Academic literature on the topic 'Modeling of hydroacoustic signals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modeling of hydroacoustic signals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Modeling of hydroacoustic signals"
Nejevenko, E. S., and A. A. Sotnikov. "Adaptive modeling for hydroacoustic signal processing." Pattern Recognition and Image Analysis 16, no. 1 (January 2006): 5–8. http://dx.doi.org/10.1134/s1054661806010020.
Full textKuznetsov, Mikhail Yu, and Yury A. Kuznetsov. "Hydroacoustic methods and tools for fish stock assessment and fishery maintenance Part 2. Methods and tools of fishery biohydroacoustics." Izvestiya TINRO 184, no. 1 (March 30, 2016): 264–94. http://dx.doi.org/10.26428/1606-9919-2016-184-264-294.
Full textKryukov, Yu S., and E. O. Cherepanov. "SOFTWARE FOR PROCESSING HYDROACOUSTIC SIGNALS, MODELING AND REMOTE EVALUATION OF THE COORDINATES OF THE TRIGGERING OF UNDERWATER PULSED SOURCES." Journal of Oceanological Research 46, no. 2 (October 18, 2018): 37–46. http://dx.doi.org/10.29006/1564-2291.jor-2018.46(2).4.
Full textHamama, Islam, Masa-yuki Yamamoto, Mohamed N. ElGabry, Noha Ismail Medhat, Hany S. Elbehiri, Adel Sami Othman, Mona Abdelazim, Ahmed Lethy, Sherif M. El-hady, and Hesham Hussein. "Investigation of near-surface chemical explosions effects using seismo-acoustic and synthetic aperture radar analyses." Journal of the Acoustical Society of America 151, no. 3 (March 2022): 1575–92. http://dx.doi.org/10.1121/10.0009406.
Full textZAITSEVA, Irina N. "ERROR ESTIMATION OF THE ALGORITHM FOR THE PHASE SHIFT DEFINITION OF HARMONIC SIGNALS IN THE TIMELESS THAN THE SIGNAL PERIOD USING STOCHASTIC SAMPLING." Periódico Tchê Química 17, no. 36 (December 20, 2020): 213–22. http://dx.doi.org/10.52571/ptq.v17.n36.2020.229_periodico36_pgs_213_222.pdf.
Full textAlexandrov, V., A. Buyanov, L. Markova, and M. Sivers. "Researching Digital Methods of Generation Signals of Hydroacoustic Phased Antenna Grids." Proceedings of Telecommunication Universities 7, no. 1 (March 31, 2021): 42–53. http://dx.doi.org/10.31854/1813-324x-2021-7-1-42-53.
Full textKasatkin, B. A., N. V. Zlobina, S. B. Kasatkin, and G. V. Kosarev. "Spectral-Correlation Signal Processing in the Infrasonic Frequency Range." IOP Conference Series: Earth and Environmental Science 988, no. 3 (February 1, 2022): 032065. http://dx.doi.org/10.1088/1755-1315/988/3/032065.
Full textButyrskiy, Evgeniy, N. V. Mercachev, and Vitaliy Rahuba. "Spectral method of forming complex hydroacoustic signals." National Security and Strategic Planning, no. 2 (August 15, 2021): 38–51. http://dx.doi.org/10.37468/2307-1400-2021-2-38-51.
Full textSeletkov, V. L. "Methods of spectral identification of hydroacoustic signals." Radioelectronics and Communications Systems 51, no. 6 (June 2008): 335–38. http://dx.doi.org/10.3103/s0735272708060083.
Full textSknarya, Anatoly V., Anatoly A. Razin, Sergey A. Toshchov, and Aleksey I. Demidov. "ULTRA WIDEBAND SOUNDING SIGNALS IN HYDROACOUSTIC SYSTEMS." Radioelectronics. Nanosystems. Information Technologies 10, no. 2 (October 2018): 209–12. http://dx.doi.org/10.17725/rensit.2018.10.209.
Full textDissertations / Theses on the topic "Modeling of hydroacoustic signals"
Дудко, Андрій Володимирович. "Модуль генерації гідроакустичного сигналу в плоско-паралельному хвилеводі." Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/28408.
Full textThe purpose of the thesis is to create a program product for generating a hydroacoustic signal in a plane-parallel waveguide beam method. The objects of research are the methods and algorithms of signal simulation. An overview of the existing software applications for simulation of signals and the problems of modeling of hydroacoustic signals was performed, the program software of generation hydroacoustic signals, implemented by the imaginary sources for calculating the field of pressure in a plane-parallel waveguide, was implemented, this method belongs to beam models. The created program product can be used as part of the system for modeling hydroacoustic objects and for scientific research. Total volume of work: 67 pages, 19 illustrations, 17 bibliographic references and 3 attachments.
Целью дипломной работы является создание программного продукта для генерации гидроакустических сигналов в плоско-параллельном волноводе лучевым методом. Объектом исследования являются способы и алгоритмы моделирования сигналов. Было выполнено обзор существующих программных приложений для моделирования сигналов и ознакомиться с проблемами моделирования гидроакустических сигналов, разработано программный продукт для генерации гидроакустических сигналов, который реализован методом мнимых источников для расчета поля давления в плоско-параллельном волноводе, данный метод относится к лучевым моделям. Созданная программа может быть использована как часть системы для моделирования гидроакустических объектов и для научных исследований.
Тимофеева, М. А., Віктор Васильович Авраменко, Виктор Васильевич Авраменко, and Viktor Vasylovych Avramenko. "Разработка компьютерной системы распознавания гидроакустических сигналов и моделирование ее работы." Thesis, Изд-во СумГУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/20932.
Full textStarzl, Ravi. "Computational Modeling of Immune Signals." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/339.
Full textVanDerKamp, Martha M. "Modeling and classification of biological signals." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School; Available from the National Technical Information Service, 1992. http://edocs.nps.edu/npspubs/scholarly/theses/1992/Dec/92Dec_VanDerKamp.pdf.
Full textMarrow, Marcus. "Detection and modeling of 2-dimensional signals /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3137227.
Full textXu, Zhen. "Modeling SAR signals and sensors using VHDL." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06112009-063128/.
Full textLiu, Aiping. "Brain connectivity network modeling using fMRI signals." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58126.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Velasco, Solano Carlos Hernando. "ARMA modeling of signals in the time domain." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23820.
Full textThis thesis develops an iterative algorithm for the design of ARMA models of signals in the time domain. The algorithm is based on optimization techniques, particularly a gradient technique known as the restricted step method is used. The new algorithm is called the iterative Prony method, and the results obtained using this new method are compared to those obtained using the iterative prefiltering algorithm. The thesis shows that the performance of the iterative Prony method is in most of the cases comparable or superior to that of the iterative prefiltering algorithm.
Lam, Warren Michael. "Modeling algorithms for a class of fractal signals." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/31034.
Full textIncludes bibliographical references (leaves 86-87).
by Warren Michael Lam.
M.S.
Waghray, Rasagnya. "EXPLORING REDUCED TRAFFIC SIGNALS USING AGENT BASED MODELING." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/372.
Full textBooks on the topic "Modeling of hydroacoustic signals"
VanDerKamp, Martha M. Modeling and classification of biological signals. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textI︠A︡roshchuk, I. O. Metod statisticheskogo modelirovani︠i︡a v zadachakh gidroakustiki =: Statistical modeling method for hydroacoustic problems. Vladivostok: Dalʹnauka, 2002.
Find full textSolano, Carlos Hernando Velasco. ARMA modeling of signals in the time domain. Monterey, Calif: Naval Postgraduate School, 1992.
Find full textDevasahayam, Suresh R. Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling. 2nd ed. Boston, MA: Springer US, 2013.
Find full textPhilippe, Müllhaupt, and SpringerLink (Online service), eds. Advances in the Theory of Control, Signals and Systems with Physical Modeling. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textDevasahayam, Suresh R. Signals and Systems in Biomedical Engineering: Physiological Systems Modeling and Signal Processing. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3531-0.
Full textLévine, Jean, and Philippe Müllhaupt, eds. Advances in the Theory of Control, Signals and Systems with Physical Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16135-3.
Full textDevasahayam, Suresh R. Signals and Systems in Biomedical Engineering: Signal Processing and Physiological Systems Modeling. Boston, MA: Springer US, 2000.
Find full textSignals and systems in biomedical engineering: Signal processing and physiological systems modeling. New York: Kluwer Academic/Plenum Publishers, 2000.
Find full textFeliu, Sebastián. Modelado e identificación de procesos de corrosión: Análisis de la respuesta a señales eléctricas = Modeling and identification of corrosion processes : response to electric signals. Madrid: Consejo Superior de Investigaciones Científicas, 1985.
Find full textBook chapters on the topic "Modeling of hydroacoustic signals"
Narandžić, M., A. Hong, W. Kotterman, R. S. Thomä, L. Reichardt, T. Fügen, and T. Zwick. "Channel Modeling." In Signals and Communication Technology, 15–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17496-4_2.
Full textAli, Syed Riffat. "Hardware Reliability Modeling." In Signals and Communication Technology, 29–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01647-0_2.
Full textSalam, Abdul, and Usman Raza. "Wireless Underground Channel Modeling." In Signals in the Soil, 61–121. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50861-6_3.
Full textWatanabe, Kento, and Masataka Goto. "Atypical Lyrics Completion Considering Musical Audio Signals." In MultiMedia Modeling, 174–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67832-6_15.
Full textCohen Tenoudji, Frédéric. "Parametric Modeling of Random Signals." In Modern Acoustics and Signal Processing, 529–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42382-1_26.
Full textHealy, Graham F., Cathal Gurrin, and Alan F. Smeaton. "Informed Perspectives on Human Annotation Using Neural Signals." In MultiMedia Modeling, 315–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27674-8_28.
Full textKovačević, Branko, Milan Milosavljević, Mladen Veinović, and Milan Marković. "Speech Signal Modeling." In Robust Digital Processing of Speech Signals, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53613-2_1.
Full textGruhn, Rainer E., Wolfgang Minker, and Satoshi Nakamura. "Pronunciation Variation Modeling in the Literature." In Signals and Communication Technology, 25–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19586-0_4.
Full textOestges, Claude, Nicolai Czink, Philippe De Doncker, Vittorio Degli-Esposti, Katsuyuki Haneda, Wout Joseph, Martine Liénard, et al. "Radio Channel Modeling for 4G Networks." In Signals and Communication Technology, 67–147. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2315-6_3.
Full textLin, En-Bing, Megan Haske, Marilyn Smith, and Darren Sowards. "Wavelet Analysis of ECG Signals." In Multiscale Signal Analysis and Modeling, 233–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4145-8_10.
Full textConference papers on the topic "Modeling of hydroacoustic signals"
Dushin, Sergey V. "Modeling of a High-Frequency Hydroacoustic Communication Channel in Shallow Water of the Black Sea." In 2020 22th International Conference on Digital Signal Processing and its Applications (DSPA). IEEE, 2020. http://dx.doi.org/10.1109/dspa48919.2020.9213278.
Full textBurdinsky, I. N., I. V. Karabanov, and A. S. Mironov. "Hydroacoustic signals of AUV data measuring systems." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7818992.
Full textMironov, A. S., and E. S. Fomina. "Processing Hydroacoustic Signals in Systems for Sonar Surveying." In 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2018. http://dx.doi.org/10.1109/fareastcon.2018.8602891.
Full textFalco, Anatoly I., and Maxim S. Shushnov. "Reception of Signals with Code Division in Hydroacoustic Channels." In 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8545057.
Full textKlionskiy, D. M., D. I. Kaplun, V. V. Gulvanskiy, D. V. Bogaevskiy, S. A. Romanov, and S. V. Kalincev. "Application of harmonic wavelets to processing oscillating hydroacoustic signals." In 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL). IEEE, 2017. http://dx.doi.org/10.1109/piers-fall.2017.8293563.
Full textBurdinskiy, Igor N., Andrey S. Mironov, and Anton V. Myagotin. "Measuring system for the registration of pseudo-noise hydroacoustic signals." In 2008 9th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE). IEEE, 2008. http://dx.doi.org/10.1109/apeie.2008.4897059.
Full textBurdinskiy, I. N., A. S. Mironov, and A. V. Myagotin. "Measuring system for the registration of pseudo-noise hydroacoustic signals." In 2008 9th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE). IEEE, 2008. http://dx.doi.org/10.1109/apeie.2008.4897134.
Full textPisarev, Ivan A., Elena E. Kotova, Andrei S. Pisarev, and Natalia V. Stash. "Structure of knowledge base of methods for processing hydroacoustic signals." In 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). IEEE, 2018. http://dx.doi.org/10.1109/eiconrus.2018.8317290.
Full textKlionskiy, D. M., D. I. Kaplun, V. V. Geppener, and A. S. Voznesenskiy. "Simulator of Hydroacoustic Signals for a Complex System of Underwater Environment." In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017889.
Full textZhi-Bin, Xu, and Lin Xue-Yuan. "Modeling Study of Hydroacoustic Channel Based on Ray Model." In 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.239.
Full textReports on the topic "Modeling of hydroacoustic signals"
Tolstoy, M., and D. Bohnenstiehl. Location, Characterization and Quantification of Hydroacoustic Signals in the Indian Ocean. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422211.
Full textSteer, M. Advanced Modeling of Mixed Signals Systems. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada457819.
Full textBarrios, Amalia E., Veena Gadwal, and Richard Sprague. Modeling RF Digital Signals for Communications Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531221.
Full textMargoliash, Daniel. Modeling Temporal Dynamics in the Classification of Auditory Signals. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada267472.
Full textKohlmorgen, L. R., S. Coers, K. Bischof, I. Kröncke, and A. Bartholoma. Differences in hydroacoustic backscatter signals and epifauna growth in a stony and coarse grain habitat ("Helgolaender Steingrund", German Bight, North Sea). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305874.
Full textLarmat, Carene, Marcel Remillieux, Lucie Rolland, and Philippe Lognonne. W15_ionisphere “3D modeling and inversion of ionospheric signals driven from below by earthquakes and tsunami". Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345919.
Full textDelgado, Jaime Fernando, and Müjdat Çetin. Modeling differences in the time-frequency representation of EEG signals through HMM’s for classification of imaginary motor tasks. Sabanci University, May 2011. http://dx.doi.org/10.5900/su_fens_wp.2011.16498.
Full textBreton, Daniel. A study on the Delta-Bullington irregular terrain radiofrequency propagation model : assessing model suitability for use in decision support tools. Engineer Research and Development Center (U.S.), January 2022. http://dx.doi.org/10.21079/11681/42780.
Full textElbaum, Michael, and Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, March 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Full text