Academic literature on the topic 'Modèles probabilistes profonds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Modèles probabilistes profonds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Modèles probabilistes profonds"

1

Balikas, Georgios. "Explorer et apprendre à partir de collections de textes multilingues à l'aide des modèles probabilistes latents et des réseaux profonds." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM054/document.

Full text
Abstract:
Le texte est l'une des sources d'informations les plus répandues et les plus persistantes. L'analyse de contenu du texte se réfère à des méthodes d'étude et de récupération d'informations à partir de documents. Aujourd'hui, avec une quantité de texte disponible en ligne toujours croissante l'analyse de contenu du texte revêt une grande importance parce qu' elle permet une variété d'applications. À cette fin, les méthodes d'apprentissage de la représentation sans supervision telles que les modèles thématiques et les word embeddings constituent des outils importants.L'objectif de cette dissertation est d'étudier et de relever des défis dans ce domaine.Dans la première partie de la thèse, nous nous concentrons sur les modèles thématiques et plus précisément sur la manière d'incorporer des informations antérieures sur la structure du texte à ces modèles.Les modèles de sujets sont basés sur le principe du sac-de-mots et, par conséquent, les mots sont échangeables. Bien que cette hypothèse profite les calculs des probabilités conditionnelles, cela entraîne une perte d'information.Pour éviter cette limitation, nous proposons deux mécanismes qui étendent les modèles de sujets en intégrant leur connaissance de la structure du texte. Nous supposons que les documents sont répartis dans des segments de texte cohérents. Le premier mécanisme attribue le même sujet aux mots d'un segment. La seconde, capitalise sur les propriétés de copulas, un outil principalement utilisé dans les domaines de l'économie et de la gestion des risques, qui sert à modéliser les distributions communes de densité de probabilité des variables aléatoires tout en n'accédant qu'à leurs marginaux.La deuxième partie de la thèse explore les modèles de sujets bilingues pour les collections comparables avec des alignements de documents explicites. En règle générale, une collection de documents pour ces modèles se présente sous la forme de paires de documents comparables. Les documents d'une paire sont écrits dans différentes langues et sont thématiquement similaires. À moins de traductions, les documents d'une paire sont semblables dans une certaine mesure seulement. Pendant ce temps, les modèles de sujets représentatifs supposent que les documents ont des distributions thématiques identiques, ce qui constitue une hypothèse forte et limitante. Pour le surmonter, nous proposons de nouveaux modèles thématiques bilingues qui intègrent la notion de similitude interlingue des documents qui constituent les paires dans leurs processus générateurs et d'inférence.La dernière partie de la thèse porte sur l'utilisation d'embeddings de mots et de réseaux de neurones pour trois applications d'exploration de texte. Tout d'abord, nous abordons la classification du document polylinguistique où nous soutenons que les traductions d'un document peuvent être utilisées pour enrichir sa représentation. À l'aide d'un codeur automatique pour obtenir ces représentations de documents robustes, nous démontrons des améliorations dans la tâche de classification de documents multi-classes. Deuxièmement, nous explorons la classification des tweets à plusieurs tâches en soutenant que, en formant conjointement des systèmes de classification utilisant des tâches corrélées, on peut améliorer la performance obtenue. À cette fin, nous montrons comment réaliser des performances de pointe sur une tâche de classification du sentiment en utilisant des réseaux neuronaux récurrents. La troisième application que nous explorons est la récupération d'informations entre langues. Compte tenu d'un document écrit dans une langue, la tâche consiste à récupérer les documents les plus similaires à partir d'un ensemble de documents écrits dans une autre langue. Dans cette ligne de recherche, nous montrons qu'en adaptant le problème du transport pour la tâche d'estimation des distances documentaires, on peut obtenir des améliorations importantes
Text is one of the most pervasive and persistent sources of information. Content analysis of text in its broad sense refers to methods for studying and retrieving information from documents. Nowadays, with the ever increasing amounts of text becoming available online is several languages and different styles, content analysis of text is of tremendous importance as it enables a variety of applications. To this end, unsupervised representation learning methods such as topic models and word embeddings constitute prominent tools.The goal of this dissertation is to study and address challengingproblems in this area, focusing on both the design of novel text miningalgorithms and tools, as well as on studying how these tools can be applied to text collections written in a single or several languages.In the first part of the thesis we focus on topic models and more precisely on how to incorporate prior information of text structure to such models.Topic models are built on the premise of bag-of-words, and therefore words are exchangeable. While this assumption benefits the calculations of the conditional probabilities it results in loss of information.To overcome this limitation we propose two mechanisms that extend topic models by integrating knowledge of text structure to them. We assume that the documents are partitioned in thematically coherent text segments. The first mechanism assigns the same topic to the words of a segment. The second, capitalizes on the properties of copulas, a tool mainly used in the fields of economics and risk management that is used to model the joint probability density distributions of random variables while having access only to their marginals.The second part of the thesis explores bilingual topic models for comparable corpora with explicit document alignments. Typically, a document collection for such models is in the form of comparable document pairs. The documents of a pair are written in different languages and are thematically similar. Unless translations, the documents of a pair are similar to some extent only. Meanwhile, representative topic models assume that the documents have identical topic distributions, which is a strong and limiting assumption. To overcome it we propose novel bilingual topic models that incorporate the notion of cross-lingual similarity of the documents that constitute the pairs in their generative and inference processes. Calculating this cross-lingual document similarity is a task on itself, which we propose to address using cross-lingual word embeddings.The last part of the thesis concerns the use of word embeddings and neural networks for three text mining applications. First, we discuss polylingual document classification where we argue that translations of a document can be used to enrich its representation. Using an auto-encoder to obtain these robust document representations we demonstrate improvements in the task of multi-class document classification. Second, we explore multi-task sentiment classification of tweets arguing that by jointly training classification systems using correlated tasks can improve the obtained performance. To this end we show how can achieve state-of-the-art performance on a sentiment classification task using recurrent neural networks. The third application we explore is cross-lingual information retrieval. Given a document written in one language, the task consists in retrieving the most similar documents from a pool of documents written in another language. In this line of research, we show that by adapting the transportation problem for the task of estimating document distances one can achieve important improvements
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Xu. "Towards efficient learning of graphical models and neural networks with variational techniques." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1037.

Full text
Abstract:
Dans cette thèse, je me concentrerai principalement sur l’inférence variationnelle et les modèles probabilistes. En particulier, je couvrirai plusieurs projets sur lesquels j'ai travaillé pendant ma thèse sur l'amélioration de l'efficacité des systèmes AI / ML avec des techniques variationnelles. La thèse comprend deux parties. Dans la première partie, l’efficacité des modèles probabilistes graphiques est étudiée. Dans la deuxième partie, plusieurs problèmes d’apprentissage des réseaux de neurones profonds sont examinés, qui sont liés à l’efficacité énergétique ou à l’efficacité des échantillons
In this thesis, I will mainly focus on variational inference and probabilistic models. In particular, I will cover several projects I have been working on during my PhD about improving the efficiency of AI/ML systems with variational techniques. The thesis consists of two parts. In the first part, the computational efficiency of probabilistic graphical models is studied. In the second part, several problems of learning deep neural networks are investigated, which are related to either energy efficiency or sample efficiency
APA, Harvard, Vancouver, ISO, and other styles
3

Cutajar, Kurt. "Broadening the scope of gaussian processes for large-scale learning." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS063.

Full text
Abstract:
L'importance renouvelée de la prise de décisions dans un contexte d'incertitude exige une réévaluation de techniques d'inférence bayésiennes appliquées aux grands jeux de données. Les processus gaussiens (GPs) sont une composante fondamentale de nombreux algorithmes probabilistes ; cependant, l'application des GPs est entravée par leur complexité de calcul cubique due aux opérations d'algèbre linéaire impliquées. Nous étudions d'abord l'efficacité de l'inférence exacte des GPs à budget de calcul donné en proposant un nouveau procédé qui applique le préconditionnement aux matrices noyaux. En prenant en considération le domaine du calcul numérique probabiliste, nous montrons également comment l'incertitude numérique introduite par ces techniques d'approximation doit être identifiée et évaluée de manière raisonnable. La deuxième grande contribution de cette thèse est d'établir et de renforcer le rôle des GPs, et leurs extension profondes (DGPs), en vu des exigences et contraintes posées par les grands jeux de données. Alors que les GPs et DGPs étaient autrefois jugés inaptes à rivaliser avec les techniques d'apprentissage profond les plus modernes, les modèles présentés dans cette thèse ont contribué à un changement de perspective sur leur capacités et leur limites
The renewed importance of decision making under uncertainty calls for a re-evaluation of Bayesian inference techniques targeting this goal in the big data regime. Gaussian processes (GPs) are a fundamental building block of many probabilistic kernel machines; however, the computational and storage complexity of GPs hinders their scaling to large modern datasets. The contributions presented in this thesis are two-fold. We first investigate the effectiveness of exact GP inference on a computational budget by proposing a novel scheme for accelerating regression and classification by way of preconditioning. In the spirit of probabilistic numerics, we also show how the numerical uncertainty introduced by approximate linear algebra should be adequately evaluated and incorporated. Bridging the gap between GPs and deep learning techniques remains a pertinent research goal, and the second broad contribution of this thesis is to establish and reinforce the role of GPs, and their deep counterparts (DGPs), in this setting. Whereas GPs and DGPs were once deemed unfit to compete with alternative state-of-the-art methods, we demonstrate how such models can also be adapted to the large-scale and complex tasks to which machine learning is now being applied
APA, Harvard, Vancouver, ISO, and other styles
4

Darmet, Ludovic. "Vers une approche basée modèle-image flexible et adaptative en criminalistique des images." Thesis, Université Grenoble Alpes, 2020. https://tel.archives-ouvertes.fr/tel-03086427.

Full text
Abstract:
Les images numériques sont devenues un moyen de communication standard et universel. Elles prennent place dans notre vie de tous les jours, ce qui entraîne directement des inquiétudes quant à leur intégrité. Nos travaux de recherche étudient différentes méthodes pour examiner l’authenticité d’une image numérique. Nous nous plaçons dans un contexte réaliste où les images sont en grandes quantités et avec une large diversité de manipulations et falsifications ainsi que de sources. Cela nous a poussé à développer des méthodes flexibles et adaptative face à cette diversité.Nous nous sommes en premier lieu intéressés à la détection de manipulations à l’aide de la modélisation statistiques des images. Les manipulations sont des opérations élémentaires telles qu’un flou, l’ajout de bruit ou une compression. Dans ce cadre, nous nous sommes plus particulièrement focalisés sur les effets d’un pré-traitement. A cause de limitations de stockage et autres, une image peut être re-dimensionnée ou re-compressée juste après sa capture. L’ajout d’une manipulation se fait donc ensuite sur une image déjà pré-traitée. Nous montrons qu’un pré-redimensionnement pour les images de test induit une chute de performance pour des détecteurs entraînés avec des images en pleine taille. Partant de ce constat, nous introduisons deux nouvelles méthodes pour mitiger cette chute de performance pour des détecteurs basés sur l’utilisation de mixtures de gaussiennes. Ces détecteurs modélisent les statistiques locales, sur des tuiles (patches), d’images naturelles. Cela nous permet de proposer une adaptation de modèle guidée par les changements dans les statistiques locales de l’image. Notre première méthode est une adaptation entièrement non-supervisée, alors que la seconde requière l’accès à quelques labels, faiblement supervisé, pour les images pré-resizées.Ensuite, nous nous sommes tournés vers la détection de falsifications et plus spécifiquement l’identification de copier-coller. Le copier-coller est l’une des falsification les plus populaires. Une zone source est copiée vers une zone cible de la même image. La grande majorité des détecteurs existants identifient indifféremment les deux zones (source et cible). Dans un scénario opérationnel, seulement la zone cible est intéressante car uniquement elle représente une zone de falsification. Ainsi, nous proposons une méthode pour discerner les deux zones. Notre méthode utilise également la modélisation locale des statistiques de l’image à l’aide de mixtures de gaussiennes. La procédure est spécifique à chaque image et ainsi évite la nécessité d’avoir recours à de larges bases d’entraînement et permet une plus grande flexibilité.Des résultats expérimentaux pour toutes les méthodes précédemment décrites sont présentés sur des benchmarks classiques de la littérature et comparés aux méthodes de l’état de l’art. Nous montrons que le détecteur classique de détection de manipulations basé sur les mixtures de gaussiennes, associé à nos nouvelles méthodes d’adaptation de modèle peut surpasser les résultats de récentes méthodes deep-learning. Notre méthode de discernement entre source/cible pour copier-coller égale ou même surpasse les performances des dernières méthodes d’apprentissage profond. Nous expliquons ces bons résultats des méthodes classiques face aux méthodes d’apprentissage profond par la flexibilité et l’adaptabilité supplémentaire dont elles font preuve.Pour finir, cette thèse s’est déroulée dans le contexte très spécial d’un concours organisé conjointement par l’Agence National de la Recherche et la Direction Général de l’Armement. Nous décrivons dans un appendice, les différents tours de ce concours et les méthodes que nous avons développé. Nous dressons également un bilan des enseignements de cette expérience qui avait pour but de passer de benchmarks publics à une détection de falsifications d’images très réalistes
Images are nowadays a standard and mature medium of communication.They appear in our day to day life and therefore they are subject to concernsabout security. In this work, we study different methods to assess theintegrity of images. Because of a context of high volume and versatilityof tampering techniques and image sources, our work is driven by the necessity to developflexible methods to adapt the diversity of images.We first focus on manipulations detection through statistical modeling ofthe images. Manipulations are elementary operations such as blurring,noise addition, or compression. In this context, we are more preciselyinterested in the effects of pre-processing. Because of storagelimitation or other reasons, images can be resized or compressed justafter their capture. Addition of a manipulation would then be applied on analready pre-processed image. We show that a pre-resizing of test datainduces a drop of performance for detectors trained on full-sized images.Based on these observations, we introduce two methods to counterbalancethis performance loss for a pipeline of classification based onGaussian Mixture Models. This pipeline models the local statistics, onpatches, of natural images. It allows us to propose adaptation of themodels driven by the changes in local statistics. Our first method ofadaptation is fully unsupervised while the second one, only requiring a fewlabels, is weakly supervised. Thus, our methods are flexible to adaptversatility of source of images.Then we move to falsification detection and more precisely to copy-moveidentification. Copy-move is one of the most common image tampering technique. Asource area is copied into a target area within the same image. The vastmajority of existing detectors identify indifferently the two zones(source and target). In an operational scenario, only the target arearepresents a tampering area and is thus an area of interest. Accordingly, wepropose a method to disentangle the two zones. Our method takesadvantage of local modeling of statistics in natural images withGaussian Mixture Model. The procedure is specific for each image toavoid the necessity of using a large training dataset and to increase flexibility.Results for all the techniques described above are illustrated on publicbenchmarks and compared to state of the art methods. We show that theclassical pipeline for manipulations detection with Gaussian MixtureModel and adaptation procedure can surpass results of fine-tuned andrecent deep-learning methods. Our method for source/target disentanglingin copy-move also matches or even surpasses performances of the latestdeep-learning methods. We explain the good results of these classicalmethods against deep-learning by their additional flexibility andadaptation abilities.Finally, this thesis has occurred in the special context of a contestjointly organized by the French National Research Agency and theGeneral Directorate of Armament. We describe in the Appendix thedifferent stages of the contest and the methods we have developed, as well asthe lessons we have learned from this experience to move the image forensics domain into the wild
APA, Harvard, Vancouver, ISO, and other styles
5

Dinh, Laurent. "Reparametrization in deep learning." Thèse, 2018. http://hdl.handle.net/1866/21139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Almahairi, Amjad. "Advances in deep learning with limited supervision and computational resources." Thèse, 2018. http://hdl.handle.net/1866/23434.

Full text
Abstract:
Les réseaux de neurones profonds sont la pierre angulaire des systèmes à la fine pointe de la technologie pour une vaste gamme de tâches, comme la reconnaissance d'objets, la modélisation du langage et la traduction automatique. Mis à part le progrès important établi dans les architectures et les procédures de formation des réseaux de neurones profonds, deux facteurs ont été la clé du succès remarquable de l'apprentissage profond : la disponibilité de grandes quantités de données étiquetées et la puissance de calcul massive. Cette thèse par articles apporte plusieurs contributions à l'avancement de l'apprentissage profond, en particulier dans les problèmes avec très peu ou pas de données étiquetées, ou avec des ressources informatiques limitées. Le premier article aborde la question de la rareté des données dans les systèmes de recommandation, en apprenant les représentations distribuées des produits à partir des commentaires d'évaluation de produits en langage naturel. Plus précisément, nous proposons un cadre d'apprentissage multitâches dans lequel nous utilisons des méthodes basées sur les réseaux de neurones pour apprendre les représentations de produits à partir de textes de critiques de produits et de données d'évaluation. Nous démontrons que la méthode proposée peut améliorer la généralisation dans les systèmes de recommandation et atteindre une performance de pointe sur l'ensemble de données Amazon Reviews. Le deuxième article s'attaque aux défis computationnels qui existent dans l'entraînement des réseaux de neurones profonds à grande échelle. Nous proposons une nouvelle architecture de réseaux de neurones conditionnels permettant d'attribuer la capacité du réseau de façon adaptative, et donc des calculs, dans les différentes régions des entrées. Nous démontrons l'efficacité de notre modèle sur les tâches de reconnaissance visuelle où les objets d'intérêt sont localisés à la couche d'entrée, tout en maintenant une surcharge de calcul beaucoup plus faible que les architectures standards des réseaux de neurones. Le troisième article contribue au domaine de l'apprentissage non supervisé, avec l'aide du paradigme des réseaux antagoniste génératifs. Nous introduisons un cadre fléxible pour l'entraînement des réseaux antagonistes génératifs, qui non seulement assure que le générateur estime la véritable distribution des données, mais permet également au discriminateur de conserver l'information sur la densité des données à l'optimum global. Nous validons notre cadre empiriquement en montrant que le discriminateur est capable de récupérer l'énergie de la distribution des données et d'obtenir une qualité d'échantillons à la fine pointe de la technologie. Enfin, dans le quatrième article, nous nous attaquons au problème de l'apprentissage non supervisé à travers différents domaines. Nous proposons un modèle qui permet d'apprendre des transformations plusieurs à plusieurs à travers deux domaines, et ce, à partir des données non appariées. Nous validons notre approche sur plusieurs ensembles de données se rapportant à l'imagerie, et nous montrons que notre méthode peut être appliquée efficacement dans des situations d'apprentissage semi-supervisé.
Deep neural networks are the cornerstone of state-of-the-art systems for a wide range of tasks, including object recognition, language modelling and machine translation. In the last decade, research in the field of deep learning has led to numerous key advances in designing novel architectures and training algorithms for neural networks. However, most success stories in deep learning heavily relied on two main factors: the availability of large amounts of labelled data and massive computational resources. This thesis by articles makes several contributions to advancing deep learning, specifically in problems with limited or no labelled data, or with constrained computational resources. The first article addresses sparsity of labelled data that emerges in the application field of recommender systems. We propose a multi-task learning framework that leverages natural language reviews in improving recommendation. Specifically, we apply neural-network-based methods for learning representations of products from review text, while learning from rating data. We demonstrate that the proposed method can achieve state-of-the-art performance on the Amazon Reviews dataset. The second article tackles computational challenges in training large-scale deep neural networks. We propose a conditional computation network architecture which can adaptively assign its capacity, and hence computations, across different regions of the input. We demonstrate the effectiveness of our model on visual recognition tasks where objects are spatially localized within the input, while maintaining much lower computational overhead than standard network architectures. The third article contributes to the domain of unsupervised learning with the generative adversarial networks paradigm. We introduce a flexible adversarial training framework, in which not only the generator converges to the true data distribution, but also the discriminator recovers the relative density of the data at the optimum. We validate our framework empirically by showing that the discriminator is able to accurately estimate the true energy of data while obtaining state-of-the-art quality of samples. Finally, in the fourth article, we address the problem of unsupervised domain translation. We propose a model which can learn flexible, many-to-many mappings across domains from unpaired data. We validate our approach on several image datasets, and we show that it can be effectively applied in semi-supervised learning settings.
APA, Harvard, Vancouver, ISO, and other styles
7

Tan, Shawn. "Latent variable language models." Thèse, 2018. http://hdl.handle.net/1866/22131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography