Journal articles on the topic 'Modélisation de la complexation de surface'

To see the other types of publications on this topic, follow the link: Modélisation de la complexation de surface.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Modélisation de la complexation de surface.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Katz, Lynn E., and Kim F. Hayes. "Surface Complexation Modeling." Journal of Colloid and Interface Science 170, no. 2 (March 1995): 477–90. http://dx.doi.org/10.1006/jcis.1995.1127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Katz, Lynn E., and Kim F. Hayes. "Surface Complexation Modeling." Journal of Colloid and Interface Science 170, no. 2 (March 1995): 491–501. http://dx.doi.org/10.1006/jcis.1995.1128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ludwig, Christian, and Paul W. Schindler. "Surface Complexation on TiO2." Journal of Colloid and Interface Science 169, no. 2 (February 1995): 284–90. http://dx.doi.org/10.1006/jcis.1995.1035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ludwig, Christian, and Paul W. Schindler. "Surface Complexation on TiO2." Journal of Colloid and Interface Science 169, no. 2 (February 1995): 291–99. http://dx.doi.org/10.1006/jcis.1995.1036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dyrssen, David. "Sulfide complexation in surface seawater." Marine Chemistry 24, no. 2 (June 1988): 143–53. http://dx.doi.org/10.1016/0304-4203(88)90045-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Forsling, Willis, and Liuming Wu. "Surface complexation at hydrous fluorapatite." Aquatic Sciences 55, no. 4 (1993): 336–46. http://dx.doi.org/10.1007/bf00877278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Belhamri, Azeddine, and Jean Paul Fohr. "Influence de l’Evolution de l’Etat de Surface sur la Modèlisation du Séchage de Milieux Poreux." Journal of Renewable Energies 1, no. 1 (June 30, 1998): 29–35. http://dx.doi.org/10.54966/jreen.v1i1.941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Il s'agit d'étudier le séchage de milieux poreux, particulièrement le comportement de la surface. Une analyse détaillée, de résultats d'expériences et leurs influences sur la modélisation, est présentée. Les moyens de mesures sont, principalement, une balance électronique, un pyromètre à infrarouge et un analyseur optique d'humidité de surface. Les évolutions de la température et de l'humidité de surface sont obtenues en fonction de la cinétique de séchage. Les résultats permettent, surtout, de caractériser le passage entre la première et la deuxième phase de séchage. Ils permettent, aussi, de mieux poser les conditions aux limites pour la modélisation du phénomène de séchage.
8

