs conventionnels, il existe des courants de circulation dans les convertisseurs MMC qui les rendent complexe à analyser. Les inductances de limitation incorporées dans les bras de la topologie sont généralement volumineux et pénalisants en termes de volume et de masse. Il est courant d’utiliser des inductances couplées afin de réduire l'ondulation , la THD et la masse. Dans le travail présenté, un circuit équivalent des inductances couplée tenant compte de l'effet de saturation est développé et intégré à l’environnement. L’utilisation d’inductances couplée augmente la complexité de l'analyse du fonctionnement et la précision de leur méthode de dimensionnement est critique pour l’optimisation globale du convertisseur. Un modèle analytique de dimensionnement de ces composants a été développé et intégré dans l’environnement ainsi qu’un modèle de complexité supérieure qui utilise le calcul des champs par éléments finis. La méthodologie de conception optimale et globale proposée utilise une procédure d’optimisation non linéaire avec contraintes qui pilote l’outil de calcul de régime permanent, le modèles de dimensionnements à plusieurs niveaux de complexité des composants passifs ainsi que d’autres modules permettant de quantifier les régimes de défaut. Pour pallier à la précision réduite des modèles analytiques, une approche d'optimisation hybride est également implantée dans l’environnement. Dans la boucle d'optimisation hybride, le modèle de dimensionnement des inductances peut être corrigé par le modèle de complexité supérieure qui utilise le calcul des champs. On obtient ainsi un meilleure compromis entre la précision de la solution optimale et le temps de convergence de la méthode itérative d’optimisation globale.
In the last decades, power electronics has penetrated high power applications in many areas of the electrical industry. After the emergence of high-voltage semiconductor switch technologies these applications also required advances in the field of static converter topologies: The main challenges were to achieve voltage levels compatible with the application power domain, to increase the apparent switching frequency at the output, to increase the control bandwidth, to reduce the size of the elements of filtering and of limiting the current harmonics injected into the supply network. The topologies of multi-level modular converters (MMC) are based on this research problem: they enable the use of switching cells to achieve high power levels that can be used with existing switch technologies, frequencies and switching losses of the elementary switches while controlling the total harmonic distortion (THD). Modularity, redundancy, degrees of freedom and MMC functionality also allow them to increase fault tolerance. They now penetrated a wide range of applications, such as high-voltage DC (HVDC), renewable energy systems, high-speed variable speed drives, rail and marine traction, and very specific applications in terms of dynamic performance such as electromagnet power systems in particle accelerators. MMC topologies are composed of elementary switching cells using electronic switches such as the standard Integrated Control Thyristor (IGCT) or the latest generation of IGBTs. MMC converters have been the subject of extensive research and development work on topologies, modeling, and calculation of steady-state and transient operation, loss calculation, the harmonic content of electrical quantities and systems control and regulation functions. On the other hand, the dimensioning methodology of these structures is rarely addressed in the published works. Like most static converter topologies, MMC converters are composed not only of switches but also passive components of energy storage devices (capacitors) and magnetic (inductors, couplers) that are essential to ensure the conversion of the input and output electrical quantities. These components have a strong influence on the size, the volume and the efficiency of the converters and the optimal dimensioning of the latter often result from a compromise between the size of the passive components, the frequency and the power switchable by the elementary switches. The research presented in this thesis concerns the development of an optimal and comprehensive design methodology for MMCs integrating active and passive components, respecting the constraints of the application specifications and maximizing certain performance objectives. This methodology is used to analyze the various trade-off between the overall efficiency of the converter and its mass, or even its volume. These various scenarios can also be translated into cost if the user has the price of the available components. Various competing solutions using a specific number of cells adapted to switches with different characteristics in terms of voltage, current, and associated losses can thus be compared on the basis of identical input-output specifications. The methodology is applied to the dimensioning of an MMC converter used as an active front-end (AFE) input of a high-power pulsed solenoid power supply. In the first part, a fast, precise and generic method for calculating the steady-state model of MMC converter is developed. It has the particularity of taking into account the switching frequency as opposed to conventional approaches using modeling in mean values. This tool is very useful in evaluating the harmonic content that is constrained by the specifications, it is the heart of the design environment of the converter. Unlike conventional converters, there are circulation currents in MMC converter structure that make it complex to analyze. The inductors which are used in the arms of the topology are generally bulky and expensive in terms of volume and mass. It is common to use coupled inductors to reduce ripple, THD, and mass. In the presented work, an equivalent circuit of coupled inductances considering the saturation effect is developed and integrated. The use of coupled inductors increases the complexity of the analysis and the precision of its sizing method is critical for the overall optimization of the converter. An analytical model for the dimensioning of these components has been developed and integrated as well as a higher complexity model which uses the finite element method calculation. The proposed optimal and global design methodology uses a nonlinear optimization procedure with constraints that drive the steady-state computing tool, multi-level design models of passive component complexity, and other modules to quantify the fault state. To compensate the low precision of the analytical models, a hybrid optimization approach is also implemented. In the hybrid optimization loop, the inductance-sizing model can be corrected by the higher complexity model that uses finite element computation. A better compromise is thus obtained between the precision of the optimal results and convergence time of the iterative global optimization method.
APA, Harvard, Vancouver, ISO, and other styles
3

Moberg, William. "Modular Multilevel Converters for Heavy Trucks." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167760.

Full text
Abstract:
This thesis examines alternatives for power supply for a heavy truck application based on five different modular multilevel converter configurations that ultimately feed a 3-phase motor. Advantages and disadvantages of the different configurations are being discussed as well as other important factors that play a role in what configuration that is beneficial for the intended application. How half- or full-bridge submodules and battery cells relate to each other to achieve a desired voltage are being explained and calculated. Power losses of the converter submodules are being calculated as well as how a specific battery capacity, with increasing average power consumption, performs uphill according to set requirements. It turns out to be the double-armed modular multilevel converter configurations that has the best performance when it comes to utility, energy storage and the lowest power losses.
APA, Harvard, Vancouver, ISO, and other styles
4

Picas, Prat Ricard. "Control and modulation of modular multilevel converters." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404612.

Full text
Abstract:
The integration of renewable energy sources in the electrical grid is reducing our dependence on fossil fuels. However, to ensure feasibility and reliability of distributed energy generation, more efficient and higher power converters are required. The modular multilevel converter (MMC) is a modern topology of multilevel converter that is very attractive for medium- and high-voltage/power applications, including high-voltage direct current transmission systems and high-power motor drives. The main features of the MMC are modularity, scalability to different power and voltage levels, redundancy and high quality output voltages and currents. However, the operation of the MMC is complex, and there are some issues that still have to be further investigated. One of these issues is the voltage ripples of the submodule (SM) capacitors. The voltage ripples define the minimum value of the capacitances needed for the converter, and therefore its overall size and cost. The use of a proper circulating current controller can reduce the voltage ripples. In this thesis, three techniques for calculating the circulating current reference are presented: two techniques based on optimization functions for minimizing the capacitor voltage ripples; and a fast-processing technique that provides results close to optimal. The capacitor voltage ripples can also be reduced by adding a zero-sequence signal to the modulation signals. In this thesis, the application of discontinuous modulation to the MMC is proposed for the first time. This technique is based on the injection of a discontinuous zero-sequence signal and highly reduces the switching power losses and capacitor voltage ripples. Real applications of the MMC are composed of a high number of SMs. This implies a challenge in the control system, including the data acquisition system. A new technique for measuring the capacitor voltages with only a few sensors has been presented in this thesis. From the output voltage provided by a group of SMs, the individual voltage of each one of them can be acquired. Since acquisition cannot be performed at each sampling time, the capacitor voltages are calculated between samples using an estimation algorithm. Reliability is a feature required in industrial applications. The structure of the MMC facilitates the existence of redundant SMs, but faults need to be detected and localized for deactivating the faulty component. This thesis presents a robust and fast strategy for detecting, localizing and correcting faults in SMs and voltage sensors. The technique is based on three additional sensors per arm, which measure the output voltage of a group of SMs and compare it with the expected voltage. Capacitance differences between the SMs can appear due to component tolerance or ageing of the capacitors. Capacitance mismatches cause uneven distribution of the power losses, thus increasing the thermal stress of some semiconductors, and therefore, their probability of failure. A power loss balancing technique has been proposed, equalising the losses in all the SMs and therefore avoiding the concentration of power losses in some SMs. Application of the MMC to motor drive applications has also been studied in this thesis. The operation of the MMC at low motor speeds/frequencies is still a challenge, since the capacitor voltage ripples are inversely proportional to the current frequency. In this thesis, it has been demonstrated that discontinuous modulation can help to reduce capacitor voltage ripples in motor drive applications, achieving very low speed operation. The technique is compared with other state-of-the-art methods, and it achieves similar capacitor voltage ripples and a significant reduction in power losses. All the control and modulation techniques proposed in this thesis have been studied by simulation in the MATLAB/Simulink environment and corroborated experimentally on low-power laboratory prototypes.
La integració de fonts d’energia renovables a la xarxa elèctrica està reduint la nostra dependència dels recursos fòssils. Però per tal d’assegurar la viabilitat i fiabilitat de la generació d’energia distribuïda, fan falta convertidors estàtics més eficients i de més potència. El convertidor multinivell modular (MMC) és una topologia de convertidor multinivell recent, molt prometedora per aplicacions de mitja i alta potència, com són els sistemes de transmissió d’energia en corrent continua o els accionaments de motors d’alta potència. Els principals avantatges del MMC són modularitat, escalabilitat en tensió i potència, redundància i gran qualitat de la tensió i corrent de sortida. El funcionament del MMC, però, és complex i encara hi ha alguns problemes que s’han d’investigar amb més profunditat. Un dels problemes és l’arrissat de tensió del condensador de sub-mòdul (SM). L’arrissat de tensió defineix el valor mínim d’aquests condensadors i per tant, el seu cost. L’ús d’un corrent circulant adequat pot reduir l’arrissat de tensió. En aquesta tesi es presenten tres tècniques per calcular la consigna del corrent circulant: dues tècniques basades en funcions d’optimització que minimitzen l’arrissat de tensió i una tècnica d’aplicació més simple, la qual proporciona resultats pròxims als òptims però que es pot calcular més ràpidament. L’arrissat de tensió també es pot reduir afegint un component homopolar en els senyals de modulació. En aquesta tesi es proposa per primera vegada l’ús de la modulació discontinua per al MMC. Aquesta tècnica, basada en la injecció d’un component homopolar, permet una gran reducció de l’arris s at de tens ió i de les pèrdues de commutació. Les aplicacions reals del convertidor MMC es componen per un gran nombre de SMs. Això implica un repte en el disseny del sistema de control, particularment en l’etapa d’adquisició de dades. Aquesta tesi presenta un nou sistema de mesura per a les tensions dels condensadors de SM, en el qual es necessiten pocs sensors. A partir de la tensió de sortida d’un grup de sensors, el sistema pot adquirir la tensió de cada un d’ells. Com que l’adquisició no es pot fer a cada període de mostreig, entre adquisicions la tensió es calcula mitjançant un algoritme d’estimació. Un dels requisits de les aplicacions industrials és la fiabilitat. L’estructura del MMC permet l’ús de SMs redundants, però les fallades s’han de detectar i localitzar per tal de desactivar el component erroni. En aquesta tesi es presenta un sistema ràpid i robust de detecció, localització i correcció de fallades en SMs i sensors de tensió. El sistema es basa en l’ús de tres sensors addicionals per semi-branca, els quals mesuren la tensió de sortida d’un grup de SMs i la comparen amb la tensió esperada. A causa de la tolerància o l’envelliment dels condensadors , poden aparèixer diferències en la capacitat dels SMs. Aquestes diferències causen una mala distribució de les pèrdues dels semiconductors, incrementant l’estrès tèrmic d’alguns dels components i la probabilitat de fallada. Per això, es proposa un algoritme d’equilibrat de pèrdues, el qual iguala les pèrdues dels SMs i n’evita la concentració en algun SM. En aquesta tesi també s’ha estudiat l’aplicació del MMC en accionaments de motors. El funcionament del MMC a baixa velocitat/freqüència del motor és un repte encara no resolt, ja que l’arrissat de tensió dels condensadors és inversament proporcional a la freqüència del corrent. Aquesta tesi demostra que la modulació discontinua es pot utilitzar per reduir l’arrissat de tensió en aquesta situació, aconseguint un bon funcionament a molt baixa velocitat. En comparació amb altres tècniques actuals de baixa velocitat, la modulació discontinua aconsegueix un arrissat de tensió similar i una reducció de les pèrdues. Totes les tècniques proposades en aquesta tesi s’han estudiat mitjançant simulació en l’entorn MATLAB/Simulink i s’han corroborat experimentalment en prototips de laboratori.
APA, Harvard, Vancouver, ISO, and other styles
5

Ferreira, Abel António de Azevedo. "Modular multilevel converters for power system applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405894.

Full text
Abstract:
This thesis discusses the operation of the grid-tied modular multilevel converters (MMC) applied on the dc power transmission, particularly on the medium and high-voltage applications. First, it is presented the evolution of the power converters used on the high-voltage dc transmission field (HVdc) with special focus on the modular multilevel-based power converters. Then, due to the intrinsic nature of the converter, besides the control requirements for its dc and ac buses interactions, its energy storage should be carefully managed in order to achieve a safe and knowledgeable operation of this power converter. Hence, its control requirements are presented and mathematically supported. Moreover, the progressive design and validation of its control loops is addressed in this thesis by means of the converter simulation over a broad range of operating conditions. One key-point factor of the MMC performance is the strategy followed to modulate the voltages generated on its arms. In this vision, different modulation techniques were combined with peculiar zero sequence signals in order to analyze their impact on the voltages across the converter arms and its intrinsic performance. This study was also complemented by different procedures followed to balance the energy storage of its capacitors. A transversal research question of this voltage source converter topology is its efficiency. Then, besides the analysis of the ac power flow impact on the power losses produced by its semiconductors, it is deduced and proposed a mathematical expression that that can describe the power losses produced semiconductors, over a broad range of operating conditions of the MMC. Finally, it is explored the possible degrees of freedom of an half-bridge-based MMC whenever it is operating in the static synchronous compensation (STATCOM) mode. Depending on the converter operation aspect that is required to be optimized, the voltage across its dc poles can be adjusted to achieve an improved performance of the MMC
La presente tesis trata sobre el funcionamiento de los convertidores modulares de multinivel (MMC) utilizados en la transmisión de energía eléctrica en corriente continua, en particular para aplicaciones de media y alta tensión. En primer lugar, se presenta la evolución de los convertidores utilizados en el campo de la transmisión de energía eléctrica mediante enlaces en corriente continua de alta tensión(HVdc), haciendo especial énfasis en los convertidores de topología multinivel. Debido a la naturaleza intrínseca del convertidor MMC, se debe regular el intercambio de potencia entre las redes de corriente alterna y continua a las que se conecta, junto con la energía interna almacenada, para asegurar un buen funcionamiento del mismo. Por ello, se presenta una descripción del control del convertidor soportada por un riguroso análisis matemático. El diseño de los diferentes lazos de control se valida mediante simulaciones representando diferentes condiciones de funcionamiento posibles. Un factor clave del rendimiento del MMC es la estrategia de modulación utilizada para aplicar voltajes en cada una de sus ramas. Para evaluar sus diferencias a nivel de pérdidas, se presenta una comparativa entre diferentes técnicas de modulación incorporando secuencia homopolar. Este estudio se complementa con el estudio de diferentes procedimientos seguidos para equilibrar el almacenamiento de energía en los condensadores de una rama. Una cuestión de investigación transversal de esta topología de convertidor de tensión es su eficiencia. Posteriormente, se obtiene una expresión matemática que permite describir las pérdidas de los semiconductores del convertidor en funcionamiento, para diferentes niveles de transferencia de potencia. Finalmente, se analizan los posibles grados de libertad de un MMC operando en modo de compensación de potencia reactiva (STATCOM). En base a la operación de dicho convertidor y de la variable que se requiera optimizar, resulta posible variar la tensión entre sus polos DC para lograr un mejor funcionamiento del convertidor
APA, Harvard, Vancouver, ISO, and other styles
6

Serbia, Nicola. "Modular Multilevel Converters for HVDC power stations." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2014. http://tel.archives-ouvertes.fr/tel-00945375.

Full text
Abstract:
Les travaux présentés dans ce mémoire ont été réalisés dans le cadre d'une collaboration entre le LAboratoire PLAsma et Conversion d'Énergie (LAPLACE), Université de Toulouse, et la Seconde Université de Naples (SUN). Ce travail a reçu le soutien de la société Rongxin Power Electronics (Chine) et traite de l'utilisation des convertisseurs multi-niveaux pour le transport d'énergie électrique en courant continu Haute Tension (HVDC). Depuis plus d'un siècle, la génération, la transmission, la distribution et l'utilisation de l'énergie électrique sont principalement basées sur des systèmes alternatifs. Les systèmes HVDC ont été envisagés pour des raisons techniques et économiques dès les années 60. Aujourd'hui il est unanimement reconnu que ces systèmes de transport d'électricité sont plus appropriés pour les lignes aériennes au-delà de 800 km de long. Cette distance limite de rentabilité diminue à 50 km pour les liaisons enterrées ou sous-marines. Les liaisons HVDC constituent un élément clé du développement de l'énergie électrique verte pour le XXIème siècle. En raison des limitations en courant des semi-conducteurs et des câbles électriques, les applications à forte puissance nécessitent l'utilisation de convertisseurs haute tension (jusqu'à 500 kV). Grâce au développement de composants semi-conducteurs haute tension et aux architectures multicellulaires, il est désormais possible de réaliser des convertisseurs AC/DC d'une puissance allant jusqu'au GW. Les convertisseurs multi-niveaux permettent de travailler en haute tension tout en délivrant une tension quasi-sinusoïdale. Les topologies multi-niveaux classiques de type NPC ou " Flying Capacitor " ont été introduites dans les années 1990 et sont aujourd'hui couramment utilisées dans les applications de moyenne puissance comme les systèmes de traction. Dans le domaine des convertisseurs AC/DC haute tension, la topologie MMC (Modular Multilevel Converter), proposée par le professeur R. Marquardt (Université de Munich, Allemagne) il y a dix ans, semble particulièrement intéressante pour les liaisons HVDC. Sur le principe d'une architecture de type MMC, le travail de cette thèse propose différentes topologies de blocs élémentaires permettant de rendre le convertisseur AC/DC haute tension plus flexible du point de vue des réversibilités en courant et en tension. Ce document est organisé de la manière suivante. Les systèmes HVDC actuellement utilisés sont tout d'abord présentés. Les configurations conventionnelles des convertisseurs de type onduleur de tension (VSCs) ou de type onduleur de courant (CSCs) sont introduites et les topologies pour les systèmes VSC sont ensuite plus particulièrement analysées. Le principe de fonctionnement de la topologie MMC est ensuite présenté et le dimensionnement des éléments réactifs est développé en considérant une commande en boucle ouverte puis une commande en boucle fermée. Plusieurs topologies de cellules élémentaires sont proposées afin d'offrir différentes possibilités de réversibilité du courant ou de la tension du côté continu. Afin de comparer ces structures, une approche analytique de l'estimation des pertes est développée. Elle permet de réaliser un calcul rapide et direct du rendement du système. Une étude de cas est réalisée en considérant la connexion HVDC d'une plateforme éolienne off-shore. La puissance nominale du système étudié est de 100 MW avec une tension de bus continu égale à 160 kV. Les différentes topologies MMC sont évaluées en utilisant des IGBT ou des IGCT en boitier pressé. Les simulations réalisées valident l'approche analytique faite précédemment et permettent également d'analyser les modes de défaillance. L'étude est menée dans le cas d'une commande MLI classique avec entrelacement des porteuses. Enfin, un prototype triphasé de 10kW est mis en place afin de valider les résultats obtenus par simulation. Le système expérimental comporte 18 cellules de commutations et utilise une plate-forme DSP-FPGA pour l'implantation des algorithmes de commande.
APA, Harvard, Vancouver, ISO, and other styles
7

Antonopoulos, Antonios. "Control, Modulation and Implementation of Modular Multilevel Converters." Licentiate thesis, KTH, Elektriska maskiner och effektelektronik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-34188.

Full text
Abstract:
Denna avhandling behandlar analys och styrning av den modulära multinivå omvandlaren (M2C). M2C är en lovande omvandlarteknologi för högspända högeffekttillämpningar. Anledningen till detta är låg distorsion i utstorheterna kan uppnås med låg  medelswitchfrekvens per switch och utan utgångsfilter. Med M2C har utspänningen så lågt övertonsinnehåll att drift av högeffektmotorer är möjlig utan reduktion av märkeffekten. Emellertid innebär det stora antalet styrda switchar att styrningen blir mer komplex än för motsvarande tvånivåomvandlare. Styrningen av M2C måste måste konstrueras så att submodulernas kondensatorspänningar balanseras och är stabila oberoende av driftfall. En aktiv mekanism för val av submoduler, som är integrerad i modulatorn, har visat sig vara effektiv för att ombesörja den interna balanseringen av omvandlararmarna. Utöver balanseringen av de individuella kondensatorerna krävs en strategi för styrning av den totalt upplagrade energin i omvandlaren. Med utgångspunkt i en analytisk beskrivning av omvandlaren föreslås styrlagar för både öppen styrning och sluten reglering, vilka genom både simuleringar och med hjälp av experiment har visat sig vara stabila i hela arbetsområdet. Den potentiella växelverkan mellan den inre omvandlarstyrningen och en yttre strömreglering undersöks också. Både simuleringar och experiment bekräftar att eventuell interaktion inte innebär några avsevärda problem vare sig för omvandlaren eller motorn. En  hårdvaruimplementering av en nedskalad trefasig 10kVA-omvandlare har genomförts för att verifiera modellering och styrning. Implementeringen av styrningen beskrivs i detalj. Styrningen är anmärkningsvärt snabb och kan utökas till godtyckligt antal nivåer. Den kan därför användas för en fullskaleimplementering i MW-klassen.
This thesis deals with the analysis and control of the modular multilevel converter (M2C). The M2C is a promising converter technology for various high-voltage high-power applications. The reason to this is that low-distortion output quantities can be achieved with low average switching frequencies per switch and without output filters. With the M2C the output voltage has such a low harmonic content that high-power motors can be operated without any derating. However, the apparent large number of devices, requires more complex converter control techniques than a two-level counterpart. The internal control of an M2C must be designed so that the submodule capacitor voltages are equalized and stable independent of the loading conditions. An active submodule selection mechanism, included in the modulator, has been shown able to provide voltage sharing inside the converter arm. Apart from the individual capacitor voltage sharing, a strategy has to be designed to ensure that the total amount of energy stored inside the converter will always be controlled. Based on an analytical description of the converter, both feedback and open-loop control methods are suggested, simulated and experimentally evaluated, which will ensure stable operation in the whole operation range. The potential interaction of the internal controllers with an external motor current controller is also investigated. Both simulation and experimental results show that any interaction will not result in any problems neither for the converter nor for the motor control itself. A hardware implementation of a down-scaled 10 kVA three-phase laboratory prototype converter is performed, in order to evaluate the modeling and the controllers developed. The controller implementation is described in detail, as it exhibits remarkably fast response, and can be expanded up to an arbitrary number of levels. Therefore it can be used even by a full-scale converter implementation in the MW range.
QC 20110628
APA, Harvard, Vancouver, ISO, and other styles
8

Peftitsis, Dimosthenis, Georg Tolstoy, Antonios Antonopoulos, Jacek Rabkowski, Jang-Kwon Lim, Mietek Bakowski, Lennart Ängquist, and Hans-Peter Nee. "High-Power Modular Multilevel Converters With SiC JFETs." KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-52687.

Full text
Abstract:
This paper studies the possibility of building a modular multilevel converter (M2C) using silicon carbide (SiC) switches. The main focus is on a theoretical investigation of the conduction losses of such a converter and a comparison to a corresponding converter with silicon-insulated gate bipolar transistors. Both SiC BJTs and JFETs are considered and compared in order to choose the most suitable technology. One of the submodules of a down-scaled 3 kVA prototype M2C is replaced with a submodule with SiC JFETs without antiparallel diodes. It is shown that the diode-less operation is possible with the JFETs conducting in the negative direction, leaving the possibility to use the body diode during the switching transients. Experimental waveforms for the SiC submodule verify the feasibility during normal steady-state operation. The loss estimation shows that a 300 MW M2C for high-voltage direct current transmission would potentially have an efficiency of approximately 99.8% if equipped with future 3.3 kV 1.2 kA SiC JFETs.
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.QC 20111220
APA, Harvard, Vancouver, ISO, and other styles
9

Goncalves, Jorge. "Thermal regulation and balancing in modular multilevel converters." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/109594/.

Full text
Abstract:
Modular multilevel converters (MMCs) are envisaged as the key power electronic converter topology to enable a multi-terminal pan-European high voltage direct current (HVDC) Supergrid for the interconnection of o�shore wind farms and exchange of energy between di�erent countries. A key feature of MMCs in the large number of semiconductor devices employed in each converter station, distributed over a stack of series-connected sub-modules (SMs). These semiconductors possess strict thermal limits, which can constrain the operating range on the converter by limiting its capability of providing enhanced functionalities to the AC grid such as short-term power overloads. Furthermore, due to di�erent loading conditions and ageing, signi�cant temperature di�erences can exist between SMs which can lead to a very di�erent lifetime expectancies for the semiconductor modules. This thesis proposes active thermal control methodologies to act of two distinct converter levels. Firstly, two novel dynamic rating strategies are proposed to de�ne the converter current injection limit as a response to the maximum semiconductor temperature feedback. This enables the exploitation of the semiconductors thermal headroom to provide short-term power overloads, which can be used for the improvement of the frequency support of a power-distressed AC grid. Secondly, a SM-level temperature regulation and balancing algorithm is proposed, aiming at the equalisation of the maximum semiconductor die temperature in all the SMs of an MMC arm. The proposed methods are validated in a detailed and combined electro-thermal simulation model with 3 and 10 SMs per arm developed in MATLAB®/Simulink® using PLECS® Blockset. An experimental platform has been designed and utilised to verify the e�ectiveness of the dynamic rating strategies and the SM temperature regulation and balancing strategy.
APA, Harvard, Vancouver, ISO, and other styles
10

Viatkin, Aleksandr <1988&gt. "Modular Multilevel Converters With Interleaved Half-Bridge Submodules." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10062/1/thesis.pdf.

Full text
Abstract:
Modular multilevel converter (MMC) has a prominent potential to take over the high-power converter market thanks to its exceptional characteristics, including modularity, flexibility to adapt to any voltage level, significant reduction in average switching frequency without compromising remarkable harmonic performance and many other. However, due to structural constraints of the existing submodule arrangements in classical MMCs the power scalability at submodule levels is limited. To address this issue, this PhD thesis reports a novel Modular Multilevel Converter with Interleaved half-bridge Sub-Modules (ISM-MMC). The ISM-MMC exhibits a higher modularity and scalability in terms of current ratings with respect to conventional MMCs, while preserves the typical voltage level adaptiveness. The ISM-MMC brings the known advantages of classical MMC to low/medium-voltage, high-current applications, where classical MMCs are rarely used. A detailed description of operating principle along with the converter’s average model, outer and internal control methods, a hybrid modulation scheme that helps to exploit advantages of the interleaving scheme and converter efficiency analysis are given in this thesis. This dissertation also concerns a current balancing problem that is typical in interleaved converters, while it is very new issue in MMC-based structures. The problem has been rigorously studied and a new control strategy, which relies on interleaved currents estimation, has been proposed in this work. This technique minimizes the number of required current sensors in ISM-MMC, thereby reducing the converter’s cost, weight, and volume. To make operation of such current regulators possible, a new capacitor voltage balancing strategy suitable for both ISM-MMCs and conventional MMCs is developed. Extensive numerical simulations, hardware-in-the-loop, and experimental tests on a scaled-down, single-phase ISM-MMC laboratory prototype are carried out to demonstrate the feasibility of the proposed topology, implemented modulation and control schemes.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Modular multilevel"

1

Du, Sixing, Apparao Dekka, Bin Wu, and Navid Zargari. Modular Multilevel Converters: Analysis, Control, and Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119367291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

del Giudice, Davide, Federico Bizzarri, Daniele Linaro, and Angelo Maurizio Brambilla. Modular Multilevel Converter Modelling and Simulation for HVDC Systems. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12818-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sharifabadi, Kamran, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, and Remus Teodorescu. Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118851555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Bin, Sixing Du, Apparao Dekka, and Navid Zargari. Modular Multilevel Converters: Analysis, Control, and Applications. Wiley & Sons, Incorporated, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Bin, Sixing Du, Apparao Dekka, and Navid Zargari. Modular Multilevel Converters: Analysis, Control, and Applications. Wiley & Sons, Limited, John, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Modular Multilevel Converters: Analysis, Control, and Applications. Wiley-Interscience, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Bin, Sixing Du, Apparao Dekka, and Navid Zargari. Modular Multilevel Converters: Analysis, Control, and Applications. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ronanki, Deepak, and Sheldon Williamson. Modular Multilevel Converters for Electric Transportation Applications. Wiley & Sons, Limited, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deng, Fujin, Chengkai Liu, and Zhe Chen. Modular Multilevel Converters: Control, Fault Detection, and Protection. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deng, Fujin, Chengkai Liu, and Zhe Chen. Modular Multilevel Converters: Control, Fault Detection, and Protection. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Modular multilevel"

1

Kalariya, Rushikesh Chakubhai, and Mukesh Bhesaniya. "Improved Model of Modular Multilevel Converter." In Proceedings of the International Conference on Intelligent Systems and Signal Processing, 263–78. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6977-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

del Giudice, Davide, Federico Bizzarri, Daniele Linaro, and Angelo Maurizio Brambilla. "Modular Multilevel Converter Models and Simulation Approaches." In Modular Multilevel Converter Modelling and Simulation for HVDC Systems, 51–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12818-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Li, Meng Huang, Liangjun Bai, and Min Qiao. "Maintenance Optimization Strategy of Modular Multilevel Converter." In Lecture Notes in Electrical Engineering, 995–1003. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1870-4_104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Encarnação, Luis, José Fernando Silva, Sónia F. Pinto, and Luis M. Redondo. "A New Modular Marx Derived Multilevel Converter." In Technological Innovation for Sustainability, 573–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19170-1_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steckler, Pierre-Baptiste, Jean-Yves Gauthier, Xuefang Lin-Shi, and François Wallart. "Structural Analysis and Modular Control Law for Modular Multilevel Converter (MMC)." In Lecture Notes in Electrical Engineering, 179–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37161-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lim, Ziyou. "Four-Quadrant Reduced Modular Cell Rectifier." In Advanced Multilevel Converters and Applications in Grid Integration, 137–61. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Bo, and Dongyuan Qiu. "m-Mode Controllability Applying to Modular Multilevel Converter." In CPSS Power Electronics Series, 155–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1382-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grégoire, Luc A., Jean Bélanger, Christian Dufour, Handy F. Blanchette, and Kamal Al-Haddad. "Real-Time Simulation of Modular Multilevel Converters (MMCs)." In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, 591–607. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118755525.ch18b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hou, Kai, Xingyu Wu, Fuhong Min, Zhigang Wang, and Guoning Wang. "Small-Signal Modeling of Modular Multilevel DC Transformer." In Proceedings of 2020 International Top-Level Forum on Engineering Science and Technology Development Strategy and The 5th PURPLE MOUNTAIN FORUM (PMF2020), 841–52. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9746-6_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Outazkrit, Mbarek, Faicel El Aamri, Essaid Jaoide, Azeddine Mouhsen, and Abdelhadi Radouane. "Inner Differential Current Suppression in Modular Multilevel Converter." In Digital Technologies and Applications, 592–602. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01942-5_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Modular multilevel"

1

Tian, Yumeng, Harith R. Wickramasinghe, Zixin Li, and Georgios Konstantinou. "Modular Multilevel Converter Sub-modules for HVDC Applications." In 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia). IEEE, 2020. http://dx.doi.org/10.1109/ipemc-ecceasia48364.2020.9368019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oates, Colin, Kevin Dyke, and David Trainer. "The augmented modular multilevel converter." In 2014 16th European Conference on Power Electronics and Applications (EPE'14-ECCE Europe). IEEE, 2014. http://dx.doi.org/10.1109/epe.2014.6910871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adam, G. P., K. H. Ahmed, and B. W. Williams. "Mixed cells modular multilevel converter." In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE). IEEE, 2014. http://dx.doi.org/10.1109/isie.2014.6864817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aristone, Flavio, Proyag Datta, Yohannes M. Desta, Alexey M. Espindola, and Jost Goettert. "Molded multilevel modular microfluidic devices." In Micromachining and Microfabrication, edited by Holger Becker and Peter Woias. SPIE, 2003. http://dx.doi.org/10.1117/12.472890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Şutîi, Ana Maria, Tom Verhoeff, and Mark van den Brand. "Modular multilevel metamodeling with MetaMod." In Modularity '16: Companion volume of the 15th International Conference on Modularity. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2892664.2892702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarafianos, Dimitrios N. "Modular Multilevel Converter cell construction." In 2012 47th International Universities Power Engineering Conference (UPEC). IEEE, 2012. http://dx.doi.org/10.1109/upec.2012.6398622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Modular Multilevel Converters and Applications." In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018. http://dx.doi.org/10.1109/iecon.2018.8591495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Zhaohui, Junming Zhang, and Kuang Sheng. "Modular multilevel power electronic transformer." In 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE 2015-ECCE Asia). IEEE, 2015. http://dx.doi.org/10.1109/icpe.2015.7167803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schroeder, Markus, Stefan Henninger, Johann Jaeger, Andreja Rasic, Hubert Rubenbauer, and Tobias Lang. "An enhanced modulator concept for the Modular Multilevel Converter." In 2014 16th European Conference on Power Electronics and Applications (EPE'14-ECCE Europe). IEEE, 2014. http://dx.doi.org/10.1109/epe.2014.6910853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chandrasekaran, Kannan, Nalin Kant Mohanty, and Ashwin Kumar Sahoo. "Performance Analysis Of Modular Vs Non Modular Multilevel Inverter." In 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation (ICREISG). IEEE, 2020. http://dx.doi.org/10.1109/icreisg49226.2020.9174211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography