Academic literature on the topic 'Modes oscillatoire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modes oscillatoire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modes oscillatoire"
Cairns, David E., Roland J. Baddeley, and Leslie S. Smith. "Constraints on Synchronizing Oscillator Networks." Neural Computation 5, no. 2 (March 1993): 260–66. http://dx.doi.org/10.1162/neco.1993.5.2.260.
Full textVelichko, Andrey, Maksim Belyaev, Vadim Putrolaynen, Alexander Pergament, and Valentin Perminov. "Switching dynamics of single and coupled VO2-based oscillators as elements of neural networks." International Journal of Modern Physics B 31, no. 02 (January 18, 2017): 1650261. http://dx.doi.org/10.1142/s0217979216502611.
Full textFeng, Chunhua. "Dynamic Behavior for a Coupled Nonlinear Oscillator Model with Distributed and Discrete Delays." European Journal of Mathematics and Statistics 2, no. 3 (July 9, 2021): 32–36. http://dx.doi.org/10.24018/ejmath.2021.2.3.43.
Full textLABBI, ABDERRAHIM, RUGGERO MILANESE, and HOLGER BOSCH. "ASYMPTOTIC SYNCHRONIZATION IN NETWORKS OF LOCALLY CONNECTED OSCILLATORS." International Journal of Bifurcation and Chaos 09, no. 12 (December 1999): 2279–84. http://dx.doi.org/10.1142/s0218127499001759.
Full textUETA, TETSUSHI, HISAYO MIYAZAKI, TAKUJI KOUSAKA, and HIROSHI KAWAKAMI. "BIFURCATION AND CHAOS IN COUPLED BVP OSCILLATORS." International Journal of Bifurcation and Chaos 14, no. 04 (April 2004): 1305–24. http://dx.doi.org/10.1142/s0218127404009983.
Full textKabana, Sonia, and Peter Minkowski. "Counting of oscillatory modes of valence quarks forming q–q̄ mesons." International Journal of Modern Physics A 31, no. 07 (March 2, 2016): 1650023. http://dx.doi.org/10.1142/s0217751x16500238.
Full textYeremieiev, Volodymyr, Oleksandr Briantsev, Oleksii Naumuk, and Volodymyr Samoilov. "Software for research oscillation process in the system of oscillators with different masses." Ukrainian Journal of Educational Studies and Information Technology 7, no. 4 (December 30, 2019): 10–23. http://dx.doi.org/10.32919/uesit.2019.04.02.
Full textKabana, Sonia, and Peter Minkowski. "Counting of oscillatory modes of valence quarks forming qqq baryons for three quark flavors u, d, s." International Journal of Modern Physics A 32, no. 04 (February 9, 2017): 1750004. http://dx.doi.org/10.1142/s0217751x1750004x.
Full textJezzini, Sami H., Andrew A. V. Hill, Pavlo Kuzyk, and Ronald L. Calabrese. "Detailed Model of Intersegmental Coordination in the Timing Network of the Leech Heartbeat Central Pattern Generator." Journal of Neurophysiology 91, no. 2 (February 2004): 958–77. http://dx.doi.org/10.1152/jn.00656.2003.
Full textKurkin, Semen A., Danil D. Kulminskiy, Vladimir I. Ponomarenko, Mikhail D. Prokhorov, Sergey V. Astakhov, and Alexander E. Hramov. "Central pattern generator based on self-sustained oscillator coupled to a chain of oscillatory circuits." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 3 (March 2022): 033117. http://dx.doi.org/10.1063/5.0077789.
Full textDissertations / Theses on the topic "Modes oscillatoire"
Anstie, James D. "A 50 K dual-mode sapphire oscillator and whispering spherical mode oscillators." University of Western Australia. School of Physics, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0070.
Full textAbdulhay, Enas. "Une nouvelle méthode non-invasive d'estimation cycle à cycle du volume d'éjection cardiaque dans le signal de plethysmographie respiratoire par inductance : algorithme de "double décomposition empirique"." Université Joseph Fourier (Grenoble ; 1971-2015), 2009. http://www.theses.fr/2009GRE10220.
Full textThe main objective that guides the signal processing approaches ofthis thesis is the development of a tool that oould be part of an integrative physiology approach where, at each scale, the model of signais may be different We seek here the restriction of asstnnptions a priori to a set: of rules goveming the physiological interactions between physiological functions in the absence of fannal and mathematical assumptions. We applied this approach to the problem of cardiac waves detection and estimation of cycle-to-cycle stroke volume in the RIP signal (Respiratory Inductive Plethysmography). The empirical decomposition approach seems to be particularly adapted to our logic. We propose here the first version of an algorithm based on RIP double decomposition. The method and its COITeSpül1ding tools have been tested on two types of data, simulated signais and real signais recorded at healthy volunteers. Our aim is also therefore to develop a cardio-respiratory model that can serve as a tool for ventilatory, cardiac and RIP signals simulation along with the simulation of the effect of each system on the other. The results show that the proposed method is suitable for RIP signal analysis and for stroke volume estimation
JANIAUD, BEATRICE. "Instabilites de phase de modes oscillatoires." Paris 6, 1994. http://www.theses.fr/1994PA066156.
Full textMukherjee, Jayanta. "General non linear perturbation model of phase noise in LC oscillators." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149061925.
Full textBarbagallo, Alexandre. "Model reduction and closed-loop control of oscillator and noise-amplifier flows." Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/65/49/30/PDF/Barbagallo_PhDThesis.pdf.
Full textCe travail est consacré au contrôle en boucle fermée des perturbations se développant linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et amplificateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur un modèle d'ordre réduit de l'écoulement obtenu par projection de Petrov-Galerkin. La stabilisation d'un écoulement de cavité de type oscillateur est traitée dans une première partie. Il est montré que la totalité de la partie instable de l'écoulement (les modes globaux instables) ainsi que la relation entrée-sortie (action de l'actionneur sur le capteur) de la partie stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux, modes POD et modes BPOD sont successivement évalués comme bases de projection pour modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l'écoulement que lorsque l'instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En revanche, les modes POD et plus particulièrement BPOD sont capable d'extraire la dynamique entrée-sortie stable et permettent de stabiliser efficacement l'écoulement. La seconde partie de ce travail est consacrée à la réduction de l'amplification des perturbations sur une marche descendante. L'influence de la localisation du capteur et de la fonctionnelle de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler une simulation non-linéaire avec un modèle linéaire est évaluée
Ramirez, Avila Gonzalo. "Synchronization phenomena in light-controlled oscillators." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211169.
Full textLe modèle a ensuite été validé en comparant les résultats expérimentaux et théoriques. Le modèle reproduit même, le phénomène de bifurcation qui apparaît lorsque trois LCOs sont couplés et disposés en ligne :deux états stables différents apparaissent selon les conditions initiales. L'accord trouvé entre théorie et expérience nous permet d'utiliser le modèle pour étudier d'autres situations qui ne sont pas facilement abordables du point de vue expérimental.
Nous avons étudié analytiquement deux LCOs identiques couplés. Même pour ce cas idéal, nous étions obligés de faire des simplifications pour pouvoir trouver des solutions exactes. On a trouvé pour ce système deux états possibles qui dépendent des conditions initiales, la synchronisation (stable) et l'anti-synchronisation (instable). Nous avons également montré que le temps de synchronisation augmente avec la distance entre LCOs. La construction des langues d'Arnold (régions de synchronisation) nous a permis de distinguer des régions de synchronisation pure d'ordre n:m et des régions de superposition synchronisation--modulation.
Nous avons travaillé numériquement avec des systèmes de LCOs affectés de bruits uniforme et Gaussien. Le comportement synchrone de ce système a été caractérisé en utilisant des paramètres statistiques simples tels que la moyenne de la différence de phase linéaire et la variance de la différence de phase cyclique. Nous avons démontré que le bruit, bien qu'il puisse perturber la synchronisation, peut aussi la favoriser entre deux LCOs qui ne se synchroniseraient pas en conditions normales, surtout quand le bruit est Gaussien et que les variances du bruit ne sont pas égales.
Nous avons étudié en termes statistiques la synchronisation de LCOs couplés localement et arrangés en ligne, en anneau et en réseau. Nous avons montré que la synchronisation totale se produit plus facilement pour des LCOs disposés en anneau. Concernant le temps de synchronisation, il est imprédictible. Les résultats analytiques et numériques suggèrent que la synchronisation totale est le phénomène le plus probable quand le nombre d'oscillateurs n'est pas très grand.
Finalement, nous avons étudié des LCOs statiques et mobiles couplés globalement. Dans les deux cas, nous avons trouvé que la synchronisation est moins probable quand le nombre d'oscillateurs augmente. Pour la condition statique, en considérant un couplage du type champ moyen, nous avons observé que le temps de synchronisation diminue avec le nombre de LCOs. Cependant, pour la situation plus réaliste dans laquelle l'interaction entre LCOs dépend de la distance les séparant, le temps de synchronisation devient à nouveau imprédictible. Enfin, nous avons étudié l'influence de la mobilité sur la synchronisation, problème qui est important en biologie et en robotique.
Notre système, de par ses caractéristiques et sa base expérimentale, est beaucoup plus proche de la réalité que ceux considérés d'habitude dans la littérature. Les résultats obtenus peuvent s'appliquer à des systèmes biologiques (lucioles, cellules cardiaques, neurones, …), mais également à la robotique, où la communication à longue portée par la lumière et l'émergence de patterns de synchronisation pourraient être très utiles dans le but d'effectuer des tâches spécifiques.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Parker, Julie. "A study of the phenylacetylene oxidative carbonylation reaction in oscillatory and non-oscillatory modes." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3281.
Full textWedgwood, Kyle C. A., Kevin K. Lin, Ruediger Thul, and Stephen Coombes. "Phase-Amplitude Descriptions of Neural Oscillator Models." BioMed Central, 2013. http://hdl.handle.net/10150/610255.
Full textMakarau, Amos, and Amos Makarau. "Intra-seasonal oscillatory modes of the southern Africa summer circulation." Doctoral thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/23683.
Full textTığrak, Ulaş Esra Pashaev Oktay. "Damping Oscillatory Models In General Theory of Relativity/." [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/matematik/T000667.pdf.
Full textBooks on the topic "Modes oscillatoire"
The Duffing equation: Nonlinear oscillators and their phenomena. Chichester, West Sussex, U.K: Wiley, 2011.
Find full textShu, Chi-Wang. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textPogorzelski, Ronald J. Coupled-oscillator based active-array antennas. Hoboken, New Jersey: John Wiley & Sons Inc., 2012.
Find full textBrown, Catherine Alicia. Oscillatory behavior in an ocean general circulation model of the North Atlantic. Ottawa: National Library of Canada, 1999.
Find full textWaywell, M. N. Predictions of wave and tidally induced oscillatory flows with Reynolds Stress Turbulence Models. Salford: University of Salford, 1995.
Find full textAldridge, J. N. Comparison of turbulence models for oscillatory rough turbulent boundary layer flows with suspended sediments. Salford: University of Salford Centre for Computational Fluid Dynamics and Turbulence, 1993.
Find full textOsher, Stanley. Essentially non-oscillatory shock capturing methods applied to turbulence amplification in shock wave calculations. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textBauer, Christopher. Low Reynolds number [kappa]-[epsilon] and empirical transition models for oscillatory pipe flow and heat transfer. [Washington, D.C: National Aeronautics and Space Administration, 1993.
Find full textSansen, Willy. Analog Circuit Design: (X)DSL and other Communication Systems; RF MOST Models; Integrated Filters and Oscillators. Boston, MA: Springer US, 1999.
Find full textSchütte, Christof. A quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Aachen: Verlag Shaker, 1994.
Find full textBook chapters on the topic "Modes oscillatoire"
Garrett, Steven L. "The Simple Harmonic Oscillator." In Understanding Acoustics, 59–131. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_2.
Full textSanticcioli, Alessio. "Inductorless Frequency Synthesizers for Low-Cost Wireless." In Special Topics in Information Technology, 37–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62476-7_4.
Full textDeych, Lev I. "Harmonic Oscillator Models." In Advanced Undergraduate Quantum Mechanics, 201–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71550-6_7.
Full textGazzola, Filippo. "Models with Interacting Oscillators." In Mathematical Models for Suspension Bridges, 149–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15434-3_4.
Full textOlmo, Marta del, Saskia Grabe, and Hanspeter Herzel. "Mathematical Modeling in Circadian Rhythmicity." In Methods in Molecular Biology, 55–80. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-2249-0_4.
Full textRigatos, Gerasimos G. "Oscillatory Dynamics in Biological Neurons." In Advanced Models of Neural Networks, 75–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43764-3_4.
Full textMottaghi, Sohrob, Rene Gabbai, and Haym Benaroya. "Lagrangian Flow-Oscillator Models." In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 95–142. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_5.
Full textMottaghi, Sohrob, Rene Gabbai, and Haym Benaroya. "Eulerian Flow-Oscillator Models." In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 189–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_7.
Full textAkhmet, Marat. "Integrate-and-Fire Biological Oscillators." In Nonlinear Hybrid Continuous/Discrete-Time Models, 175–99. Paris: Atlantis Press, 2011. http://dx.doi.org/10.2991/978-94-91216-03-9_10.
Full textSkinner, Frances K., and Alexandra Pierri Chatzikalymniou. "Oscillatory Dynamics of Brain Microcircuits." In Computational Models of Brain and Behavior, 85–98. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119159193.ch7.
Full textConference papers on the topic "Modes oscillatoire"
Chen, Jian, Ganesh Subramanian, Justin Ricci, Liang Ban, and Cetin Cetinkaya. "Non-Contact Mechanical Testing and Characterization of Micro-Scale Structures." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13939.
Full textKhoshnoud, Farbod, Houman Owhadi, and Clarence W. de Silva. "Stochastic Simulation of a Casimir Oscillator." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39746.
Full textTaniguchi, Tomoyo, Yoshihiko Toda, Yusuke Ono, and Kyosuke Mukaibo. "Estimation Accuracy of Absolute Maximum Elasto-Plastic Displacements of MDOF Oscillators Based on a Modal Combination Rule With Post-Yielding Modal Properties and Linear Response Spectrum Values." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84237.
Full textRompala, Kevin, Richard Rand, and Howard Howland. "Dynamics of Three Coupled Van der Pol Oscillators With Application to Circadian Rhythms." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84017.
Full textStorti, Duane W., Cornelius Nevrinceanu, and Per G. Reinhall. "Perturbation Solution of an Oscillator With Periodic van der Pol Damping." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0128.
Full textCamacho, Erika, Richard Rand, and Howard Howland. "Dynamics of Two Van Der Pol Oscillators Coupled via a Bath." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48593.
Full textTaniguchi, Tomoyo, Hiroki Nishiraku, and Yusuke Ono. "Analysis of Maximum Elasto-Plastic Response of Multi-Degree-of-Freedom Oscillators Based on a Modal Combination of Equivalently Linearized Response of Each Mode." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63865.
Full textHaaker, T. I. "Analysis of a Class of Coupled Nonlinear Oscillators With an Application to Flow Induced Vibrations." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21416.
Full textLi, Wei, Gen-xiang Chen, Xun Li, and Wei-ping Huang. "Active Mode Locking: Quantum Oscillator vs. Classical Coupled Oscillators." In 2006 IEEE International Conference on Electro/Information Technology. IEEE, 2006. http://dx.doi.org/10.1109/eit.2006.252106.
Full textGhorbanian, Parham, Subramanian Ramakrishnan, and Hashem Ashrafiuon. "EEG Stochastic Nonlinear Oscillator Models for Alzheimer’s Disease." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9676.
Full textReports on the topic "Modes oscillatoire"
Slawianowski, Jan J., and Agnieszka Martens Martens. Affinely-Rigid Body and Oscillatory Two-Dimensional Models. GIQ, 2015. http://dx.doi.org/10.7546/giq-16-2015-94-109.
Full textNg, Leslie, Richard H. Rand, Timothy Wei, and William L. Keith. An Examination of Wake Oscillator Models for Vortex-Induced Vibrations. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada390553.
Full textKimberland, S. Burst mode Nd:YLF laser oscillator: Eighth and final monthly progress report. Office of Scientific and Technical Information (OSTI), March 1987. http://dx.doi.org/10.2172/5643030.
Full textWeaver, David R. Development and Validation of a Computational Model for Intra-Cellular Circadian Oscillators. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada435444.
Full textHimmel, Jeffrey, John Gualtieri, and John Kosinski. Acceleration Sensitivity and Mode Shape Relationship Tests of Voltage Controlled Surface Acoustic Wave Oscillator. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299044.
Full textDawson, J., M. Messerly, and J. An. Fiber Laser Replacement for Short Pulse Ti:Sapphire Oscillators -- Scalable Mode Locking to Record Pulse Energies. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/889996.
Full textNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano, and R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Full textThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing, and Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38721.
Full textSchilling, O., and M. Latini. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/15014825.
Full textLatini, M., and O. Schilling. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 2. Single-Mode Richtmyer-Meshkov Instability with Reshock. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/15016331.
Full text