Dissertations / Theses on the topic 'Modeling of processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Modeling of processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mukherjee, Prithwiraj. "Modeling complex decision processes." Thesis, Cergy-Pontoise, Ecole supérieure des sciences économiques et commerciales, 2014. http://www.theses.fr/2014ESEC0007.
Full textThis thesis contains three essays dealing with the modeling of complex decision processes in marketing. Each of these deals with a different aspect of complex decision making, either at the individual or at the network level. Essays 1 and 2 in this dissertation are studies using agent-based models. Essay 1 is an extension of Goldenberg, Libai, and Muller (2010), who use an agent-based model to demonstrate that contrary to intuition, products with network externalities tend to diffuse slower than those without (the "chilling" effect). In their study, they use a simple 2-dimensional Moore neighborhood as the underlying network substrate depicting the market for new product adoption. In keeping with other studies demonstrating that network structure affects diffusion dynamics, I adapt their simulations for real-world network data and find that while larger networks and networks with higher average degree tend to offset this chilling effect, clustering could enhance it. I also demonstrate that for the same high-level parameters, a cumulation of many local micro-level conditions could end up speeding diffusion with network externalities, actually making it faster than without network externalities. Essay 2 deals with the controversy surrounding multilevel marketing (MLM) schemes and questions of their profitability to their freelance sales force. Building on the sparse literature in this field, I build an agent-based model of the growth of an MLM scheme on a social network. Unlike extant work which neglects the role of recruits' business expenses on the decision to join, I include the same, and show that it has non-trivial effects on the proliferation of MLM schemes. In essay 3, I build a new model of preferences based on the notion of anchoring. This vectorbased model is based on Lancaster's (1966) multiattribute utility model, but allows the weights to be shaped by context. Context-dependent models are important in studying consumer choices, as for example, in explaining new product adoptions, new product takeoff, and market dynamics. Context dependent choice models can be used in conjoint analyses to provide calibrated input data to instantiate agent-based models that simulate new product growth. Thus, Essay 3 is a small but important piece in the overall jigsaw puzzle of complex decision processes. The proposed modeling approach can be used to simulate individual decision processes with what-if scenarios regarding options available to a single consumer, and thus be used to build an agent-based simulation of an entire market
Nielssen, Johan. "Information modeling of manufacturing processes." Doctoral thesis, KTH, Production Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3628.
Full textThe innovation process is an important process for our primemotor of welfare, manufacturing. During this process, theprerequisites for manufacturing are set. To set the bestpossible prerequisites consideration about products,manufacturing processes, and manufacturing resources must bemade concurrently, which also means involving several differentdisciplines in a collaborative effort.
As a consequence of involving different disciplines, thecommunication of engineering information may be hindered. Thereason is that different disciplines use different terminologyfor the same concept and sometimes have the same terminologyfor different concepts. This may result in difficultiesunderstanding each other, which may, in turn, result inunnecessary loss of quality and productivity.
The main objective of this thesis is to identify informationconcepts (i.e. information requirements) for process planningin a concurrent engineering environment, and to formally definethe corresponding terminology. The work is based on casestudies at Volvo Car Corporation, involving management of weldspot and location system information, and at ABB Body-in-White,involving tender preparation information.
The results are presented in the thesis in terms of aninformation model, the Product-Process-Resource (PPR)information model, and two corroborated hypotheses. The PPRinformation model defines the identified informationrequirements in the scope of the thesis whereas the hypothesesconcern how, e.g., modularization can be used in informationmodeling.
The PPR information model provides the base for aninformation platform in a concurrent engineeringenvironment.
The PPR information model enable model based documentationand, thus, traceability of the evolution of the product,process, and manufacturing resource designs, and theirinterrelations.
Keywords:Information Modeling, Process Planning,Concurrent Engineering, Information Management
Vedin, Jörgen. "Numerical modeling of auroral processes." Doctoral thesis, Umeå University, Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.
Full textOne of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.
Vedin, Jörgen. "Numerical modeling of auroral processes /." Umeå : Dept. of Physics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.
Full textHubler, David K. "Modeling Electrochemical Water Treatment Processes." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265367.
Full textSzymkiewicz, Paul M. "Towards modeling of retrofit processes." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53891.
Full textSharma, Sandeep Ph D. Massachusetts Institute of Technology. "Predictive modeling of combustion processes." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54583.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 161-169).
Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are used in these combustors to try to find the optimal operating conditions and fuel combination which gives the best results. This process is ad-hoc and costly, and the expertise gained on one system cannot easily be transfered to other situations. To improve this process a more fundamental understanding of chemistry and physical processes is required. The fundamental constants like rate coefficients of elementary reactions are readily transferable enabling us to use results from one set of experiments or calculations in a different situation. In our group we have taken this approach and developed the software Reaction Mechanism Generator (RMG), which generates chemical mechanism for oxidation and pyrolysis of a given fuel under a set of user-defined physical conditions. RMG uses group additivity values to generate thermochemistry of molecules and has a database of rate coefficients of elementary reactions. These two sets of data are used to generate chemical kinetic mechanism in a systematic manner. The reaction mechanisms generated by RMG are purely predictive and elementary rate coefficient from any reliable source can be added to RMG database to improve the quality of its predictions. The goal of my thesis was two fold, first to extend the capabilities and database of RMG and to release it as an open source software for the chemical kinetic community to use.
(cont.) The second was to take a practical system of interest and use RMG to generate the chemical mechanism and thereby demonstrate the utility of RMG in generating predictive chemical mechanisms for practical situations. As a part of the second step our hope was to generate new chemical insights into soot formation processes which are of great interest. The three most important contributions of the thesis are listed below. 1. My work with RMG has resulted in order of magnitude improvements in the cpu and memory usage of RMG and it has added many useful features to RMG like ac- curate sensitivity analysis for better interpreting the final mechanism. I have also worked on extending the database of RMG, by adding thermochemistry of ringed species that cannot be treated adequately by group additivity. Also kinetic rate rules for intramolecular-H-migration reactions in OOQOOH molecules were added to RMG database, which are important in predicting the low temperature oxidation of alkanes. 2. Recently there have been considerable advances in the methodology for rate coefficient calculations for loose transition states, i.e transition states that are not saddle points. These type of transition states are encountered often in radical-radical reactions. In addition to these advances there has been significant progress in accurate calculation of the pressure dependent rate coefficients for complicated potential energy surfaces with multiple wells and multiple product channels. The method is based on the master equation formulation of the problem. These detailed equations are then appropriately coarse-grained to calculate the phenomenological rate coefficients.
(cont.) I have used these state of the art techniques to calculate the rate coefficients for the formation of various aromatic species like benzene and styrene. The rate coefficients predicted by these methods were tested under certain conditions and are in good agreement with experimental data. 3. Finally to model a two-dimensional diffusion flame we have developed a solver that is able to solve a complicated set of highly coupled differential equations in an efficient manner to give accurate results. The solver in conjunction with chemistry that is developed using techniques mentioned in the last two points is used to solve the mole fraction profiles in the diffusion flame. The results of the simulations are compared to the experimental measurements and this process gives us insight into soot formation in diffusion flames.
by Sandeep Sharma.
Ph.D.
Andrade, Restrepo Martín. "Mathematical modeling and evolutionary processes." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC021.
Full textThe research presented in this thesis concerns different topics in the field of Biomathematics. I address diverse questions arising in biology (and related to complex systems) with mathematical and numerical methods. These questions are: (i) Are passive-processes enough to justify the asymmetric distribution of damaged proteins during and after yeast cytokinesis? (ii) What processes are behind the complex patterns of expansion of Amyloid beta in the brains of patients with Alzheimer’s disease? (iii) What is behind the clustering and cline-like dichotomy in models of evolution along environmental gradients? (iv) How does this dichotomy affect the spatial dynamics of invasions and range expansions? (v) How does multi-stability manifest in these models? These questions are approached (at different scales, some fully and some partially) with different theoretical methods. Results are expected to shed light on the biological processes analyzed and to motivate further experimental and empirical work which can help solve lingering uncertainties
Sharma, Chetan M. Eng Massachusetts Institute of Technology. "Automatic modeling of machining processes." Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130833.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 47-48).
3 axis CNC milling is a ubiquitous manufacturing method in industry due to its versatility and precision. The fundamental parameters that dictate cutting performance ("speeds, feeds, and engagement") must be manually set by the machine programmer; proper operation therefore relies heavily on operator skill. In this thesis, an intelligent CNC controller is presented that uses low-cost sensors to fit an analytical model of cutting forces. The analytical nature of this model allows for favorable convergence characteristics and low computational costs. This is used to optimize cutting feeds with respect to process constraints for future movements; as more data is collected, the model continuously reinforced. This intelligent controller therefore abstracts out some of the complexities of machining and makes the process more approachable.
by Chetan Sharma.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Su, Jiann-Cherng. "Residual stress modeling in machining processes." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14030.
Full textCommittee Chair: Liang, Steven Y.; Committee Member: Garmestani, Hamid; Committee Member: Huang, Yong; Committee Member: Melkote, Shreyes N.; Committee Member: Neu, Richard W. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Welf, Erik Steven. "Integrative modeling of cell adhesion processes." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 285 p, 2009. http://proquest.umi.com/pqdweb?did=1833641671&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textPrincipal faculty advisors: Babatunde Ogunnaike, Dept. of Chemical Engineering, and Ulhas P. Naik, Dept. of Biological Sciences. Includes bibliographical references.
Dong, Wen S. M. Massachusetts Institute of Technology. "Influence modeling of complex stochastic processes." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37386.
Full textIncludes bibliographical references (leaves 75-76).
A complex stochastic process involving human behaviors or human group behaviors is computationally hard to model with a hidden Markov process. This is because the state space of such behaviors is often a Cartesian product of a large number of constituent probability spaces, and is exponentially large. A sample for those stochastic processes is normally composed of a large collection of heterogeneous constituent samples. How to combine those heterogeneous constituent samples in a consistent and stable way is another difficulty for the hidden Markov process modeling. A latent structure influence process models human behaviors and human group behaviors by emulating the work of a team of experts. In such a team, each expert concentrates on one constituent probability space, investigates one type of constituent samples, and/or employ one type of technique. An expert improves his work by considering the results from the other experts, instead of the raw data for them. Compared with the hidden Markov process, the latent structure influence process is more expressive, more stable to outliers, and less likely to overfit. It can be used to study the interaction of over 100 persons and get good results.
(cont.) This thesis is organized in the following way. Chapter 0 reviews the notation and the background concepts necessary to develop this thesis. Chapter 1 describes the intuition behind the latent structure influence process and the situations where it outperforms the other dynamic models. In Chapter 2, we give inference algorithms based on two different interpretations of the influence model. Chapter 3 applies the influence algorithms to various toy data sets and real-world data sets. We hope our demonstrations of the influence modeling could serve as templates for the readers to develop other applications. In Chapter 4, we conclude with the rationale and other considerations for influence modeling.
by Wen Dong.
S.M.
Mehrabi, M. Reza. "Modeling transport processes in directional solidification." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11999.
Full textArruda, Guilherme Ferraz de. "Modeling spreading processes in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20072018-160836/.
Full textA modelagem matemática dos processos de disseminação tem sido amplamente estudada na literatura, sendo que o seu estudo apresentou um boom nos últimos anos. Esta é uma tarefa fundamental na compreensão e previsão de epidemias reais e propagação de rumores numa população, ademais, estas estão sujeitas a muitas restrições estruturais e dinâmicas. Com o objetivo de entender melhor esses processos, nos concentramos em duas tarefas: a de modelagem e a de análise de aspectos dinâmicos e estruturais. No primeiro, propomos um modelo novo e geral que une a epidemia e propagação de rumores. Também, no que diz respeito à análise desses processos, estendemos o formalismo clássico às redes multicamadas, onde tal teoria era inexistente. Curiosamente, este estudo abriu novos desafios relacionados à compreensão de redes multicamadas, mais especificamente em relação às suas propriedades espectrais. Nessa tese, analisamos esses processos em redes de uma e múltiplas camadas. Ao longo de nossas análises seguimos três abordagens complementares: (i) análises analíticas, (ii) experimentos numéricos e (iii) simulações de Monte Carlo. Assim, nossos principais resultados são: (i) um novo modelo que unifica as dinâmicas de rumor e epidemias, nos permitindo modelar e entender tais processos em grandes sistemas, (ii) caracterização de novos fenômenos em redes multicamadas, como a localização em camadas e o efeito barreira e (iii) uma análise espectral de sistemas multicamadas, sugerindo um parâmetro de escala universal e propondo uma nova ferramenta analítica para sua análise. Nossas contribuições permitem que novas pesquisas sobre modelagem de processos de propagação, enfatizando também a importância de se considerar a estrutura multicamada. Dessa forma, as nossas contribuições podem ser diretamente aplicadas à predição e modelagem de processos reais. Além do interesse teórico e matemático, nosso trabalho também apresenta implicações sociais importantes.
ABU, HAMMAD AYMAN ABDALLAH. "SIMULATION MODELING OF MANUFACTURED HOUSING PROCESSES." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1015617645.
Full textShi, Ruijie. "Subspace identification methods for process dynamic modeling /." *McMaster only, 2001.
Find full textMeyer, Andreas, Sergey Smirnov, and Mathias Weske. "Data in business processes." Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5304/.
Full textProzesse und Daten sind gleichermaßen wichtig für das Geschäftsprozessmanagement. Prozessdaten sind dabei insbesondere im Kontext der Automatisierung von Geschäftsprozessen, dem Prozesscontrolling und der Repräsentation der Vermögensgegenstände von Organisationen relevant. Es existieren viele Prozessmodellierungssprachen, von denen jede die Darstellung von Daten durch eine fest spezifizierte Menge an Modellierungskonstrukten ermöglicht. Allerdings unterscheiden sich diese Darstellungenund damit der Grad der Datenmodellierung stark untereinander. Dieser Report evaluiert verschiedene Prozessmodellierungssprachen bezüglich der Unterstützung von Datenmodellierung. Als einheitliche Grundlage entwickeln wir ein Framework, welches prozess- und datenrelevante Aspekte systematisch organisiert. Die Kriterien legen dabei das Hauptaugenmerk auf die datenrelevanten Aspekte. Nach Einführung des Frameworks vergleichen wir zwölf Prozessmodellierungssprachen gegen dieses. Wir generalisieren die Erkenntnisse aus den Vergleichen und identifizieren Cluster bezüglich des Grades der Datenmodellierung, in welche die einzelnen Sprachen eingeordnet werden.
Dávila-Felipe, Miraine. "Pathwise decompositions of Lévy processes : applications to epidemiological modeling." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066651.
Full textThis dissertation is devoted to the study of some pathwise decompositions of spectrally positive Lévy processes, and duality relationships for certain (possibly non-Markovian) branching processes, driven by the use of the latter as probabilistic models of epidemiological dynamics. More precisely, we model the transmission tree of a disease as a splitting tree, i.e. individuals evolve independently from one another, have i.i.d. lifetimes (periods of infectiousness) that are not necessarily exponential, and give birth (secondary infections) at a constant rate during their lifetime. The incidence of the disease under this model is a Crump-Mode-Jagers process (CMJ); the overarching goal of the two first chapters is to characterize the law of this incidence process through time, jointly with the partially observed (inferred from sequence data) transmission tree. In Chapter I we obtain a description, in terms of probability generating functions, of the conditional likelihood of the number of infectious individuals at multiple times, given the transmission network linking individuals that are currently infected. In the second chapter, a more elegant version of this characterization is given, passing by a general result of invariance under time reversal for a class of branching processes. Finally, in Chapter III we are interested in the law of the (sub)critical branching process seen from its extinction time. We obtain a duality result that implies in particular the invariance under time reversal from their extinction time of the (sub)critical CMJ processes and the excursion away from 0 of the critical Feller diffusion (the width process of the continuum random tree)
Wanduku, Divine. "Stochastic Modeling of Network-Centric Epidemiological Processes." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4252.
Full textWitzig, Andreas. "Modeling the optical processes in semiconductor lasers /." [S.l.] : [s.n.], 2002. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14694.
Full textStröhlein, Guido. "Modeling of reactive- and bio-chromatographic processes /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16950.
Full textIsangulov, Rustam. "Mathematical modeling applied to oil field processes." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511882.
Full textRahmandad, Hazhir. "Three essays on modeling dynamic organizational processes." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33658.
Full textIncludes bibliographical references.
Essay 1- Effects of Feedback Delay on Learning. Learning figures prominently in many theories of organizations. Understanding barriers to learning is therefore central to understanding firms' performance. This essay investigates the role of time delays between taking an action and observing the results in impeding learning. These delays ubiquitous in real world settings can introduce important tradeoffs between the long-term and the short-term performance. In this essay, four learning algorithms, with different levels of complexity and rationality, are built and their performances in a simple resource allocation task are analyzed. The study focuses on understanding the effect of time delays on learning. Simulation analysis shows that regardless of the level of rationality of the organization, misperceived delays can impede learning significantly. Essay 2- Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models When is it better to use agent-based (AB) models, and when should differential equation (DE) models be used?
(cont.) Where DE models assume homogeneity and perfect mixing within compartments, AB models can capture heterogeneity in agent attributes and in the network of interactions among them. The costs and benefits of such disaggregation should guide the choice of model type. AB models may enhance realism but entail computational and cognitive costs that may limit sensitivity analysis and model scope. Using contagious disease as an example, we contrast the dynamics of AB models with those of the analogous mean-field DE model. We examine agent heterogeneity and the impact of different network topologies, including fully connected, random, Watts-Strogatz small world, scale-free, and lattice networks. Surprisingly, in many conditions differences between the DE and AB dynamics are not statistically significant for key metrics relevant to public health, including diffusion speed, peak load on health services infrastructure and total disease burden. We discuss implications for the choice between AB and DE models, level of aggregation, and model boundary. The results apply beyond epidemiology: from innovation adoption to financial panics, many important social phenomena involve analogous processes of diffusion and social contagion.
(cont.) Essay 3- Dynamics of Multiple-release Product Development Product development (PD) is a crucial capability for firms in competitive markets. Building on case studies of software development at a large firm, this essay explores the interaction among the different stages of the PD process, the underlying architecture of the product, and the products in the field. We introduce the concept of the "adaptation trap," where intendedly functional adaptation of workload can overwhelm the PD organization and force it into firefighting (Repenning 2001) as a result of the delay in seeing the additional resource need from the field and underlying code-base. Moreover, the study highlights the importance of architecture and underlying product-base in multiple-release product development, through their impact on the quality of new models under development, as well as through resource requirements for bug-fixing. Finally, this study corroborates the dynamics of tipping into firefighting that follows quality-productivity tradeoffs under pressure. Put together, these dynamics elucidate some of the reasons why PD capability is hard to build and why it easily erodes.
(cont.) Consequently, we offer hypotheses on the characteristics of the PD process that increase its strategic significance and discuss some practical challenges in the face of these dynamics.
by Hazhir Rahmandad.
Ph.D.
Kim, Gwang-Soo 1975. "Multiscale modeling of thin film deposition processes." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29277.
Full textIncludes bibliographical references.
Ionized physical vapor deposition (IPVD) and electrochemical deposition (ECD) are two major thin film deposition processes in the microelectronics industry. The ion fluxes with high kinetic energies in IPVD process involve complex surface interactions that affect overall topology of the microscale features. Copper ECD process involves complex surface reactions and transport phenomena that ranges over different length scales. In this work, predictive simulation tools for these two processes have been developed by investigating the surface reaction and the transport phenomena in IPVD and ECD processes. In the IPVD process, molecular dynamics (MD) techniques with embedded-atom potentials are used to study the surface reactions for atoms with high impinging energies (30 - 50 eV). The surface reaction rates are combined with ballistic transport and level set methods. The resulting tool demonstrates the effect of the kinetic energy driven surface diffusion on the feature profile evolution. For the ECD process of copper, detailed surface kinetic mechanisms are developed based on the competitive adsorption/desorption model in the presence of three representative additives, poly ethylene glycol (PEG) and bis-(sodium sulfoprophyl) (SPS) and chloride. The proposed kinetic mechanism is capable of describing the synergistic effect of different additives on the copper deposition. Statistically designed experiments were performed with the rotating disk electrode (RDE) apparatus. A hydrodynamic model was developed for RDE and is used to fit the kinetic parameters that are independent of the transport effect.
(cont.) A reactor scale model is developed based on the Galerkin finite element method. The model includes momentum transport, transient mass transport, potential distribution and detailed surface kinetic mechanisms. The experimental film thickness uniformity on the blank wafer with commercial electrochemical deposition cell is compared with the simulation result. The reactor scale model is used to investigate the various effects on the film thickness uniformity including terminal effects and mass transport effects. The analysis shows the qualitative difference between two effects and how they can be eliminated. Also, the reactor scale simulation tool is used to model the pulse plating process. Improved performance of the pulse plating over the constant current operation suggests that the relaxation period is the critical parameter that determines the film thickness uniformity. A computationally efficient feature scale model is developed. Mass transport, potential distribution and detailed surface reactions are included in the model ...
by Gwang-Soo Kim.
Ph.D.
Busch, John Victor 1956. "Technical cost modeling of plastics fabrication processes." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14837.
Full textKohn, Alexander Wolfe. "Modeling non-radiative processes in solar materials." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115806.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 89-102).
In this thesis, we investigate methods and systems for understanding the electronic properties of a variety of systems relevant to organic photovoltaics. The second chapter examines how to predict the radiative and non-radiative decay rates of a large family of naphthalene derivatives. Naphthalene is a common building block in many organic electronic devices and possesses complex photophysics that are difficult to capture. Principally using time-dependent density functional theory, we are able to reproduce the experimental rates and, moreover, the fluorescence quantum yield, quite accurately. The next chapter then goes into extensions of the methodology discussed and analyzed in the prior chapter. Anthracene derivatives used for transferring triplet energy between a quantum dot and rubrene phase are found to have varying impacts on the total transfer efficiency based on the triplet lifetime of the anthracene derivative. Most potently, significant spin-orbit coupling in some of the derivatives causes substantial deactivation. An additional family, BODIPY dyes, is also investigated. They are found to undergo internal conversion gated by an excited-state conformational change, suggesting this may be a common motif. The fourth and fifth chapters investigate different interfacial effects and their impacts on the energy levels of electrons and holes in disordered organic devices. They look at specific systems: the interface between three different donors, PPV, P3HT, PTB7, and PCBM. They find that the interface can both reduce and induce disorder in different systems and that full treatment of the electronic environment is important for capturing accurate results. The final chapter investigates the use of neural networks to predict optimal range-separation parameters for density functionals.
by Alexander Wolfe Kohn.
Ph. D.
Tarud, Joan. "Simulations and modeling of biomass gasification processes." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/31178.
Full textIncludes bibliographical references (leaves 80-81).
Available, low-cost, energy supplies are vital for the world's economy and stability. The current sources of energy harm our environment and are not renewable. Therefore, technology must accommodate new sustainable sources of energy to provide for the high-energy consumption. Biomass is a sustainable energy source that could ease the current reliance on fossil fuels. Gasification of biomass is a promising technology being researched by the National Renewable Energy Laboratory. An Aspen Plus® model was developed for the Thermochemical Process Development Unit (gasification unit) at the National Renewable Energy Laboratory. The model was designed for a feed of poultry litter and was also run with a feed of wood. The Aspen Plus® model is capable of trying various test conditions for the solids removal and scrubbing (condensation) systems. The model as it is currently formulated is not capable of predicting gasification output mixture compositions. It is desirable to decrease the amount of carbon dioxide and tars (defined for this study as compounds with a molecular weight equal to or greater than benzene) in the product gas of the TCPDU. Therefore, the model was run at temperatures for the scrubbing fluid varying from 15⁰C to 60⁰C (for wood) and from 10⁰C to 50⁰C (for poultry litter) and found that the total mole fraction of tars in the product gas for poultry litter feed to decrease by 4% by increasing the scrubbing fluid temperature from 40⁰C to 50⁰C and to increase by 4% by decreasing the temperature to 10⁰C and for wood feed to decrease by 7% by decreasing the temperature from 26⁰C to 15⁰C and to decrease by 10% by increasing the temperature from 26⁰C to 60⁰C.
(cont.) The model was run for mole fractions of tars between 0 and 1, in increments of approximately 0.2, in the scrubbing fluid (with water as the remaining fluid). When the amount of tars in the scrubbing fluid increases to approximately 0.2, the amount of tars in the exit stream increases 58-fold for wood and 50-fold for poultry litter. As a secondary effect, by increasing the tar mole fraction from 0 to 1 in the scrubbing fluid, the model predicts a decrease in mole fractions of carbon dioxide in the product gas of 66% and 36% for poultry litter and wood feeds respectively.
by Joan Tisdale.
S.M.
Eleftheriadis, Stefanos. "Gaussian processes for modeling of facial expressions." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44106.
Full textMattos, César Lincoln Cavalcante. "Recurrent gaussian processes and robust dynamical modeling." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25604.
Full textSubmitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-09T02:26:38Z No. of bitstreams: 1 2017_tes_clcmattos.pdf: 5961013 bytes, checksum: fc44d8b852e28fa0e1ebe0c87389c0da (MD5)
Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Prezado César; Prezado Pedro: Existe uma orientação para que normalizemos as dissertações e teses da UFC, em suas paginas pré-textuais e lista de referencias, pelas regras da ABNT. Por esse motivo, sugerimos consultar o modelo de template, para ajudá-lo nesta tarefa, disponível em: http://www.biblioteca.ufc.br/educacao-de-usuarios/templates/ Vamos agora as correções sempre de acordo com o template: 1. A partir da folha de aprovação as informações devem ser em língua inglesa. 2. A dedicatória deve ter a distancia até o final da folha observado. Veja no guia www.bibliotecas.ufc.br 3. A epígrafe deve ter a distancia até o final da folha observado. Veja no guia www.bibliotecas.ufc.br 4. As palavras List of Figures, LIST OF ALGORITHMS, List of Tables, Não devem ter caixa delimitando e nem ser na cor vermelha. 5. O sumário Não deve ter caixa delimitando e nem ser na cor vermelha. Nas seções terciárias, os dígitos também ficam em itálico. Os Apêndices e seus títulos, devem ficar na mesma margem da Palavra Referencias e devem iniciar com APENDICE A - Seguido do titulo. Após essas correções, enviaremos o nada consta por e-mail. Att. Marlene Rocha mmarlene@ufc.br on 2017-09-11T13:44:25Z (GMT)
Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-11T20:04:00Z No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102703 bytes, checksum: 34d9e125c70f66ca9c095e1bc6bfb7e7 (MD5)
Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Lincoln, Falta apenas vc colocar no texto em português a palavra RESUMO (nesse caso não é traduzido pois se refere ao resumo em língua portuguesa) pois vc colocou ABSTRACT duas vezes para o texto em português e inglês. on 2017-09-12T11:06:29Z (GMT)
Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-12T14:05:11Z No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5)
Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-09-12T16:29:17Z (GMT) No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5)
Made available in DSpace on 2017-09-12T16:29:18Z (GMT). No. of bitstreams: 1 2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5) Previous issue date: 2017-08-25
The study of dynamical systems is widespread across several areas of knowledge. Sequential data is generated constantly by different phenomena, most of them we cannot explain by equations derived from known physical laws and structures. In such context, this thesis aims to tackle the task of nonlinear system identification, which builds models directly from sequential measurements. More specifically, we approach challenging scenarios, such as learning temporal relations from noisy data, data containing discrepant values (outliers) and large datasets. In the interface between statistics, computer science, data analysis and engineering lies the machine learning community, which brings powerful tools to find patterns from data and make predictions. In that sense, we follow methods based on Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in kernel machines. We aim to exploit recent advances in general GP modeling to bring new contributions to the dynamical modeling exercise. Thus, we propose the novel family of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-observed) structure of those models impose intractabilities in the form of non-analytical expressions, which are handled with the derivation of new variational algorithms to perform approximate deterministic inference as an optimization problem. The presented solutions enable uncertainty propagation on both training and testing, with focus on free simulation. We comprehensively evaluate the proposed methods with both artificial and real system identification benchmarks, as well as other related dynamical settings. The obtained results indicate that the proposed approaches are competitive when compared to the state of the art in the aforementioned complicated setups and that GP-based dynamical modeling is a promising area of research.
O estudo dos sistemas dinâmicos encontra-se disseminado em várias áreas do conhecimento. Dados sequenciais são gerados constantemente por diversos fenômenos, a maioria deles não passíveis de serem explicados por equações derivadas de leis físicas e estruturas conhecidas. Nesse contexto, esta tese tem como objetivo abordar a tarefa de identificação de sistemas não lineares, por meio da qual são obtidos modelos diretamente a partir de observações sequenciais. Mais especificamente, nós abordamos cenários desafiadores, tais como o aprendizado de relações temporais a partir de dados ruidosos, dados contendo valores discrepantes (outliers) e grandes conjuntos de dados. Na interface entre estatísticas, ciência da computação, análise de dados e engenharia encontra-se a comunidade de aprendizagem de máquina, que fornece ferramentas poderosas para encontrar padrões a partir de dados e fazer previsões. Nesse sentido, seguimos métodos baseados em Processos Gaussianos (PGs), uma abordagem probabilística prática para a aprendizagem de máquinas de kernel. A partir de avanços recentes em modelagem geral baseada em PGs, introduzimos novas contribuições para o exercício de modelagem dinâmica. Desse modo, propomos a nova família de modelos de Processos Gaussianos Recorrentes (RGPs, da sigla em inglês) e estendemos seu conceito para lidar com requisitos de robustez a outliers e aprendizagem estocástica escalável. A estrutura hierárquica e latente (não-observada) desses modelos impõe expressões não- analíticas, que são resolvidas com a derivação de novos algoritmos variacionais para realizar inferência determinista aproximada como um problema de otimização. As soluções apresentadas permitem a propagação da incerteza tanto no treinamento quanto no teste, com foco em realizar simulação livre. Nós avaliamos em detalhe os métodos propostos com benchmarks artificiais e reais da área de identificação de sistemas, assim como outras tarefas envolvendo dados dinâmicos. Os resultados obtidos indicam que nossas propostas são competitivas quando comparadas ao estado da arte, mesmo nos cenários que apresentam as complicações supracitadas, e que a modelagem dinâmica baseada em PGs é uma área de pesquisa promissora.
Khare, Neeraj Prasad. "Predictive Modeling of Metal-Catalyzed Polyolefin Processes." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/11065.
Full textPh. D.
Zhang, Mingchuan. "Advanced spatial information processes: modeling and application." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/76087.
Full textPh. D.
Keefe, Matthew James. "Statistical Monitoring and Modeling for Spatial Processes." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/76664.
Full textPh. D.
Gupta, Shailesh. "Mathematical Modeling of Thin Strip Casting Processes." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1391679731.
Full textP, Snehalatha Suma. "Logical Modeling of ETL Processes Using XML." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1276948742.
Full textGanguly, Shreyan. "Modeling Nonstationarity Using Locally Stationary Basis Processes." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563408374215259.
Full textPopescu, Catalin Nicolae. "Modeling and control of extrusion coating." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/13700.
Full textAsp, Grönhagen Klara. "Phase-field modeling of surface-energy driven processes." Doctoral thesis, KTH, Metallografi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11036.
Full textQC 20100622
Kadkhodabeigi, Mehdi. "Modeling of Tapping Processes in Submerged Arc Furnaces." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13240.
Full textAmmar, Mohammed E. "Cross-directional processes : modeling, identification and robust control." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/14843.
Full textSong, Zhili Jack. "Modeling of Gas Flows in Steelmaking Decarburization Processes." Doctoral thesis, KTH, Tillämpad processmetallurgi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-128541.
Full textQC 20130913
Kethers, Stefanie. "Multi-perspective modeling and analysis of cooperation processes." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962847658.
Full textMaurstad, Ola. "Population Balance Modeling of Agglomeration in Granulation Processes." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-123.
Full textAgglomeration (the sticking together of particles) is often the major growth mechanism in granulation processes. The population balance equation (PBE) is a mathematical framework that is often applied to systems to describe how the particle size distribution changes as a function of time. Different kinetic terms are included in the PBE to describe the different particle growth mechanisms. In this work, a new kinetic model framework is proposed for the growth mechanism binary agglomeration. Binary agglomeration means that only two particles are involved in an agglomeration event. The generality of the new model framework is an advantage over the previous coalescence kernel framework. It is shown that an existing coalescence kernel model can be expressed by means of the new framework.
The new model framework is then adapted to the special case of fluidized bed granulation (FBG) by proposing/choosing expressions for the three submodels in the model framework. An advantage of the new FBG model is that a maximum number of agglomeration events per unit time can be estimated. This means that the model is one step closer to being used predictively. At the moment, no population balance models can predict granulation processes where agglomeration is the dominant growth mechanism. It is shown that both the new FBG model and an existing model could fit experimental data well, however, the new model reflects the situation that the presence of surface liquid is rate limiting for the agglomeratio process.
Experiments in a laboratory batch fluidized bed granulator were carried out. Samples of the particle size distribution were taken at intervals during an experiment. These data were used to fit the model parameters of the FBG model. The dissertation includes a discussion of the effect of certain operating conditions such as bed temperature and liquid spray rate on a model parameter.
Liu, Huamin. "Modeling and optimal control of deteriorating production processes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27995.pdf.
Full textZhou, Liang. "Modeling interface advection in the die casting processes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ36914.pdf.
Full textXie, Nan. "Computational analyses for modeling fluidized bed gasification processes." [Ames, Iowa : Iowa State University], 2007.
Find full textLi, Zhichao. "Modeling, analysis, and experimental investigations of grinding processes." Diss., Manhattan, Kan. : Kansas State University, 2006. http://hdl.handle.net/2097/198.
Full textSchwab, Julian [Verfasser]. "Modeling regulatory processes with qualitative networks / Julian Schwab." Ulm : Universität Ulm, 2020. http://d-nb.info/121575826X/34.
Full textHorne, Simon James. "A novel hybrid approach to modeling chemical processes." Thesis, University of Newcastle Upon Tyne, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531756.
Full textEl-Bachir, Naoufel. "Stochastic default intensity modeling with dependent jump processes." Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515698.
Full textHebing, Lukas [Verfasser]. "Modeling and Control of Fermentation Processes / Lukas Hebing." Düren : Shaker, 2020. http://d-nb.info/1229779477/34.
Full text