Erzuah, Samuel, Ingebret Fjelde, and Aruoture V. Omekeh. "Wettability Estimation Using Surface-Complexation Simulations." SPE Reservoir Evaluation & Engineering 22, no. 02 (May 1, 2019): 509–19. http://dx.doi.org/10.2118/185767-pa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Traina, S. J. "Surface complexation modeling: Hydrous ferric oxide." Geochimica et Cosmochimica Acta 60, no. 21 (November 1996): 4291. http://dx.doi.org/10.1016/s0016-7037(97)81467-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Morgan, J. J. J. "Surface complexation modeling: Hydrous ferric oxide." Journal of Colloid and Interface Science 141, no. 2 (February 1991): 595–96. http://dx.doi.org/10.1016/0021-9797(91)90361-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Safronikhin, A. V., H. V. Ehrlich, T. N. Shcherba, and G. V. Lisichkin. "Surface complexation onto nanosized lanthanum fluoride." Russian Chemical Bulletin 60, no. 8 (August 2011): 1576–80. http://dx.doi.org/10.1007/s11172-011-0234-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brady, Patrick V., James L. Krumhansl, and Hans W. Papenguth. "Surface complexation clues to dolomite growth." Geochimica et Cosmochimica Acta 60, no. 4 (February 1996): 727–31. http://dx.doi.org/10.1016/0016-7037(95)00436-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Leow, Wan Ru, and Xiaodong Chen. "Surface Complexation for Photocatalytic Organic Transformations." Bulletin of the Chemical Society of Japan 92, no. 3 (March 15, 2019): 505–10. http://dx.doi.org/10.1246/bcsj.20180274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rakshit, Sudipta, Dibyendu Sarkar, and Rupali Datta. "Surface complexation of antimony on kaolinite." Chemosphere 119 (January 2015): 349–54. http://dx.doi.org/10.1016/j.chemosphere.2014.06.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Groenenberg, Jan E., and Stephen Lofts. "Recent developments in surface complexation modeling." Environmental Toxicology and Chemistry 33, no. 10 (September 18, 2014): 2170–71. http://dx.doi.org/10.1002/etc.2690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jenger, Michel, Benoît Noël, and Jean-Marie Mouly. "Modélisation du coupleur multipiste pour ondes élastiques de surface." Annales Des Télécommunications 48, no. 1-2 (January 1993): 77–88. http://dx.doi.org/10.1007/bf03005234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mathys, Nicolle, and Jean Poesen. "Ravinement en montagne : processus, mesures, modélisation, régionalisation." Géomorphologie : relief, processus, environnement 11, no. 1 (April 1, 2005): 3–6. http://dx.doi.org/10.4000/geomorphologie.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yao, Marcel Konan, Djedro Clément Akmel, Kouamé Lazare Akpetou, Albert Trokourey, Kouassi Benjamin Yao, and Nogbou Emmanuel Assidjo. "Modélisation de l'évolution spatiotemporelle du phosphore minéral dans une baie lagunaire hypereutrophe tropicale : la baie lagunaire de Tiagba (Côte d'Ivoire)." Revue des sciences de l’eau 30, no. 3 (March 28, 2018): 247–58. http://dx.doi.org/10.7202/1044250ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ce travail décrit une nouvelle approche de la prédiction de l'évolution spatio-temporelle du phosphore minéral dans les eaux de surface, particulièrement dans la baie lagunaire de Tiagba. L'originalité de cette étude réside dans l'utilisation des réseaux de neurones artificiels, précisément du perceptron multicouche, comme outil de modélisation. Deux approches de l'évolution spatio-temporelle de ce nutriment dans cette baie ont été étudiées : sa modélisation statique et sa modélisation dynamique. Ainsi, il a été utilisé deux bases de 3 966 et 4 627 données respectivement pour sa modélisation statique et sa modélisation dynamique. L'algorithme de Levenberg-Marquardt a été utilisé pour la détermination des poids de connexions lors du développement du perceptron multicouche. Il ressort, des résultats obtenus, que les modèles 5-14-1 et 6-14-2 permettent de prédire à 70,30 % et à environ 70 % respectivement les évolutions statique et dynamique du phosphore minéral dans cette baie lagunaire. Ces modèles, jugés satisfaisant peuvent servir de socle pour d'éventuelles études visant à la réhabilitation et la gestion de cet écosystème aquatique dans le cadre de son développement durable.
19

Brady, Patrick V., and James L. Krumhansl. "Surface Complexation Modeling for Waterflooding of Sandstones." SPE Journal 18, no. 02 (December 17, 2012): 214–18. http://dx.doi.org/10.2118/163053-pa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Summary A theoretical surface coordination model of oil attraction to sandstone-reservoir surfaces confirms the two primary oil/mineral coordination reactions to be electrostatic linking of anionic kaolinite-edge sites to protonated nitrogen bases at pH < 6 and calcium carboxylate groups at pH > 6. Kaolinite basal planes are calculated to link to oil through oil –NH+ groups at pH < 6–7 and through oil –COOCa+ groups at pH > 6–7, and may be important to oil attraction where basal planes are more exposed than edges (the ranges shift, depending on the oil, acid, and base numbers). Model predictions are most sensitive to the dissociation constant of oil surface carboxylate groups but are relatively insensitive to other surface equilibria and temperature. The model shows that, although low-salinity, low-Ca waterfloods can enhance oil recovery by decreasing the number of Ca2+ bridges and anionic kaolinite-edge sites, dissolution of sandstone carbonate minerals dampens the low-salinity effect by buffering decreases in waterflood Ca2+ levels. Better model predictions require more-accurate predictions of Ca2+ levels during waterflooding, high-temperature sulfate-adsorption analyses, and more-precise measurements of oil acidity and basicity.
20

Leow, Wan Ru, Wilson Kwok Hung Ng, Tai Peng, Xinfeng Liu, Bin Li, Wenxiong Shi, Yanwei Lum, et al. "Al2O3 Surface Complexation for Photocatalytic Organic Transformations." Journal of the American Chemical Society 139, no. 1 (December 29, 2016): 269–76. http://dx.doi.org/10.1021/jacs.6b09934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gunnarsson, Magnus, Zareen Abbas, Elisabet Ahlberg, and Sture Nordholm. "Corrected Debye–Hückel analysis of surface complexation." Journal of Colloid and Interface Science 274, no. 2 (June 2004): 563–78. http://dx.doi.org/10.1016/j.jcis.2003.12.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sengupta, Tapashi, Matthew Yates, and Kyriakos D. Papadopoulos. "Metal complexation with surface-active Kemp's triacid." Colloids and Surfaces A: Physicochemical and Engineering Aspects 148, no. 3 (March 1999): 259–70. http://dx.doi.org/10.1016/s0927-7757(98)00714-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nilsson, Nils, Lars Lövgren, and Staffan Sjöberg. "Phosphate complexation at the surface of goethite." Chemical Speciation & Bioavailability 4, no. 4 (December 1992): 121–30. http://dx.doi.org/10.1080/09542299.1992.11083190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Abbas, Zareen, Magnus Gunnarsson, Elisabet Ahlberg, and Sture Nordholm. "Corrected Debye–Hückel Analysis of Surface Complexation." Journal of Colloid and Interface Science 243, no. 1 (November 2001): 11–30. http://dx.doi.org/10.1006/jcis.2001.7844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gunnarsson, Magnus, Zareen Abbas, Elisabet Ahlberg, Sylvia Gobom, and Sture Nordholm. "Corrected Debye–Hückel Analysis of Surface Complexation." Journal of Colloid and Interface Science 249, no. 1 (May 2002): 52–61. http://dx.doi.org/10.1006/jcis.2002.8261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Abednego, B., R. Caloz, and C. Collet. "L'utilisation des SIG dans la modélisation en hydrologie de surface." Geographica Helvetica 45, no. 4 (December 31, 1990): 161–67. http://dx.doi.org/10.5194/gh-45-161-1990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. From a methodological point of view, hydrological modelling appears to offer a great potential for spatial analysis. However among classes of models, only physical models consider the spatial dimension as a variable. The topography and the land cover are the two major spatial components involved in that type of models. The production of a relevant DTM requires the use of iterative interpolation procedures. Land cover and its changes can be monitored and entered into modelling from remote sensing images through a normalized Vegetation index. The GIS approach can be integrated at different levels within hydrological modelling, with object oriented GIS seen as the highest level.
27

Allèly, C., P. Bocage, J. C. Catonné, F. Kop, and R. Nicolle. "Traitements de surface par voie aqueuse : enjeux de la modélisation." Revue de Métallurgie 96, no. 6 (June 1999): 779–88. http://dx.doi.org/10.1051/metal/199996060779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Carrive, Maïté, and Jean Grilhé. "Un modèle paramétrique d'évolution de surface pour matériaux contraints : modélisation." Comptes Rendus Mécanique 334, no. 5 (May 2006): 328–31. http://dx.doi.org/10.1016/j.crme.2006.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Soulaïmani, A., Y. Ouellet, G. Dhatt, and R. Blanchet. "Modélisation tridimensionnelle de l'écoulement au voisinage d'un aménagement portuaire." Canadian Journal of Civil Engineering 16, no. 6 (December 1, 1989): 829–44. http://dx.doi.org/10.1139/l89-126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper is devoted to the computational analysis of three-dimensional free surface flows. The model solves the Navier-Stokes equations without any a priori restriction on the pressure distribution. The variational formulation along with the solution algorithm are presented. Finally, the model is used to study the hydrodynamic regime in the vicinity of a projected harbor installation. Key words: free surface flows, three-dimensional flows, finite element method.
30

Saito, Takumi, Luuk K. Koopal, Shinya Nagasaki, and Satoru Tanaka. "Adsorption of Heterogeneously Charged Nanoparticles on a Variably Charged Surface by the Extended Surface Complexation Approach: Charge Regulation, Chemical Heterogeneity, and Surface Complexation." Journal of Physical Chemistry B 112, no. 5 (February 2008): 1339–49. http://dx.doi.org/10.1021/jp076621x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Goldberg, Sabine. "Sensitivity of surface complexation modeling to the surface site density parameter." Journal of Colloid and Interface Science 145, no. 1 (August 1991): 1–9. http://dx.doi.org/10.1016/0021-9797(91)90095-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jiang, Xiuli, Changjun Peng, Dun Fu, Zheng Chen, Liang Shen, Qingbiao Li, Tong Ouyang, and Yuanpeng Wang. "Removal of arsenate by ferrihydrite via surface complexation and surface precipitation." Applied Surface Science 353 (October 2015): 1087–94. http://dx.doi.org/10.1016/j.apsusc.2015.06.190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Adams, Faisal T., Michael L. Machesky, and Nadine Kabengi. "Surface Complexation Modeling Approach for Aluminum-Substituted Ferrihydrites." ACS Earth and Space Chemistry 5, no. 6 (May 21, 2021): 1355–62. http://dx.doi.org/10.1021/acsearthspacechem.0c00356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Vlasova, Nataliya N., and Olga V. Markitan. "Surface Complexation Modeling of Biomolecule Adsorptions onto Titania." Colloids and Interfaces 3, no. 1 (February 18, 2019): 28. http://dx.doi.org/10.3390/colloids3010028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The adsorption of nucleic acid components on the surface of nanocrystalline titaniumdioxide (anatase, pH<sub>pzc</sub> = 6.5) in NaCl solutions was investigated using potentiometric titrationsand multibatch adsorption experiments over a wide range of pH and ionic strengths. The BasicStern surface complexation model was applied to experimental data to obtain quantitativeequilibrium reaction constants. Adsorption results suggest that there is a considerable difference inthe binding of nucleobases, nucleosides, and nucleotides with an anatase surface.
35

Daňo, Martin, Eva Viglašová, Karel Štamberg, Michal Galamboš, and Dušan Galanda. "Pertechnetate/Perrhenate Surface Complexation on Bamboo Engineered Biochar." Materials 14, no. 3 (January 20, 2021): 486. http://dx.doi.org/10.3390/ma14030486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The work deals with the evaluation of biochar samples prepared from Phyllostachys Viridiglaucescens bamboo. This evaluation consists of the characterization of prepared materials’ structural properties, batch and dynamic sorption experiments, and potentiometric titrations. The batch technique was focused on obtaining basic sorption data of 99mTcO4− on biochar samples including influence of pH, contact time, and Freundlich isotherm. ReO4−, which has very similar chemical properties to 99mTcO4−, was used as a carrier in the experiments. Theoretical modeling of titration curves of biochar samples was based on the application of surface complexation models, namely, so called Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM). In this case it is assumed that there are two types of surface groups, namely, the so-called layer and edge sites. The dynamic experimental data of sorption curves were fitted by a model based on complementary error function erfc(x).
36

Smith, D. Scott, Holly Gray, and J. B. Neethling. "Surface Complexation Modeling and Aluminum Mediated Phosphorus Removal." Proceedings of the Water Environment Federation 2011, no. 1 (January 1, 2011): 966–77. http://dx.doi.org/10.2175/193864711802867199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fabritius, Otto, Eini Puhakka, Xiaodong Li, Anita Nurminen, and Marja Siitari-Kauppi. "Radium sorption on biotite; surface complexation modeling study." Applied Geochemistry 140 (May 2022): 105289. http://dx.doi.org/10.1016/j.apgeochem.2022.105289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Weerasooriya, R., H. K. D. K. Wijesekara, and A. Bandara. "Surface complexation modeling of cadmium adsorption on gibbsite." Colloids and Surfaces A: Physicochemical and Engineering Aspects 207, no. 1-3 (July 2002): 13–24. http://dx.doi.org/10.1016/s0927-7757(02)00004-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Swayambunathan, V., David Hayes, Klaus H. Schmidt, Y. X. Liao, and Dan Meisel. "Thiol surface complexation on growing cadmium sulfide clusters." Journal of the American Chemical Society 112, no. 10 (May 1990): 3831–37. http://dx.doi.org/10.1021/ja00166a017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dyer, James A., Paras Trivedi, Noel C. Scrivner, and Donald L. Sparks. "Lead Sorption onto Ferrihydrite. 2. Surface Complexation Modeling." Environmental Science & Technology 37, no. 5 (March 2003): 915–22. http://dx.doi.org/10.1021/es025794r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dyer, James A., Paras Trivedi, Noel C. Scrivner, and Donald L. Sparks. "Surface complexation modeling of zinc sorption onto ferrihydrite." Journal of Colloid and Interface Science 270, no. 1 (February 2004): 56–65. http://dx.doi.org/10.1016/s0021-9797(03)00618-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dulnee, Siriwan, Dipanjan Banerjee, Broder J. Merkel, and Andreas C. Scheinost. "Surface Complexation and Oxidation of SnII by Nanomagnetite." Environmental Science & Technology 47, no. 22 (November 11, 2013): 12852–59. http://dx.doi.org/10.1021/es402962j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Smit, Willem. "Surface complexation constants of the site binding model." Journal of Colloid and Interface Science 113, no. 1 (September 1986): 288–91. http://dx.doi.org/10.1016/0021-9797(86)90228-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wu, Liuming, Willis Forsling, and Paul W. Schindler. "Surface complexation of calcium minerals in aqueous solution." Journal of Colloid and Interface Science 147, no. 1 (November 1991): 178–85. http://dx.doi.org/10.1016/0021-9797(91)90145-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gelabert, A., O. Pokrovsky, J. Schott, and A. Boudou. "Metal adsorption by diatoms: A surface complexation model." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A197. http://dx.doi.org/10.1016/j.gca.2006.06.397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Butkus, M. A., and Domenico Grasso. "The nature of surface complexation: a continuum approach." Environmental Geology 40, no. 4-5 (February 7, 2001): 446–53. http://dx.doi.org/10.1007/s002540000186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Trkov, Andrej, Nives Ogrinc, and Ivan Kobal. "Modeling surface complexation at the colloid/electrolyte interface." Computers & Chemistry 16, no. 4 (October 1992): 341–43. http://dx.doi.org/10.1016/0097-8485(92)80057-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Weerasooriya, R., H. U. S. Wickramarathne, and H. A. Dharmagunawardhane. "Surface complexation modeling of fluoride adsorption onto kaolinite." Colloids and Surfaces A: Physicochemical and Engineering Aspects 144, no. 1-3 (December 1998): 267–73. http://dx.doi.org/10.1016/s0927-7757(98)00646-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

McLoughlin, D., and D. Langevin. "Surface complexation of DNA with a cationic surfactant." Colloids and Surfaces A: Physicochemical and Engineering Aspects 250, no. 1-3 (December 2004): 79–87. http://dx.doi.org/10.1016/j.colsurfa.2004.04.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Padhi, Sakambari, and Tomochika Tokunaga. "Surface complexation modeling of fluoride sorption onto calcite." Journal of Environmental Chemical Engineering 3, no. 3 (September 2015): 1892–900. http://dx.doi.org/10.1016/j.jece.2015.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography