Contents
Academic literature on the topic 'Modelli previsionali di incidentalità'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modelli previsionali di incidentalità.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modelli previsionali di incidentalità"
Fotia, Mauro. "LA PREVISIONE POLITICA: NOTE EPISTEMOLOGICHE." Italian Political Science Review/Rivista Italiana di Scienza Politica 32, no. 1 (April 2002): 111–40. http://dx.doi.org/10.1017/s0048840200029944.
Full textNicola, PierCarlo. "ECONOMIA MATEMATICA E MECCANICA RAZIONALE." Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio, November 18, 2013, 57–72. http://dx.doi.org/10.4081/incontri.2008.49.
Full textDissertations / Theses on the topic "Modelli previsionali di incidentalità"
Alessi, Celegon Elisa. "Contributi allo sviluppo di modelli idrologici accoppiati previsionali e Montecarlo." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426385.
Full textFranceschini, Silvia <1982>. "Analisi critica di modelli previsionali per le frane in Emilia Romagna." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4731/1/tesi_completa.pdf.
Full textThis PhD thesis is inserted in the agreement between ARPA_SIMC (which is the sponsor), the Regional Civil Protection and the Department of Earth Sciences and Geo - Environmental of the University of Bologna. The main objective is the determination of possible rainfall thresholds for triggering landslides in Emilia Romagna, which can be used as an aid in forecasting operations of Civil Protection. In a such complex geological context, the distinction between critical and non-critical rainfall is not trivial: when different outputs (failure or no-failure) can be obtained for the same input (a given rainfall event) a deterministic approach is no longer applicable and a probabilistic model is needed. We use a Bayesian statistical approach, applied to a dataset ranging between 1939 and 2009, that is a direct application of conditional probabilities. The conditional probability is the probability of some event A (in our case a landslide) given the occurrence of some other event B (a rainfall episode with a certain magnitude, expressed in terms of total rainfall, intensity or any other variable). Conditional probability is written P(A|B) and it is read “the probability to have a landslide (A) given a rainfall episode (B)”. Probabilistic Bayesian thresholds minimize false alarms and can be easily implemented in a regional warning system, but their predictive capacity is limited about phenomena that are not represented in the historical dataset. This is the case of shallow landslides evolving in debris flows, extremely rare in the last 70 years, but, recently, their frequency is increasing. We tried to address this problem by testing the predictive capacity of some physically based models developed in literature, as X - SLIP (Montrasio et al., 1998), SHALSTAB (model Shallow Stability, Montgomery & Dietrich, 1994), Iverson (2000), TRIGRS 1.0 (Baum et al., 2002), TRIGRS 2.0 (Baum et al., 2008).
Franceschini, Silvia <1982>. "Analisi critica di modelli previsionali per le frane in Emilia Romagna." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4731/.
Full textThis PhD thesis is inserted in the agreement between ARPA_SIMC (which is the sponsor), the Regional Civil Protection and the Department of Earth Sciences and Geo - Environmental of the University of Bologna. The main objective is the determination of possible rainfall thresholds for triggering landslides in Emilia Romagna, which can be used as an aid in forecasting operations of Civil Protection. In a such complex geological context, the distinction between critical and non-critical rainfall is not trivial: when different outputs (failure or no-failure) can be obtained for the same input (a given rainfall event) a deterministic approach is no longer applicable and a probabilistic model is needed. We use a Bayesian statistical approach, applied to a dataset ranging between 1939 and 2009, that is a direct application of conditional probabilities. The conditional probability is the probability of some event A (in our case a landslide) given the occurrence of some other event B (a rainfall episode with a certain magnitude, expressed in terms of total rainfall, intensity or any other variable). Conditional probability is written P(A|B) and it is read “the probability to have a landslide (A) given a rainfall episode (B)”. Probabilistic Bayesian thresholds minimize false alarms and can be easily implemented in a regional warning system, but their predictive capacity is limited about phenomena that are not represented in the historical dataset. This is the case of shallow landslides evolving in debris flows, extremely rare in the last 70 years, but, recently, their frequency is increasing. We tried to address this problem by testing the predictive capacity of some physically based models developed in literature, as X - SLIP (Montrasio et al., 1998), SHALSTAB (model Shallow Stability, Montgomery & Dietrich, 1994), Iverson (2000), TRIGRS 1.0 (Baum et al., 2002), TRIGRS 2.0 (Baum et al., 2008).
Tepedino, Carmine. "Metodi fisico matematici avanzati per l’implementazione di modelli previsionali applicabili a fenomeni acustici e di interesse ingegneristico." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2584.
Full textIn several engineering fields, it is of great interest the development of models able to produce forecasts of univariate time series; these models are based on the statistical analysis of the sequence of observed data equidistant in time. The techniques implemented in this thesis can be classified in two distinct types, different but complementary: the first method is based on the analysis of the observed time series composed by measurements under study, the other method is based on Poisson's distributions for events of exceedance of a defined threshold. The validity of such models has been tested on a noise dataset collected in the city of Messina. The measurements are based on day and night noise levels, detected at a monitoring station set up by the local government and made public on a special web platform. From this set of data, several intervals have been extracted for the calibration of the models, in order to test the validity on real measurements (by means of comparison between the observed and predicted data) and to study the sensitivity with respect to variation of the parameters (reference threshold, frequency of events, periodicity of the series, etc.). The first adopted techniques, used to analyse the time series, are based on deterministic decomposition methods: the observed sequences are divided in trend and seasonal components. In this field, an enhancement of the preliminary forecasting model has been obtained: in particular, a set of electricity consumption data has been studied. This time series of absorbed electricity is due to the public transport system of the city of Sofia (Bulgaria): the main enhancement achieved is the improving of the extracted information from the series thanks to the introduction of an additional coefficient of seasonality. Later, seasonal stochastic models were adopted, of the auto-regressive moving average (SARIMA) type. Therefore, the research focused on the implementation of predictive models of stochastic type: the seasonal ARIMA was applied to the prediction of wind speed in a site where a wind farm for the production of electricity is installed. Subsequently, acoustical models have been applied for the prediction of noise produced by the turbines under certain wind speed conditions. A detailed investigation was performed with the aim to improve the integration of linear and non-linear forecasting techniques using artificial neural networks. In particular, one of the more advanced predictive model based on time series analysis is a hybrid model that uses in cascade deterministic methods, based on the decomposition of the series into trend and seasonal components, followed by a modelling via artificial neural networks for a better prediction of the non-linear part of the series. A predictive model, useful to study events of exceedance of noise thresholds, has also been implemented. This model is based on the assumption that the exceedance events are distributed according to a nonhomogeneous Poisson distribution. This approach can be pursued both with frequentist techniques or using Bayesian estimation of the parameters of the "Probability Density Function" (PDF). In particular, it has been studied a sound levels dataset measured near the international airport of Nice (France). The adopted model introduces the single "change-point" methodology for the estimation of the distribution parameters. These parameters have been estimated through a Markov-Chain Monte-Carlo sampling based on Bayesian statistical assumptions. [edited by author]
In diversi ambiti ingegneristici risulta di grande interesse lo sviluppo di modelli atti a produrre previsioni di serie storiche univariate mediante l’analisi della successione di dati osservati equidistanti nel tempo. Le tecniche implementate nel presente lavoro di tesi possono essere classificate in due distinte tipologie, differenti ma complementari: una basata sull’analisi delle serie storiche delle misure di interesse, l’altra su distribuzioni di Poisson per gli eventi di superamento di una soglia stabilita. La validità di siffatti modelli è stata testata su un set di dati di rumore raccolti nella città di Messina. Le misurazioni si riferiscono a livelli acustici diurni e notturni, rilevati presso una stazione di monitoraggio predisposta dall’amministrazione locale e resi pubblici su apposita piattaforma web. Da questo set di dati, sono stati estratti diversi intervalli per la calibrazione dei modelli, al fine di testarne la validità su misurazioni reali (mediante confronto tra dato osservato e dato previsto) e di studiare la sensibilità rispetto alla variazione dei parametri (soglia di riferimento, frequenza degli eventi, periodicità, ecc.). Per l’analisi delle serie storiche sono state sviluppate tecniche classiche basate sulla decomposizione deterministica nelle componenti di trend e stagionali di una sequenza di dati osservata. Si è in seguito ottenuto un potenziamento del modello di previsione e analisi delle serie storiche: in particolare si è analizzato un set di dati di assorbimento di energia elettrica dovuto al sistema di trasporto pubblico della città di Sofia, migliorando l’estrazione di informazioni dalla serie e le prestazioni grazie all’introduzione di un ulteriore coefficiente di stagionalità. Successivamente sono stati adottati modelli stocastici stagionali auto-regressivi a media mobile (SARIMA); dunque ci si è concentrati sull’implementazione di modelli previsionali stocastici del tipo Seasonal ARIMA applicati alla previsione della velocità del vento in un sito dove è installato un impianto per la produzione elettrica mediante aerogeneratori. In seguito si sono applicati modelli per la previsione dell’inquinamento acustico prodotto dal parco eolico investito da vento ad una certa velocità. Si è inoltre migliorata l’integrazione di tecniche previsionali lineari e non lineari mediante reti neurali artificiali; in particolare lo stato dell’arte per i modelli previsionali basati sull’analisi di serie storiche si è raggiunto con un modello ibrido basato sull’utilizzo in cascata di metodi classici deterministici basati sulla scomposizione della serie in componenti di trend e stagionalità seguiti da modellazione tramite reti neurali artificiali per una migliore previsione della parte non lineare della serie. È stato inoltre implementato un modello di previsione per eventi di superamento di soglie di inquinamento acustico. Tale modello è basato sull’assunzione che gli eventi di superamento sono distribuiti secondo una distribuzione di Poisson non omogenea. Questo approccio può essere a sua volta perseguito con tecniche frequentiste o bayesiane per la stima dei parametri della “Probability Density Function” (PDF). In particolare è stato studiato un dataset di misurazioni fonometriche acquisite in prossimità dell’aeroporto internazionale di Nizza (Francia): il modello previsionale realizzato prevede l’introduzione della metodologia “change-point” singolo per la stima dei parametri della distribuzione. Tali parametri sono stati stimati grazie al campionamento Monte-Carlo Markov-Chain basato su assunzioni di statistica bayesiana. Infine si è studiato un potenziamento di questo modello previsionale applicandolo al set di dati di rumore acustico misurati nella città di Messina: tale serie storica è stata prima ricostruita integralmente tramite le tecniche previsionali studiate in precedenza e dopo si è applicato il modello bayesiano basato sulla distribuzione di Poisson utilizzando “change-points” multipli. [a cura dell'autore]
XV n.s. (XXIX)
Fusai, Massimo. "Modelli previsionali di resistenza a trazione in funzione delle caratteristiche microstrutturali per la lega G-AlSi10Mg." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amslaurea.unibo.it/461/.
Full textVOLPE, Evelina. "Protezione e conservazione dei siti archeologici in aree predisposte a fenomeni di dissesto idrogeologico." Doctoral thesis, Università degli studi del Molise, 2020. http://hdl.handle.net/11695/97964.
Full textItaly is characterized by the presence of a unique and particular cultural heritage often threatened by different agents able to compromise its conservation. In addition to natural deterioration and human impact, extreme events, such as landslides and floods, represent a real problem for historic monuments. In the last decade, the national and international scientific community has shown a lot of interest on this issue, and different studies have been developed. This contribution fits in this framework. The work is a part of a large research project, aimed to define a multidisciplinary approach able to guarantee the conservation, the protection and safeguard of cultural heritage, including the landscape, from hydrogeological instability phenomena. In particular, the paper focuses attention on archaeological sites, cultural assets which, due to their natural location, are highly vulnerable to the soil failure mechanisms. These movements occur following the achievement of limit equilibrium conditions in the soil, therefore geotechnical engineering has an important role in the conservation of archaeological assets from landslides induced by rainfall. The protection of archaeological sites, located in morphologically complex areas, is difficult to implement; historical monuments, respect to extreme events cannot be safeguarded through unplanned measures. In other words, the notions of mitigation and conservation are strictly linked to forecast concepts. To this last aspect, the development of a physically based probabilistic model described in this thesis work, is connected. The model allows to evaluate the probable response of the area to a rainfall event (defined by a specific duration and intensity), representing a valid measure for a correct mitigation strategy definition. In other words, the research pays attention on the mechanisms related to potential instability problems of the slopes that insist on monumental complexes, focusing on geological and geotechnical aspects. The knowledge framework, necessary to describe the problems related to the conservation of archaeological sites is very large, but the geological and geotechnical aspects constitute an important part of it.
TRECATE, LETIZIA. "Epidemiologia e sviluppo di modelli per l'oidio e la peronospora del melone." Doctoral thesis, Università Cattolica del Sacro Cuore, 2017. http://hdl.handle.net/10280/35876.
Full textCucurbits are potentially affected by more than 200 diseases of diverse etiologies, so a good disease management is crucial to reduce the risk of high yield losses in terms of quantity and quality. Among the more important diseases there are powdery and downy mildew. Podosphaera xanthii and Golovinomyces cichoracearum are the causal agents of cucurbit powdery mildew. The effect of temperature on conidial germination was studied in controlled condition at 6 constant temperature (from 10 to 35°C, step 5°C) for 3 to 72 hours. Optima temperature for conidial germination, infection and sporulation were 24.4, 25.7 and 21.3°C respectively for P. xanthii and 17.9, 17.3 and 16.2°C for G. cichoracearum. A mechanistic model was developed for the risk posed by P. xanthii and G. cichoracearum to cause cucurbit powdery mildew. The model simulates germination on infected leaves on the base of environmental conditions of temperature and relative humidity. Equation regulating spore germination of both fungi were developed using published data. Another mechanistic model was develop also for Pseudoperonospora cubensis, causal agent of cucurbit downy mildew. The model calculates the symptoms appearance and the probability of overtaking severity threshold based on sub-processes of infection. Changes from one state of the infection to the following one depend on environmental conditions. Both models were validated by comparing model outputs with independent data sets collected in fields located in the north of Italy.
TRECATE, LETIZIA. "Epidemiologia e sviluppo di modelli per l'oidio e la peronospora del melone." Doctoral thesis, Università Cattolica del Sacro Cuore, 2017. http://hdl.handle.net/10280/35876.
Full textCucurbits are potentially affected by more than 200 diseases of diverse etiologies, so a good disease management is crucial to reduce the risk of high yield losses in terms of quantity and quality. Among the more important diseases there are powdery and downy mildew. Podosphaera xanthii and Golovinomyces cichoracearum are the causal agents of cucurbit powdery mildew. The effect of temperature on conidial germination was studied in controlled condition at 6 constant temperature (from 10 to 35°C, step 5°C) for 3 to 72 hours. Optima temperature for conidial germination, infection and sporulation were 24.4, 25.7 and 21.3°C respectively for P. xanthii and 17.9, 17.3 and 16.2°C for G. cichoracearum. A mechanistic model was developed for the risk posed by P. xanthii and G. cichoracearum to cause cucurbit powdery mildew. The model simulates germination on infected leaves on the base of environmental conditions of temperature and relative humidity. Equation regulating spore germination of both fungi were developed using published data. Another mechanistic model was develop also for Pseudoperonospora cubensis, causal agent of cucurbit downy mildew. The model calculates the symptoms appearance and the probability of overtaking severity threshold based on sub-processes of infection. Changes from one state of the infection to the following one depend on environmental conditions. Both models were validated by comparing model outputs with independent data sets collected in fields located in the north of Italy.
Fiorentini, Nicholas. "Intelligent solutions for supporting decision-making processes in road management: A general framework accounting for environment, road serviceability, and user’s safety." Doctoral thesis, 2022. http://hdl.handle.net/2158/1279821.
Full textBooks on the topic "Modelli previsionali di incidentalità"
F, Battisti, ed. Paura e desiderio di guerra: Opinione pubblica, politiche istituzionali e modelli previsionali. Milano, Italy: FrancoAngeli, 1993.
Find full text